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Abstract. The ability to understand physical dynamics is critical for
agents to act in the world. Here, we use Counterfactual World Mod-
eling (CWM) to extract vision structures for dynamics understanding.
CWM uses a temporally-factored masking policy for masked prediction
of video data without annotations. This policy enables highly effective
“counterfactual prompting” of the predictor, allowing a spectrum of vi-
sual structures to be extracted from a single pre-trained predictor with-
out finetuning on annotated datasets. We demonstrate that these struc-
tures are useful for physical dynamics understanding, allowing CWM
to achieve the state-of-the-art performance on the Physion benchmark.
Code is available at https://neuroailab.github.io/cwm-physics/.

1 Introduction

Physical dynamics understanding involves predicting the effects of physical in-
teractions with objects (e.g. predicting the trajectory of a thrown ball [26], or the
direction of a falling stacked block tower [9]). This remains a critical challenge
for autonomous agents such as robots and self-driving cars interacting with the
world [22]. Existing computer vision algorithms significantly lag behind humans
in physical dynamics understanding [11].

One class of existing methods relies on intermediate vision structures such as
2D object segmentations and 3D particle graphs [3,7,8,41,47,48,57,60,61,63,74].
These vision structures are highly useful for accurate dynamics prediction be-
cause they abstract away irrelevant details. However, these ground-truth struc-
tures are only available in simulated or manually annotated datasets. Scaling
these approaches to unlabelled real-world video data remains challenging.

A contrasting class of approaches avoids the use of intermediate structures
by learning to predict raw pixels of future video frames [2,4,23,24,32,33,55,72].
While these approaches are directly applicable to real-world videos, learning to
predict future frame pixels poses many challenges due to the high-dimensionality
of image pixels and the stochasticity of real-world physical dynamics. These
unstructured methods substantially underperform approaches with direct access
to ground-truth intermediates, especially 3D particles [11].
* Equal contribution
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Structure extraction without finetuning Physics predictionVideo frames

Fig. 1: Overview of the approach. Given an input video of a physical scenario, we
extract feature representations and vision structures such as keypoints, optical flow,
and segments. These structures are extracted from a single pre-trained CWM predictor
without finetuning on annotated datasets. We use the extracted features and structures
for dynamics understanding - detecting a past collision or predicting a future collision.

Beyond task-specific methods for physical dynamics prediction, a promising
alternative is self-supervised learning of task-agnostic visual representations that
transfer well to downstream vision tasks [12,21,35,53,65]. Methods such as DINO
[12, 53], masked autoencoder (MAE) [35], and VideoMAE [21, 65, 67] could po-
tentially learn representations useful for dynamics understanding. An additional
promise is the emergence of semantic segmentation structure in DINO [12, 53],
which could potentially improve dynamics understanding. However, these mod-
els are mostly used in a transfer learning or fine-tuning paradigm, which requires
annotations. It remains unclear whether they can be prompted to extract mean-
ingful structures without finetuning on annotated datasets.

Therefore, a key research question is designing methods that pre-train on real-
world video data without annotations and support extraction of structures for
dynamics understanding. In this work, we use a simple and powerful framework,
called Counterfactual World Modeling (CWM) [10]. CWM allows extraction of
structures useful for understanding dynamics. Figure 1 provides an overview of
our approach. We summarize the contributions of CWM below:

(a) We show that using a temporally-factored masking policy during pre-
training enables powerful prompting abilities. As in VideoMAE, we train a
masked predictor on real-world video data. Unlike VideoMAE, in CWM, the
predictor only takes in a few patches of the last frame and fully visible preceding
frames as inputs, and predicts the remaining patches in the last frame. This
temporally-factored masking policy encourages the predictor to concentrate in-
formation about transformations between frame pairs into the embeddings of
a small number of patch tokens. This in turn enables the predictor to support
effective prompting via simple interventions on those few key tokens, allowing
the system to answer hypotheticals, such as what will the next frame look like
if an object in an image is moved to the right.

(b) We demonstrate that CWM can be prompted to extract multiple vision
structures useful for understanding dynamics. As a result of the masking policy,
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we can extract structures by feeding CWM different prompts. These structures
are extracted from a single predictor without being supervised on annotated
datasets. Utilizing the extracted structures, CWM achieves state-of-the-art per-
formance on the challenging Physion benchmark [11].

CWM can be understood in the context of Pearl’s Ladder of Causation [28],
describing how counterfactual reasoning can be built up from statistical models.
The first rung of the Ladder is Association, in which a model of the predictable
statistical relations between observed events over time is constructed. In CWM,
this role is played by the world model itself, the large pretrained predictor which
absorbs correlations from observed video inputs. The second rung is Interven-
tion, in which at key junctions of the statistical model, observational data are
replaced by specific fixed choices (“interventions”) intended to produce some de-
sired outcome. In CWM, this role is played by patch-level prompting, whose
utility is greatly enabled by the temporally-factored training of the underlying
predictor. The third rung of the Ladder is Counterfactual, in which the results
of interventions are compared to alternative futures to identify true causes of
events. In CWM, the comparison between outcomes of counterfactual interven-
tions (prompts) and alternative futures (observed ground truth or observed pre-
dictions) are used for structure extraction, which – since they better capture core
underlying causes of physical events – end up being useful for improved physical
prediction.

In what follows, we review the literature on related works, and describe
the core concepts of the CWM framework. We then demonstrate that the ex-
tracted structures of CWM are highly useful for physical dynamics understand-
ing. Lastly, we provide an analysis of the quality of the extracted structures and
ablation studies of CWM.

2 Related Works

Structured dynamics prediction Researchers have made substantial progress
in physical dynamics prediction using structured particle representations as in-
puts [3, 7, 8, 34, 41, 47, 48, 60, 61, 63]. These approaches simulate large systems of
particle-based representations by constructing interaction graphs and propagat-
ing information between graph nodes. Besides particle graphs, alternative object
structures such as entity locations [74] and keypoints [39] are useful for physical
dynamics prediction. However, these methods rely on ground-truth object struc-
tures, which are only available in simulated or manually annotated datasets. The
scalability of these methods on real-world unlabelled data remains limited.
Video prediction One class of approaches learns physics understanding by pre-
dicting the pixels of future video frames [2,4,23,24,32,33,55,72]. These methods
are directly applicable to real-world videos without depending on ground-truth
object structures, which are difficult to obtain in general scenarios. Recent video
diffusion models [16,38,45,66] and transformer-based prediction models [31,76]
have made progress towards more realistic pixel prediction of future video frames.
However, learning to predict future frame pixels poses many challenges due to
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the high-dimensionality of image pixels and the stochasticity of real-world phys-
ical dynamics. Existing state-of-the-art methods are prone to creating physically
implausible motions in the predicted video frames [44].
Self-supervised visual representation learning Beyond task-specific meth-
ods for physical dynamics prediction, a promising alternative is self-supervised
learning of task-agnostic visual representations from large-scale unlabeled image
or video data. These methods learn to generate visual features that transfer well
to downstream vision tasks. One school of works leverages different pretext tasks
for pre-training [18,27,50,54,68,77]. Another class of works models image simi-
larity and dissimilarity between augmented views of an image [12,15,36,51,53,71]
and different clips of a video [17,58,79] via constrastive learning. The most recent
family of masked visual modeling approaches learns effective visual representa-
tions via masking and reconstruction of visual tokens. iGPT [14] and ViT [19]
pioneer this direction by training transformers on pixel or patch tokens and ex-
ploring masked prediction with patches. MAE [35] introduces autoencoding with
an asymmetric encoder-decoder architecture and empirically shows that a high
masking ratio is crucial for image tasks. VideoMAE [21,65] extends to the video
domains and shows that an even higher masking ratio leads to strong perfor-
mance for activity recognition tasks. V-JEPA [6] explores feature prediction as
an objective for unsupervised learning from video and achieves state-of-the-art
results on activity recognition task in the Something-Something V2 dataset [29].
However, the usefulness of these representations for physical dynamics under-
standing remains unexplored. Furthermore, these models are mostly used in a
transfer learning or fine-tuning paradigm, which requires ground-truth annota-
tions. It remains unclear whether they can be prompted to extract meaningful
structures without additional training on annotated data.

3 Method

We discuss in generality the three concepts of CWM by climbing Pearl’s Lad-
der of Causation [28]: (1) temporally-factored masked predictor for learning as-
sociations, (2) prompting as interventions and (3) structure extractions using
counterfactuals. We will discuss the application of CWM to physical dynamics
understanding in Section 4.

3.1 Temporally-factored masked predictor for learning associations

Masked predictor Following MAE [35] and VideoMAE [21, 65], we train an
encoder-decoder architecture to reconstruct masked observations of video frames.
The input video frames are first divided into non-overlapping spatiotemporal
square patches. Then a subset of the patches is masked, and only the remaining
visible patches are passed as inputs into the encoder. Finally, the embeded tokens
from the encoder and learnable mask tokens, with added positional embedding
on all the tokens, are passed as inputs into a shallow decoder to reconstruct the
masked patches. The predictor is trained with the mean squared error (MSE)
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Fig. 2: Climbing the Ladder of Causation with the CWM framework: (a)
Temporally-factored masked predictor for association learning. Given a frame
pair input, the predictor takes in dense visible patches from the first frame and only
a sparse subset of patches from the second frame as inputs, and learns to predict the
masked patches. This policy encourages the model to concentrate scene dynamics into
embeddings of a few patches. (b) Prompting as interventations. As a result of the
temporally-factored masking, we can intervene by modifying one or a few visual patches
in the prompt and steer the outcome of the predictor. (c) Structure extraction
using counterfactuals. Multiple vision structures can be extracted by comparing the
results of interventions to alternative futures (e.g. observed ground truth or observed
predictions).

loss between the reconstructed patches and the original masked patches. The
predictor learns the associations between spatiotemporal patches of observed
video inputs.

Temporally-factored masking Unlike VideoMAE [21, 65], which randomly
samples “tubes” or “cubes” of spatiotemporal patches to be masked, we use a
temporally-factored masking policy for video inputs. Without loss of generality,
we discuss the masking policy with a frame pair x1, x2 ∈ R3×H×W as input.
Given the input frame pair, we train a predictor Ψ :

Ψ(xα
1 , x

β
2 ) = x̃2 (1)

which takes in first frame x1 and second frame x2 with masking ratio α, β ∈ [0, 1].
The predictor Ψ predicts the masked patches of x2, and minimizes the MSE loss
between the reconstructed patches x̃2 and the masked patches of x2. Figure 2a
illustrates this masking policy.

Here, we set the masking ratio α to 0 and β to 0.90, a highly asymmetric
masking policy. As a result of this high masking ratio, the predictor Ψ learns to
complete the second frame given only a few patches of it, along with the fully
visible first frame; the only way it can do this is by inferring scene transfor-
mations from a few second-frame patches, then applying these transformations
to the first-frame patches to complete the second frame [10]. This implies that
the predictor learns to concentrate transformations between frame pairs into the
embeddings of a few visible patches. Consequently, modifying the contents of a
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few patches, which represent transformations, can exert meaningful control over
the next-frame predictions.

3.2 Prompting as interventions

With a pre-trained predictor, at inference time we can replace empirical data
observations with interventions intended to produce some desired outcome [28].
As a result of the temporally-factored masking policy, we can modify the orig-
inal inputs at a few patch locations to generate alternative outcomes using the
predictor. To formalize the procedure of intervention, we first define a prompt p
as a set of video frames that is given as input to the predictor:

p = {x1, x2 |x1, x2∈R3×H×W } (2)

where x2 has a small number of visible patches that specify scene transforma-
tions. An intervention p̄ is defined as an input to the predictor that has been
modified from the initial prompt p. We use two basic types of interventions: (a)
appearance prompts, which involve modifications to the first frame x1, and (b)
motion prompts, which involve modifications to the second frame x2. Given a in-
tervention p̄, the associated prediction is the outcome of the predictor Ψ(p̄) [10].
Figure 3a shows the predictions for a series of motion prompts. These prompts
use a single image, x1 and construct x2 by revealing only a few patches in the
input image and translating them by a small offset.

3.3 Structure extraction using counterfactuals

The observation of the previous section shows how it is possible to generate
counterfactual object motion by modifying the positions of a small number of
patches. Next, we discuss how different structure extractions can be specified
as counterfactuals [28] by comparing the outcomes of the interventions with
alternative futures (e.g. observed ground-truth data or predictions).

Keypoints have been previously defined by manual category-specific annota-
tions [20, 42, 75]. CWM provides a general category-agnostic definition of key-
points as patch locations in x2 that, when revealed to the predictor, yield the
lowest error in the reconstruction Ψ(p) [10]. Let I be a set of patch locations of
an image. The set of keypoints is defined as:

K(x1, x2, n) = argmin
k⊂I, |k|=n

L(Ψ(p), Ψ(p̄))

where p̄ = {x1, x
m
2 |xm

2 is visible at k}
(3)

Here, the intervention p̄ is the modification of the original input p = {x1, x2},
where the second frame xm

2 is masked everywhere except at keypoint locations.
This construction defines a set of dynamical RGB keypoints on x2. For large
values of n, this is in general an intractable optimization problem. In practice,
we thus first start with an empty set and add keypoints one at a time to greedily
reduce the reconstruction error until n keypoints have been obtained. We show
examples of extracted keypoints in the top panel of Figure 3b.
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(a) Counterfactual predictions (b) Structure extraction

counterfactuals predictions

frame 1 frame 2 keypoints

frame 1 frame 2 flows
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Fig. 3: Counterfactual predictions and structure extraction. (a) Counter-
factual predictions. A small number of visual patches exert meaningful control of
scene dynamics. Each panel shows a prompt consisting of the input image (left), a few
patches copied from the input image (middle), and the resulting predictions (right). A
red patch is copied into the same location as its source, simulating the appearance of
holding an object fixed. A green patch is copied into a different location at an offset
from the source location, simulating the appearance of an apparent object motion. (b)
Structure extraction for keypoints, flows, and segments

Optical flow is the task of estimating per-pixel motion between video frames
[64]. To estimate per-pixel motion, we introduce an appearance intervention that
adds a small perturbation to the pixel in the first frame. We can estimate the
pixel motion by localizing the perturbation response in Ψ(p̄) [10].

More specifically, given a prompt p = {x1, x
β
2} and a pixel location (i, j),

we construct an intervention p̄ = {x1+δij , x
β
2}, which adds a small perturba-

tion δij to the first frame at the pixel location. This creates a perturbed first
frame by modifying its appearance at a pixel location. For this reason, we call
this an appearance intervention. With a perturbed first frame, the predictor
propagates the perturbation in the next frame, under the original scene trans-
formations specified by xβ

2 . The corresponding pixel location in the next frame
can be localized by finding the peak of the perturbation response. The pertur-
bation response in the next frame can be computed as the absolute difference
between the counterfactual prediction Ψ(p̄) and the observed prediction Ψ(p).
Then, we locate the peak of the perturbation response by taking an argmax over
the set of patch locations I. The flow at pixel location (i, j) is then defined as
the spatial displacement between (i, j) and the peak of perturbation response:
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Fi,j(x1, x2) = argmax
I

|Ψ(p̄)− Ψ(p) | − (i, j) (4)

This algorithm is simple and often effective, as shown in the middle panel
of Figure 3b, but it might fail in two ways. First, one of the revealed patches
in xβ

2 may cover the place where the perturbation at location (i, j) is expected
to move. This can be remedied by running the above procedure for multiple
random choices of xβ

2 and taking their average perturbation responses [10].
A second potential failure mode is that the intervention p̄ might be out of

distribution for Ψ , which could happen when the perturbation δij is too large [10].
On the other hand, if the perturbation is too small, it might not be detected
and moved accurately. This can be naturally addressed by using infinitesimal
perturbations. We normalize the magnitude of the perturbation response by the
magnitude of the perturbation as the limit goes to zero. This is exactly the
derivative of the Ψ at location (i, j):

lim
δij→0

|Ψ(p̄)− Ψ(p)|
|δij |

= ∇xΨ

∣∣∣∣
(i,j)

(5)

To simultaneously estimate optical flow at all locations of an input frame,
we can compute the Jacobian of Ψ . This is a tensorial operation that can be
computed once at all pixels using PyTorch autograd [1]. We describe more details
about the procedures of extracting flow in the supplementary material.

Segmentation is defined as a collection of physical stuff that moves together
under the application of everyday physical actions [13]. This is inspired by the
notion of Spelke object in infant object recognition: infants tend to group scene
elements that move together as a single object [62]. CWM extracts segmentation
of objects by motion interventions, which simulate object motion at a pixel
location, followed by grouping parts of the image that move together.

Given a single image x as input, we define an intervention p̄ = {x, x̄m}. These
prompts produces the second frame x̄m by revealing only a few patches in the
input image and translating those patches by a small offset. With a temporally-
factored masked predictor, moving a few patches in the prompt will cause the
entire object to move in the resultant counterfactual predictions Ψ(p̄). Segments
can be extracted by thresholding the flows between the input image x and Ψ(p̄):

S(x) = F (x, Ψ(p̄)) > 0 (6)

Once a segment is extracted, we iterate the procedure above to refine the
segment by revealing more patches within the segment region into x̄m and trans-
lating patches in the same direction. We set the number of iterations as 3. To
automatically discover multiple objects in a single image, we iteratively extract
segments at pixel locations that are not part of a discovered object. Once an
object segment is discovered, we reveal patches that are not within the segment
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region and repeat the procedure to discover the next object. We show examples
of extracted segments in the bottom panel of Figure 3b. We discuss more details
in the supplementary material.

4 Experiments

Section 4.1 first investigates the usefulness of the extracted structures for down-
stream physical dynamics understanding tasks. Section 4.2 evaluates the quality
of counterfactual motion predictions and extracted visual structures on real-
world datasets. Section 4.3 discusses ablations studies on the CWM design.

4.1 Physical Dynamics Understanding

Physion benchmark consists of realistic simulations of diverse physical scenar-
ios where objects are manipulated in a variety of configurations to test different
types of physical reasoning such as stability, rolling motion, object linkage, etc.
We use the latest version of Physion [11], referred to as Physion v1.51, which
has improved rendering quality and more physically plausible simulations.

In the ideal scenario, we would evaluate CWM on a real-world physics-
understanding benchmark, but such benchmarks are not available. Recent works
have shown that simulated data can be highly valuable [43, 64, 78]. Physion is
a challenging benchmark as it contains diverse physical phenomena, object dy-
namics and realistic 3D simulations. This makes it a preferable choice when
compared to other benchmarks such as ShapeStacks [30] and IntPhys [59] which
contain very limited object dynamics, or Phyre [5] which only operates in 2D
environments. Existing video models still significantly lag behind human perfor-
mance on the Physion benchmark [11]. Moreover, the CWM model is trained on
real-world videos from Kinetics-400 dataset [40] and tested on Physion, and is
thus a strong generalization test.

The benchmark consists of two tasks: (a) Object contact prediction (OCP),
which tests the model’s ability to predict whether two objects will contact at
some point in the future given a context video, and (b) Object contact detection
(OCD) which tests the model’s ability to detect if two objects have already come
into contact in the observed video. The video stimuli are generated in such a
way that the model needs to have an understanding of the physical dynamics in
order to answer the contact-related question correctly. Figure 4 shows example
stimuli for the two tasks. For both tasks, the two objects of interest are rendered
with red and yellow texture to cue the model.

Evaluation protocol We follow the three-step evaluation protocol of the
Physion benchmark [11]. First, we extract features from the last layer of a frozen
pre-trained encoder on a training set of 5,600 videos for OCP and OCD tasks,
respectively. For image-based methods, features are extracted from 4 frames
that are 150 ms apart. For video-based methods, the input frames are fed to the

1 https://physion-benchmark.github.io
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(a) Object Contact Prediction:  Will the red object contact the yellow carpet? (b) Object Contact Detection:  Did the red object contact the yellow carpet?

Fig. 4: Physion v1.5 evaluation protocol. We evaluate on two physical dynamics
understanding tasks – (a) Object contact prediction where the model is asked
to predict contact events in the future and (b) Object contact detection where
the model is asked to reason about contact events that occur in the observed video
stimulus. The objects of interest for which we want to ask the contact question are
rendered with red and yellow texture to cue the model.

model at the specific frame rate used during their training. Second, the extracted
features are used to train a logistic regression model to predict the contact label
for the given video stimulus. Lastly, the trained classifier is evaluated on a test
set of 1,000 videos across different physical scenarios.

Baseline methods We compare CWM with five classes of baseline ap-
proaches: (a) video prediction models including MCVD [66], R3M [49], FitVid [4],
and TECO [73], (b) self-supervised representation learning methods on images
including DINO [12], DINOv2 [53], and MAE [35], (c) self-supervised represen-
tation learning methods on videos including VideoMAE [65], VideoMAEv2 [67]
and the recent state-of-the-art method V-JEPA [6] (d) vision-language mod-
els like GPT4-V [52] and lastly (e) ground truth 3D particle-based dynamics
prediction models such as SGNN [34].

Results In Table 1 we report results on the two Physion tasks for both
CWM with ViT-B and ViT-L architectures and other baseline methods discussed
above. We evaluate CWM with both features and extracted vision structures
input to the linear classifier. We find that video prediction models (such as
MCVD [66] and TECO [73]) perform poorly especially on the Physion tasks.
Self-supervised image representation models on the other hand, are better but
they saturate around 72% and 87% for OCP and OCD respectively with the ViT-
B architecture. It is interesting to note that CWM outperforms methods such as
DINOv2 ViT-g and MAE ViT-H which have 13 and 7 times more parameters.
When scaled up to ViT-L, CWM achieves superior performance on OCP.

We find that CWM exhibits superior performance compared to both Video-
MAE [65] and VideoMAEv2 [67]. To ensure a fair evaluation, we train a variant
of VideoMAE, denoted as VideoMAE*, that matches CWM in terms of the
number of frames and patch size, and include comparable structure extractions
from the model for linear probing. Our findings indicate that CWM performs
better than VideoMAE*. Furthermore, CWM surpasses the recently released V-
JEPA [6], a state-of-the-art model for video representation, despite being trained
on a considerably smaller dataset. Furthermore, we find on OCP, CWM achieves
a performance that closely approaches that of ground truth 3D particle-based
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Table 1: State-of-the-art accuracy on Physion v1.5. We compare CWM to five
classes of baseline methods across different architectures on the OCP and OCD tasks.
We evaluate CWM with both features and extracted structures and find that it achieves
state-of-the-art performance on these tasks. Original VideoMAE [65] uses 16 input
frames and a patch size of 16. We trained VideoMAE* with 3 input frames, a patch
size of 8, and include extracted vision structures from the model for a strictly fair
comparison with CWM.

method training data arch param OCP ↑ OCD ↑

supervised ground truth 3D particle-based model

SGNN Physion v1.5 GNN 23 M 76.4 98.8

video prediction models

MCVD [66] K400+Ego4D UNet 251 M 63.4 80.8
R3M [49] K400+Ego4D Res50 38 M 67.6 78.1
FitVid [4] K400+Ego4D VAE 303 M 64.3 59.5
TECO [73] K600 vq-gan 160 M 69.3 80.9

self-supervised image representation models

DINO [12] IN-1K ViT-B 86M 72.1 85.4
DINOv2 [53] LVD-142M ViT-B 86 M 72.2 87.1
DINOv2 [53] LVD-142M ViT-L 304 M 72.2 85.5
DINOv2 [53] LVD-142M ViT-g 1.1 B 72.7 84.6
MAE [35] IN-1K ViT-B 86 M 72.6 81.6
MAE [35] IN-1K ViT-L 304 M 71.6 82.3
MAE [35] IN-1K ViT-H 632 M 73.3 80.8
MAE [35] IN-4.5M ViT-B 86 M 72.1 81.7
MAE [35] IN-4.5M ViT-L 304 M 72.6 81.9

self-supervised video representation models

VideoMAE [65] K400 ViT-B 86 M 72.1 85.7
VideoMAE* K400 ViT-B 86 M 73.2 86.2
VideoMAE [65] K400 ViT-L 304 M 73.6 86.1
VideoMAE [65] K400 ViT-H 632 M 73.5 87.5
VideoMAEv2 [67] U-Hybrid ViT-g 1.1B 72.2 85.0
V-JEPA [6] VideoMix2M ViT-L 304M 73.4 87.0

vision-language models

GPT4-V [52] - - - 52.9 54.7

CWM K400 ViT-B 86 M 75.9 89.1
CWM K400 ViT-L 304 M 76.1 88.7

simulation models (i.e SGNN [34]) learned on Physion, despite being trained on
Kinetics-400 [40] – a considerably different real world dataset.

We also evaluate GPT4-V [52] on Physion v1.5 tasks by providing it with a
single composite image with a sequence of four video frames sampled at a gap of
150ms. The model is prompted with questions similar to those in Figure 4 (see
supplementary for more details about the specific prompts used). We find GPT4-
V scores nearly at chance on OCP and slightly above chance on OCD, which
highlights a considerable limitation in the ability of large-scale vision-language
models to understand physical scene dynamics.
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Fig. 5: Qualitative comparison of counterfactual motion prediction and
structure extraction on real-world datasets. We find that when we apply our ex-
traction procedures described in Section. 3.3 on VideoMAE, the model fails to generate
counterfactual motion and extracts less meaningful structures than CWM. Segments
cannot be extracted from VideoMAE due to the failure of counterfactual predictions,
and hence not shown in this comparison. This shows the importance of the temporally-
factored masking policy during pre-training.

4.2 Analysis of the extracted structures

We analyze the quality of structures extracted by CWM. Although not all base-
line methods can perform counterfactual predictions or structure extractions, we
apply our procedures to the baseline methods for a fair comparison with CWM.
We show CWM yields more meaningful predictions, keypoints, and flows than
VideoMAE, enabled by the temporally-factored masking policy. We also show
that the quality of segments extracted by CWM is close to the state-of-the-art
method CutLER [70], which extracts segments from DINO [12].

Counterfactual prediction We compare CWM and VideoMAE on the
quality of counterfactual predictions in Table 2a and Figure 5. We generate coun-
terfactual motions using input images from the DAVIS dataset [56]. The quality
of generation is measured by the Fréchet Inception Distance (FID) [37]. CWM
significantly outperforms VideoMAE. For a strictly fair comparison, we train
another VideoMAE model (referred to as VideoMAE*) with the same number
of frames and patch size as CWM. Although the model achieves a slightly lower
FID relative to VideoMAE, the reconstructions are still quite blurry without
accurate object motions. This illustrates the importance of temporally-factored
masking in generating plausible counterfactual predictions.

Keypoints Existing keypoint datasets are generally created with manually
specified templates for certain object categories [20, 42, 75]. Therefore, these
datasets do not provide suitable quantitative evaluations of CWM keypoint,
which are category-agnostic. Figure 5 shows that CWM can extract more mean-
ingful dynamic keypoints as compared to VideoMAE.



Counterfactual World Modeling 13

Table 2: Quantitative comparison of counterfactual motions, flow and seg-
ment extraction on real-world datasets. In (a) we compare to VideoMAE on
counterfactual motions and flow. For a strictly fair comparison, we also evaluate Video-
MAE* which we trained with the same patch size and number of frames as CWM. In
(b) we compare CWM to CutLER [70], which extracts segmentations from DINO [12],
and FreeSOLO [69] on the quality of segmentations.

(a) Counterfactual motion (CM) and Flow

Methods CM (FID ↓) Flow (F1 ↓)

VideoMAE [65] 213.4 56.3
VideoMAE* 166.3 54.9
CWM 25.4 46.8

(b) Segments extraction

Methods Segment (AP ↑)

FreeSOLO [69] 4.3
CutLER [70] 8.4
CWM 8.2

Optical flow We evaluate the quality of optical flows on the SPRING bench-
mark [46] using the F1 metric [25]. We find that CWM is better compared to
both VideoMAE and VideoMAE* (See Table. 2a). This is also supported by the
qualitative results shown in Figure. 5. We include more qualitative comparisons
and additional implementation details in the supplementary.

Segments We extract segments on images from COCO train2017 [42] us-
ing CWM. We follow the same procedures in CutLER [70] to learn a detector
using the extracted segments as self-supervision. We train CutLER on COCO
training images for a fair comparison. We compare CWM with FreeSOLO [69]
and CutLER [70] in Table 2b and Figure 5. CWM outperforms FreeSOLO [69]
significantly and attains similar performance to the current state-of-the-art ap-
proach CutLER [70]. Although Spelke objects are segment-like structures, the
definition of Spelke objects is not exactly aligned with the definition of instance
segmentations in the COCO datasets.

4.3 Ablation studies

We ablate the CWM design with the default backbone of ViT-B. Each ablated
model is trained for 800 epochs on the Kinetics-400 dataset. Results of the
ablation study are reported in Table. 3.

Vision structures We study the importance of each visual structure in
understanding dynamics. Adding patch features at keypoint locations improves
the OCP accuracy from 73.6% to 74.4%. Enriching these patch features with
optical flow patches further improves the accuracy to 75.5%. Finally, including
segments achieves a score of 75.9%.

Training schedule We find that a model trained with a longer training
schedule of 1600 epochs achieves an OCP score of 75.9% – a relatively small
improvement over an 800 epoch trained model (75.4%).

Masking Policy We study the importance of temporal factoring by training
a model with a random tube masking strategy, which was originally proposed in
VideoMAE [65]. The temporally-factored mask policy is essential for extraction
of meaningful vision structures, improving the OCP accuracy improves from
73.2% with tube masking to 75.9% with temporally-factored masking.
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Table 3: CWM ablation studies. The best setting is shown in the first row. We in-
vestigate the importance of different vision structures, masking policy, training epochs,
masking ratio, context frames and patch size.

Ablations temporal
factoring

Input to the classifier mask
ratio

patch
size

context
frames

training
epochs

Metrics

feat. keyp. flow segm. OCP ↑ OCD ↑

Best setting ✓ ✓ ✓ ✓ ✓ 0.90 8 2 1600 75.9 89.1

Structures
✓ ✓ ✓ ✓ ✗ 0.90 8 2 1600 75.5 88.5
✓ ✓ ✓ ✗ ✗ 0.90 8 2 1600 74.4 89.1
✓ ✓ ✗ ✗ ✗ 0.90 8 2 1600 73.6 89.1

Training epochs ✓ ✓ ✓ ✓ ✓ 0.90 8 2 800 75.4 88.9

Masking policy ✗ ✓ ✓ ✓ ✓ 0.90 8 2 800 73.2 86.2

Masking ratio
✓ ✓ ✓ ✓ ✓ 0.85 8 2 800 75.0 88.9
✓ ✓ ✓ ✓ ✓ 0.95 8 2 800 74.6 88.3
✓ ✓ ✓ ✓ ✓ 0.99 8 2 800 72.5 86.6

Context frames ✓ ✓ ✓ ✓ ✓ 0.90 8 1 800 71.0 85.2
✓ ✓ ✓ ✓ ✓ 0.90 8 4 800 68.5 79.9

Patch size ✓ ✓ ✓ ✓ ✓ 0.90 16 2 800 74.2 88.8

Mask ratio We observe that a high ratio on the last frame (90%) during
model training achieves good performance on both the OCP and OCD tasks.
This trend aligns with our aforementioned hypothesis that the dynamics between
frame pairs at a short timescale has a low-dimensional causal structure, which
can be concentrated into a small number of tokens.

Context length We compare the performance of CWM with different num-
bers of context frames. CWM with 2 context frames during pre-training performs
better as compared to using 1 context frame. However, including 4 context frames
degrades the performance.

Patch size Our analysis indicates that the patch size used for training the
model can influence the performance; specifically, a patch size of 8 yields a
superior OCP accuracy of 75.9%, compared to a patch size of 16, which results
in a lower accuracy of 74.2%.

5 Conclusion

In this work, we show that a simple temporally-factored masking policy during
pre-training enables powerful prompting abilities. As a result, we can use coun-
terfactual prompts and their associated predictions to extract vision structures,
which abstract away irrelevant details and thus end up being useful for improved
dynamics understanding. As compared to random masking, temporally-factored
masking policy allows more meaningful and useful structures to be extracted
from the pre-trained predictor. CWM achieves state-of-the-art results on the
challenging Physion benchmark as compared to previous self-supervised meth-
ods, approaching the performance of the best supervised methods in terms of
object contact prediction accuracy.
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