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A Additional Ablation Study

Learned Matrices. In Fig. 1, we plot the singular values of our learned matrices
U1 ∈ RM×R and U3 ∈ RNg×R, where M = 43 is the number of parameters per
Gaussian, Ng = 5 × 104 is the number of the 3D Gaussians, and R = 100

(a) Singular values of U1 (b) Singular values of U3

Fig. 1: Singular values. The singular values of our learned U1 ∈ RM×R and U3 ∈
RNg×R, where M = 43 is the number of parameters per Gaussian, Ng = 5× 104 is the
number of 3D Gaussians, and R = 100 is the rank of our CP tensor decomposition.

https://aggelinacha.github.io/MIGS/
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(a) (b)

Fig. 2: Ablation study. (a) Ablation study on our proposed personalization proce-
dure. In order to capture individual details, we fine-tune our color MLP of our generic
model (left), leading to the personalized model for a particular subject (middle). We
do not fine-tune all parameters (see artifacts on the right). (b) Ablation study on the
rank R of our tensor decomposition. R = 10 leads to a mixture of identities (notice
different shirt colors), while R = 100 is sufficient to capture the training identities.

(a) PSNR vs number of training identities (b) LPIPS∗ vs number of training identities

Fig. 3: Ablation study. Visual quality (PSNR and LPIPS∗) on the “Advanced Test”
set, with or without personalization, for different number of training identities and
R = 100.

is the rank of our CP tensor decomposition (see Sec. 4.2 of the main paper).
We use SVD from PyTorch [10] 3 and plot them in logarithmic scale. These
matrices correspond to the model trained on the 30 subjects from the AIST++
dataset [5, 13].
Personalization. As mentioned in Sec. 4.4 of the main paper, we can per-
sonalize our generic model for a particular subject, in order to capture indi-
vidual details (e.g . face or cloth details). We show an example output of our
generic model trained on 30 identities and the corresponding personalized re-
sult in Fig. 2a. We notice that this personalization procedure is needed only for
models trained with identities more than 20. We only fine-tune the color MLP
for 5 × 103 iterations, keeping the rest of the parameters frozen, using a short
video of the target subject. We do not fine-tune all parameters, since in this case
our network would forget the large variety of human body deformations learned
from multiple subjects, leading to artifacts in novel poses (see Fig. 2a right).

3 https://pytorch.org/docs/stable/generated/torch.svd.html
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Fig. 4: Animation of human avatars under novel poses. Qualitative comparison
with state-of-the-art approaches, namely HumanNeRF [14], MonoHuman [15], GauHu-
man [1], and 3DGS-Avatar [12]. The training subjects and the target poses are from
the ZJU-MoCap dataset [11]. Our method demonstrates significant robustness.

Ablation Study on the Rank R. In Fig. 2b, we show a qualitative comparison
for different values R of our tensor decomposition (see also Sec. 5.3). We observe
that R = 10 is not enough to capture a larger number of identities. For example,
it can lead to a mixture of colors (notice the shirt colors for R = 10). On the
other hand, R = 100 seems sufficient to capture all the training identities.
Ablation Study on the Number of Identities. Figure 3 shows the visual
quality for different number of training identities, with and without personaliza-
tion. As also mentioned in the main paper (see also Fig. 6), increasing the number
of identities leads to an increase in robustness under novel poses. Further person-
alization captures identity-specific details, enhancing the output visual quality.

B Additional Results

Figure 4 demonstrates additional qualitative results for our model trained on
subjects from the ZJU-MoCap dataset [11]. Animating them under novel poses
leads to artifacts under the arms and legs in all other methods, namely Hu-
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Fig. 5: Novel view synthesis on ZJU-MoCap. Qualitative comparison with state-
of-the-art approaches, namely HumanNeRF [14], MonoHuman [15], GauHuman [1],
and 3DGS-Avatar [12] on novel view synthesis on the test set of the ZJU-MoCap
dataset [11].

manNeRF [14], MonoHuman [15], GauHuman [1], and 3DGS-Avatar [12]. Our
proposed method demonstrates significant robustness.

Figure 8 demonstrates additional qualitative results when the target poses
are from the AIST++ dataset [5, 13]. In this case, the poses are more challeng-
ing, completely unseen during training (out of the training distribution). Again,
MIGS outperforms the other methods, robustly animating the identities under
novel poses.

Figure 5 shows qualitative comparisons for novel view synthesis on the test
set of the ZJU-MoCap dataset [11]. Corresponding quantitative results are shown
in Table 1 of the main paper and Tab. 1. Our method demonstrates compara-
ble performance with 3DGS-Avatar on novel view synthesis, while trained on
multiple identities simultaneously.

Figure 6 shows qualitative comparisons with approaches that use multiple
views as input. These works address the problem in a different way. They extract
features from nearby views and infer a novel view in a feed-forward manner.
Most of them cannot animate humans under novel poses, e.g . see results of
NHP [6] and TransHuman [9] (we use black background to be consistent with
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Table 1: Quantitative evaluation on ZJU-MoCap. We compare our method
with state-of-the-art approaches (HumanNeRF [14], MonoHuman [15], GauHuman [1],
3DGS-Avatar [12]) on novel view synthesis, using the standard test set of ZJU-MoCap.
We report PSNR, SSIM, and LPIPS∗ = LPIPS × 103 on 2 subjects (387, 393). See
Table 1 in the main paper for the other 4 subjects (377, 386, 392, 394).

387 393
Method PSNR↑ SSIM↑ LPIPS∗↓ PSNR↑ SSIM↑ LPIPS∗↓

HumanNeRF 28.18 0.9632 35.58 28.31 0.9603 36.72
MonoHuman 27.93 0.9601 41.76 27.64 0.9566 43.17
GauHuman 27.95 0.9608 40.70 27.88 0.9578 43.01
3DGS-Avatar 28.33 0.9642 34.24 28.88 0.9635 35.26
Ours 30.70 0.9643 35.33 31.57 0.9640 30.44

Fig. 6: Comparison with multi-view approaches: Neural Human Performer [4] and
TransHuman [9].

their pretrained models - compare with row 2 in Fig. 4). ActorsNeRF [8] does
not have code available. GPS-Gaussian [16] does not use body pose (SMPL
parameters) as input at all, and thus cannot render novel poses.

C Implementation Details

In this section, we include implementation details of our proposed method (see
also Tab. 2). Our implementation is based on PyTorch [10]. We built our ar-
chitecture upon 3DGS-Avatar [12], but with some important modifications in
order to learn multiple identities (see also Sec. 3.2 of the main paper). We use
Ng = 5×104 3D Gaussians, that we initialize by randomly sampling Ng points on
the canonical SMPL mesh surface of the first identity. We initialize the matrices
U1, U2, U3 as described in Sec. 4.3 of the main paper.

The positions µc of the Gaussians in the canonical space are first encoded
into a multi-level hash grid and passed through the non-rigid deformation MLP
fd. The hash grid has 16 levels of 2-dimensional features each, hash table size 216,
coarse and fine resolution 16 and 2048 correspondingly [12]. The non-rigid MLP
fd is also conditioned on a latent code zp that is the output of an hierarchical
encoder [7, 12]. The rigid MLP fr inputs the non-rigidly deformed positions µd

and outputs the skinning weights that sum up to 1 through a softmax layer [12].
Similarly with 3DGS-Avatar [12], we normalize the coordinates in the canonical
space by proportionally padding the bounding box enclosing the canonical SMPL
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mesh of the identity. The color MLP is conditioned on the output z of the non-
rigid network, a per-Gaussian feature vector f and the canonicalized viewing
direction (see Sec. 3.2). We do not learn any per-frame latent codes, in order
to avoid any overfitting to the training frames. We use a larger color MLP
compared to 3DGS-Avatar, of 3 layers and 256 hidden units each, in order to
learn the diverse colors of multiple identities.

We observed that our network is very sensitive to the learning rate of the dif-
ferent components and the initialization, similarly with other 3DGS methods [2].
Our initialization is described in Sec. 4.3. We experimentally chose the learning
rates depicted in Tab. 2. As shown, we use different learning rates for different
rows of U1 that roughly correspond to scaling, rotation, features for color, and
opacity (see our tensor construction in Sec. 4.1). These learning rates are similar
with the learning rates used for scaling, rotation, color, and opacity by other
3DGS implementations [2, 12]. However, in our case, we get the corresponding
values after multiplying the matrices U1, U2, U3 using Eq. (8). We use Adam
optimizer [3]. The rest of the Adam hyper-parameters are set at their default
values (β1 = 0.9, β2 = 0.999, ϵ = 10−8).

We train our multi-identity network for 5×104 iterations for 15 subjects, and
105 iterations for 30 subjects, that need about 2 and 4 hours correspondingly
on a single NVIDIA Quadro RTX 6000 GPU. Following prior work [12, 14],
we freeze everything in the first 103 iterations and train only the rigid MLP.
In this way, we better initialize the rigid mapping from the canonical to the
observation space based on estimated SMPL parameters, and avoid any noisy
gradients in the beginning. After the first 103 iterations, we enable optimization
to all the components, except for the non-rigid network that is frozen until the
first 3 × 103 iterations. In constrast to 3DGS-Avatar [12], we do not add any
learnable module for pose correction for the estimated SMPL parameters, in
order to avoid overfitting to the training body poses.

We use the same loss function as 3DGS-Avatar [12]:

L = λl1Ll1 + λpercLperc + λmaskLmask + λskinLskin+

λisoposLisopos + λisocovLisocov ,
(1)

where Ll1 is the L1 photometric loss and Lperc is the perceptual (LPIPS) loss
with VGG as backbone. The mask loss Lmask corresponds to the L1 loss between
the ground truth foreground mask and the predicted mask by accumulating the
predicted opacities [12]. The skinning loss provides a regularization on the non-
rigid MLP [12]. The as-isometric-as possible losses Lisopos and Lisocov restrict
the 3D Gaussian positions to preserve a similar distance after deformation to
the observed space, with also similar covariance matrices [12]. We set λl1 = 1,
λperc = 0.01, λmask = 0.1, λisopos = 1, λisocov = 100, and λskin = 10 for the
first 103 iterations that is then decreased to λskin = 0.1 [12].

In order to avoid any non-differentiable gradient updates, we do not apply any
densification or pruning of the 3D Gaussians during training, in contrast to the
original 3DGS implementation [2]. Instead, we keep Ng Gaussians throughout
our optimization, which are moved and deformed according to our network. In
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Number of 3D Gaussians Ng 5× 104

Rank of CP tensor decomposition R 100
Dimension of feature vector f 32
Dimension of non-rigid output vector z 32
Non-rigid deformation MLP fd: Linear layers 3
Non-rigid deformation MLP fd: Hidden units 128
Rigid transformation MLP fr: Linear layers 3
Rigid transformation MLP fr: Hidden units 128
Color MLP fc: Linear layers 3
Color MLP fc: Hidden units 256
Activation ReLU
Optimizer Adam
Learning rate for U13:6,: (scaling) 5× 10−3

Learning rate for U16:10,: (rotation) 10−3

Learning rate for U110:42,: (feature) 2.5× 10−3

Learning rate for U142:43,: (opacity) 5× 10−2

Initial learning rate for U1:3,: , U2, U3 1.6× 10−4

Final learning rate or U1:3,: , U2, U3 1.6× 10−6

Initial learning rate for rigid MLP 10−4

Initial learning rate for non-rigid and color MLP 10−3

Final learning rate for MLPs 10−6

Learning rate schedule exponential decay
Max iterations 105

Table 2: Hyper-parameters of our architecture.

Fig. 7: With or without adaptive densification scheme for the 3D Gaussians [2].

this way, the learnable matrices U1, U2, U3 are directly optimized with gradient
descent, without any non-differentiable updates, and include all parameters for
all the training identities. In our preliminary experiments, we observed that we
achieve similar results for a single identity with or without densification and
pruning, using Ng = 5×104 (see Fig. 7). However, including an adaptive density
control of the Gaussians can be explored as future work.

For Ni = 30 identities, MIGS learns only (M +Ni +Ng)R = (43 + 30 + 5×
104)× 100 ≈ 5× 106 parameters, compared to MNiNg ≈ 6.5× 107 that would
be required by single-identity 3DGS representations, leading to a decrease by at
least one order of magnitude in the total number of learnable parameters.
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D Limitations

We observe that in some cases, our multi-identity network may fail to capture
fine-grained details, such as high-frequency texture in clothes or facial details.
This tends to happen more when the number of identities increases beyond 20,
since the network leverages information from multiple identities for learning, thus
smoothing the result. In our work, we tackle this smoothing with the personal-
ization procedure (see Sec. 4.4 and Fig. 2a). In the future, we plan to further
enhance high-frequency details by using higher-resolution data and exploring
other tensor structures. In addition, in the technical component, we have no
theoretical proof that the CP decomposition is the optimal way to factorize the
parameters, but we notice empirically that this suffices in our particular case.

E Ethical Considerations

We would like to note the potential misuse of video synthesis methods. With
the advances in neural rendering, recent methods can generate photo-realistic
human avatars. Our research focuses on human body animation and we presented
as main application the animation of human avatars under challenging dance
sequences. In contrast to deep fakes, we believe this application cannot be used
to spread misinformation or for other harmful purposes. However, we would
like to emphasize that there is still a risk of using such methods to generate
misleading content. Thus, research on fake content detection and forensics is
crucial. We intend to share our source code to help improving such research.
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Fig. 8: Animation of human avatars under novel poses. Qualitative compari-
son with state-of-the-art approaches, namely HumanNeRF [14], MonoHuman [15], and
3DGS-Avatar [12]. The subjects are from ZJU-MoCap [11] and AIST++ [5,13] datasets.
The target poses (column 1) are unseen during training, from unseen camera views and
advanced dance videos. Our method robustly animates all the identities under chal-
lenging novel poses, outperforming the other methods.
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