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Abstract. We present 4Diff, a 3D-aware diffusion model addressing
the exo-to-ego viewpoint translation task — generating first-person (ego-
centric) view images from the corresponding third-person (exocentric)
images. Building on the diffusion model’s ability to generate photorealis-
tic images, we propose a transformer-based diffusion model that incorpo-
rates geometry priors through two mechanisms: (i) egocentric point cloud
rasterization and (ii) 3D-aware rotary cross-attention. Egocentric point
cloud rasterization converts the input exocentric image into an egocentric
layout, which is subsequently used by a diffusion image transformer. As
a component of the diffusion transformer’s denoiser block, the 3D-aware
rotary cross-attention further incorporates 3D information and seman-
tic features from the source exocentric view. Our 4Diff achieves state-
of-the-art results on the challenging and diverse Ego-Exo4D multiview
dataset and exhibits robust generalization to novel environments not
encountered during training. Our code, processed data, and pretrained
models are publicly available at https://klauscc.github.io/4diff.
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1 Introduction

From early developmental stages, humans adeptly observe external actions (exo)
and seamlessly integrate them into their own repertoire (ego), forming the cor-
nerstone of visual learning. This actor-observer translation mechanism not only
shapes individual development but also holds profound implications for techno-
logical advancements. Imagine the ability to immerse yourself in the first-person
perspective of renowned athletes like Messi or glean intricate piano techniques
from online tutorials converted to a first-person viewpoint. Such experiences
hinge on seamless translation from third-person to first-person perspectives,
highlighting the pivotal role of cross-view translation in facilitating immersive
and enriching experiences across diverse domains.

We leverage the recently released Ego-Exo4D dataset [18] to explore the
third-person (exocentric) to first-person (egocentric) viewpoint translation task.

https://klauscc.github.io/4diff
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Fig. 1: Given exocentric images of an egocentric camera wearer engaged in daily activi-
ties and the corresponding camera trajectories, we aim to synthesize the corresponding
egocentric view that captures the scene from the wearer’s first-person perspective.

As illustrated in Figure 1, our focus is on transforming the exocentrically ob-
served images containing a designated individual into images depicting the same
scene from the individual’s first-person perspective. Our task is a specific in-
stance of the Novel View Synthesis (NVS) task, which aims to generate new
views conditioned on a few given views of a scene. However, the Ego-Exo4D
dataset presents a formidable challenge compared to traditional novel view syn-
thesis datasets [8, 9, 17, 22, 57, 72] and multiview datasets [1, 26, 55, 70]. As il-
lustrated in Figure 2, the scenes in the Ego-Exo4D dataset are characterized
by numerous objects and dynamic actions performed by the participants. The
dataset encompasses diverse scenes, ranging from indoor to outdoor activities
such as cooking and basketball. Furthermore, the visual differences between ex-
ocentric and egocentric images are pronounced due to sharp viewpoint changes.
Besides, unlike numerous NVS datasets that use 3D data for arbitrary viewpoint
sampling during training, Ego-Exo4D dataset only provides several views (e.g.,
four exo and one ego view) for each dynamic scene, which presents a challenge
for convergence of prior geometry-based methods that regress the entire scene.

Due to the challenges mentioned above, existing methods exhibit unsatisfac-
tory performance in the exo-to-ego view translation task. Geometry-free genera-
tive models, including GAN-based [6,21] and diffusion-based [30,38,66] methods,
face challenges in generating geometrically-correct images due to high complex-
ity of the scenes. In contrast, geometry-based approaches, exemplified by NeRF-
based methods [2,3,34,37,41,69], encounter limitations in achieving photorealis-
tic images. Recent attempts [7,10] aim to reconcile this dilemma by integrating
a strong geometry-based method (e.g. NeRF-based) into diffusion models. How-
ever, these models are typically difficult to optimize on the extremely diverse
scenes in the Ego-Exo4D benchmark, as we show in Sec. 4.2. Thus, they often
fail to provide constructive geometry priors to the subsequent diffusion model.

Motivated by these observations, we propose 4Diff, a 3D-Aware Diffusion
model for exocentric to egocentric viewpoint translation. We propose two mech-
anisms to incorporate 3D geometry into the diffusion model: (i) egocentric point
cloud rasterization, and (ii) 3D-aware rotary cross-attention layers. Rather than
relying on a complex geometry model like NeRF, we render an egocentric prior
image using a lightweight rasterization technique [5, 67]. As a result, our ap-
proach is both easy to train and adaptable, allowing it to incorporate existing
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Fig. 2: Comparison of the Ego-Exo4D viewpoint translation (Ego-Exo4D-VT) bench-
mark, which we build on the Ego-Exo4D dataset [18], with existing novel view synthesis
and cross-view translation benchmarks. Ego-Exo4D-VT presents numerous challenges
that require fundamental advances in generative modeling to address.

open-source pretrained depth estimators. These estimators have demonstrated
effectiveness in processing images from previously unseen environments [4, 68].
Solely rendering the egocentric prior feature map through point cloud rasteri-
zation can be problematic, as the source exo view often contains occluded and
unobserved regions. To address this, we seamlessly integrate rasterization into
the diffusion model, leveraging its substantial capacity for extrapolation and gen-
erating high-quality images. We further enhance the expressivity of our diffusion
model by introducing 3D-aware rotary cross-attention, which is integrated into
each denoising block of the model. This functionality aims to improve feature
similarities and 3D spatial similarities between ego and exo views, allowing the
diffusion feature maps to incorporate information from the semantic features
encoded in the exocentric image more effectively.

Our method 4Diff surpasses prior state-of-the-art techniques on the chal-
lenging Ego-Exo4D viewpoint translation benchmark, achieving a 3.6% im-
provement in LPIPS. Furthermore, leveraging the extensive scale of Ego-Exo4D
data, our approach demonstrates robust generalization to novel environments
not encountered during training.

2 Related Work

Exo-to-Ego Viewpoint Translation. Prior methods [28, 44, 62] tackled this
problem predominantly via GAN-based models [11]. Specifically, [43] proposed
the X-Fork and X-Seq GAN-based architecture using an additional semantic map
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for enhanced generation. [29] introduced STA-GAN, which focuses on learning
spatial and temporal information to generate egocentric videos from exocentric
views. [32] focuses on hand-object interactions, proposing to decouple hand lay-
out generation and ego frame generation with a diffusion model. None of these
methods develop an explicit geometry-aware generative framework. In contrast,
our work introduces two effective mechanisms to incorporate 3D geometric pri-
ors into the diffusion model, specifically tailored to address the challenges posed
by the Ego-Exo4D-VT benchmark.
Novel View Synthesis (NVS). Our exo-to-ego viewpoint translation task
represents a distinct facet of the NVS task, which aims to generate a target
image with an arbitrary target camera pose from given source images and their
camera poses. Previous works in NVS can be categorized into geometry-based
[15,16,31,46,47,56,64,72], regression-based methods [25,35,54,63–65,69,72] and
generative models [24,45,48,50,66,67]. Recently, several geometry-aware gener-
ative models [7,10] have explored ways to integrate NeRF with diffusion models.
For instance, GeNVS [7] incorporates geometry priors into their diffusion model
using a variant of pixelNeRF [69], which renders a target feature map from a 3D
feature field. SSDNeRF [10] proposes a unified approach that employs an expres-
sive diffusion model to learn a generalizable prior of neural radiance field (NeRF).
However, these geometry-based models, typically implemented as NeRFs, often
struggle to provide meaningful geometry priors to the diffusion model, especially
in the challenging Ego-Exo4D-VT benchmark. This is because complex geome-
try methods require strong supervision (e.g., many densely sampled views of the
same scene), which Ego-Exo4D does not provide. In contrast, our method uses
simple point-cloud rasterization that relies solely on accurate depth estimation,
avoiding the modeling of occluded and unobserved areas in the exocentric view.
This approach shows better generalization and benefits from existing large-scale
pretrained depth estimators.
Diffusion Models [12, 19, 49] have made significant strides in producing pho-
torealistic images and videos. They excel in modeling conditional distributions,
including scenarios where conditioning is based on text [49, 52] or another im-
age [20,53]. Prior work has demonstrated a wide range of successful applications
of diffusion models, including human pose generation [27] and depth estima-
tion [14]. In our work, we employ a transformer-based diffusion model [39] to
model the distribution of egocentric images conditioned on exocentric images.

3 Methodology

3.1 Problem Setup

Given an exocentric image x ∈ Rh×w×3 and the relative camera pose P ∈ R4×4

from exo camera to the ego camera of the person of interest, our goal is to
synthesize an egocentric image y ∈ Rh×w×3 from the conditional distribution:

p(y|x, P ) (1)
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Fig. 3: We propose 4Diff, a 3D-Aware Diffusion model for exocentric to egocentric
viewpoint translation. Our framework uses a point cloud rasterization scheme first to
compute an egocentric prior, which captures egocentric layout cues. Afterward, the
egocentric prior is fed into the diffusion model augmented with the proposed 3D-aware
rotary cross-attention for egocentric image generation. The proposed 3D-aware rotary
cross-attention guides the attention to consider geometric relationships between the
egocentric and exocentric diffusion feature maps.

We assume the relative camera pose (P ) is known, similar to the standard NVS
tasks [40,61,69].
Relation to the Official Ego-Exo4D Translation Benchmark. Ego-Exo4D
[18] introduced an exo-to-ego translation benchmark, with the primary emphasis
on object-level synthesis, i.e., generating an object at the correct location in the
ego view based on an exo image and an exo segmentation mask of the object of
interest. This approach is particularly valuable for precise object placement and
detailed object-level interactions. In contrast, we focus on full-image synthesis
— allowing for the generation of entire scenes, and enhancing the richness and
diversity of generated viewpoints. Both are complementary; while Ego-Exo4D
excels in object-specific scenarios, our method expands the scope to full-scene
synthesis and can be seen as a new specialized NVS task.

3.2 Our Framework

Due to the inherent complexity and dynamism present in diverse scenes, we use
an expressive transformer-based diffusion model to model the conditional dis-
tribution in Equation 1. However, due to the inability to explicitly model 3D
cues, the standard diffusion model may struggle to generate geometry-consistent
images. Thus, we propose two techniques to incorporate geometry into our dif-
fusion model: (i) egocentric point cloud rasterization and (ii) 3D-aware rotary
cross-attention. As shown in Figure 3, the point cloud rasterization first renders
an egocentric prior from the input exocentric view, which is then fed into the
diffusion model. Afterward, the conditioned diffusion model is augmented with
the proposed 3D-aware rotary cross-attention to generate the target egocentric
image. We now describe each module in more detail.
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3.3 Egocentric Point Cloud Rasterization

As a first step in our framework, we render an egocentric prior via the point
cloud rasterization from an exocentric view. Specifically, we first use a depth
estimator to convert the exocentric 2D image x and a feature map F exo into a
feature point cloud. Then, a differential renderer [67] projects this point cloud
into an egocentric prior Hprior:

Hprior = [xprior, F prior] = render([x, F exo], D, P ) (2)

Here, F exo is the semantic features of the exocentric image encoded by a feature
encoder f , xprior and F prior are the egocentric prior image and a feature map,
rendered from the exocentric image x and a feature map F exo respectively. D
denotes the depth map predicted by a depth estimator, and P represents the
relative camera pose.

Depth Estimator. We construct the depth estimator based on the pretrained
MiDaS [4]. Since MiDaS predicts relative disparity (the inverse of depth), we
introduce two learnable scalars s and t for dataset-specific calibration. The depth
map D is predicted using the formula:

D = 1/(s · MiDaS(xexo) + t). (3)

Rasterization. We employ the differentiable renderer [67] for our rasterization.
This renderer splats 3D points onto the image plane and calculates pixel values
by blending point features. In contrast to more intricate rendering techniques
like NeRF [34,69] or Gaussian Splatting [23,60], our renderer is simpler to con-
verge. It relies solely on depth estimation from 2D images, leveraging large-scale
pretrained depth estimators. This design choice ensures robust generalization
across diverse scenarios.

3.4 3D-Aware Diffusion Image Transformer

Our diffusion model uses a denoiser network to predict added noise ϵt from
the noisy target egocentric image yt =

√
ᾱty +

√
1− ᾱtϵt, conditioned on the

previously obtained egocentric prior Hprior and the exocentric semantic features
F exo:

ϵ̂t = ϵθ([yt, H
prior], F exo). (4)

During inference, the target egocentric image y0 is generated from a standard
Gaussian noise yT by applying the denoiser network ϵθ iteratively with a sam-
pling strategy (e.g. DDIM [58]), i.e. yT → yT−δ → ... → y0.
Denoiser Network ϵθ. Our proposed 3D-aware Diffusion image Transformer
serves as the denoiser network. As shown in Figure 3 and Equation 4, our Trans-
former network takes as input the concatenation of the egocentric prior Hprior

and the noisy target egocentric image yt encoded via an off-the-shelf autoencoder
from [49]. Following [39], the architecture of DiT is the same as ViT, consisting
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Fig. 4: An illustration of the calculation of the rotation matrix Rm,n in our 3D-aware
rotary cross attention.

of N transformer layers, each with a self-attention layer and a feedforward net-
work. To further enhance the expressivity of our model and incorporate more
geometric cues, we propose 3D-aware rotary cross-attention layers, which we
describe next.

3D-aware Rotary Cross-Attention. When conditioning the diffusion model
on the exocentric feature map, we should consider similarities in the semantic
feature and spatial 3D space. Exocentric features similar in appearance (i.e.,
semantic feature space) and 3D location with respect to the query features should
have higher attention values in the diffusion model. Motivated by RoPE [59], we
achieve this by incorporating rotations during attention weight calculations. The
degree of rotation between a query and a key is determined by the angle between
their 3D coordinates, with the ego camera as the center. Consequently, the cosine
similarity between the query and key features can incorporate their 3D spatial
angle, effectively capturing the 3D relationships between corresponding points
in the egocentric and exocentric views.

Specifically, given a feature map Z ∈ Rl×c in the diffusion model and the ex-
ocentric semantic feature map F exo ∈ Rl×c, the 3D-aware rotary cross-attention
calculates the output O ∈ Rl×c as:

am,n =
exp( q

T
mRm,nkn√

c
)∑l

j=1 exp( q
T
mRm,jkj√

c
)

(5)

Om =

l∑
n=1

am,nvn (6)

Here, qm = ZmWq is the m-th query token, kn = F exo
n Wk is the n-th key token

and vn = F exo
n Wv is the n-th value token. Wq,Wk, Wv are learnable project

matrices. Rm,n is the rotation matrix that rotates the key token to align with
the value token in 3D space, where the egocentric camera is used as the center.
Since the query token is in the egocentric view, we map its coordinates to the
exocentric view using the relative camera pose. The rotation matrix is computed
in the exocentric view using the algorithm from [33]. When Rm,n is an identity
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matrix, our 3D-aware rotary cross-attention defaults to standard cross-attention.
Figure 4 shows an illustration of this process. We insert such 3D-aware cross-
attention layers after each self-attention layer in DiT.

3.5 Training and Inference

Loss Function. Our model is trained with the diffusion denoising loss, which
is the L2 loss between the predicted noise and the ground-truth added noise.
Implementation Details We employ DINOv2 [36] pretrained ViT-L/14 as our
feature encoder f and MiDaS [4] with DPT-L as our depth estimator. Our de-
noiser network is built on DiT-B/2 [38] augmented with the proposed 3D-aware
rotary cross-attention layers. The image sizes are 256× 256 for both egocentric
and exocentric images. We freeze the feature encoder, as it is already well pre-
trained. The model is trained with the Adam optimizer, using a learning rate of
1e− 5 for the depth estimator and 1e− 4 for the other components. We employ
a batch size of 4 per GPU and train the model across 32 V100 GPUs for 100
epochs, requiring approximately 48 hours. We set the diffusion steps T to 1000
during training and sample 20 steps during inference using DDIM [58].

4 Experiments

4.1 Experimental Setup

Ego-Exo4D-VT Benchmark. Our benchmark is constructed based on the
Ego-Exo4D dataset [18]. Adhering to the official splits, we use 2680/708/900
takes for training, validation, and testing, respectively. Each take is approxi-
mately 30 seconds to 5 minutes long and depicts a person performing a skilled
activity, such as cooking a dish, with footage from 4 exocentric cameras and
1 egocentric camera. This benchmark encompasses five diverse, skilled human
activities: basketball, bike repair, cooking, health, and music.

The benchmark features 131 unique scenes, each characterized by complex
backgrounds and numerous objects, demonstrating significant scale variation
from 1 meter (e.g., a small kitchen) to 10 meters (e.g., a basketball court).
These scenes are dynamic and depict subjects performing actions that involve
interactions with objects. Additionally, the considerable viewpoint shift from
exocentric to egocentric view causes objects to appear relatively small in the
exocentric view compared to the egocentric view.
Baselines. Since this is a new benchmark, we re-purpose a few state-of-the-
art methods for image generation: (a) pix2pix [21], a GAN-based method, (b)
GNT [61], a NeRF-based method, (c) diffusion model DiT [39] and 3DiM [66].
To tailor DiT for our task, we eliminate its original class label conditioning and
condition it on the exocentric image through concatenation. Additionally, we
implement 3DiM based on DiT since the code for 3DiM is unavailable.
Metrics. Following NVS methods [10, 69], we employ perceptual metrics, in-
cluding LPIPS [71], DISTS [13] and CLIP score [42], to measure the structural
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Table 1: Quantitative comparison on the test set of Ego-Exo4D-VT benchmark. † we
reimplement 3DiM based on DiT as their code is not publicly available. Our 4Diff
achieves the best results on all the metrics, outperforming the second best method
3DiM by 3.6% in LPIPS and 1.9% in DISTS.

Method LPIPS ↓ DISTS ↓ CLIP ↑ PSNR ↑ SSIM ↑

pix2pix [28] 0.372 0.262 68.85 15.80 0.515
GNT [61] 0.482 0.392 63.75 14.61 0.538
DiT [39] 0.412 0.231 77.98 15.47 0.564
3DiM† [66] 0.385 0.226 78.22 15.91 0.575

4Diff (ours) 0.349 0.207 79.72 16.65 0.592

Table 2: Comparison on the seen and unseen test sets of Ego-Exo4D-VT benchmark.
† we reimplement 3DiM based on DiT as their code is not publicly available.

Split Setting Method LPIPS ↓ DISTS ↓ CLIP ↑ PSNR ↑ SSIM ↑

Seen
Scenes

pix2pix [21] 0.371 0.260 68.68 15.90 0.519
GNT [61] 0.479 0.390 63.44 14.71 0.542
DiT [39] 0.406 0.226 78.74 15.64 0.570
3DiM† [66] 0.365 0.217 78.30 15.98 0.583
4Diff (ours) 0.316 0.184 82.79 17.09 0.600

Unseen
Scenes

pix2pix [21] 0.376 0.272 69.87 15.23 0.491
GNT [61] 0.497 0.405 65.60 13.97 0.513
DiT [39] 0.440 0.256 73.67 14.86 0.528
3DiM† [66] 0.436 0.269 73.26 14.90 0.542
4Diff (ours) 0.427 0.246 76.54 14.45 0.508

and texture similarity between the synthesized egocentric image and the ground-
truth image. Additionally, we include PSNR and SSIM for completeness, even
though numerous existing works [7,51,53] have demonstrated that these metrics
are suboptimal for evaluating image and video generation models, as they tend
to favor conservative and blurry estimates.

4.2 Comparison with State-of-the-art Methods

In Table 1, we present the comparison of our method to various baselines. No-
tably, diffusion-based models—DiT [39], 3DiM [66], and our 4Diff—outperform
other approaches across all metrics by large margins, including the GAN-based
pix2pix and NeRF-based GNT. The poor performance of the NeRF-based method
GNT on our benchmark can be attributed to itslimited capacity for modeling
hundreds of different scenes.

In Table 2, we present the results on seen scenes and unseen scenes respec-
tively and show that our method achieves the best performance. Overall, our
method surpasses the second-best performing diffusion-based 3DiM by 3.6%
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Fig. 5: Generated samples from five scenarios: cooking, music, health, basketball, and
bike repair. Our 4Diff demonstrates the best performance across all examples in terms
of geometry correctness and object quality. We brighten the images and exclude pix2pix
and GNT in the scenario breakdown for a better visual experience.

in LPIPS and 1.9% in DISTS, underscoring the effectiveness of our proposed
geometry-based approach.

Figure 5 presents qualitative comparisons with existing methods. GAN-based
pix2pix [21] and NeRF-based GNT [61] exhibit challenges in producing pho-
torealistic images, emphasizing the necessity of a robust generative model for
the Ego-Exo4D-VT benchmark. Our 4Diff demonstrates superior performance
across various scenarios, excelling in both geometry correctness and object qual-
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Ego GTExo Input NeRF-based Rendering Our Rasterization Module

Fig. 6: We evaluate the effectiveness of our egocentric prior rendering module by vi-
sualizing the rendered prior image. Compared to NeRF-based rendering (GNT), our
rendered prior image exhibits predominantly correct geometry, offering valuable ego-
centric cues to the diffusion model. Distortions and missing pixels arise from inaccurate
depth estimation and occluded or unobserved regions in the exocentric view, which can
be corrected by the diffusion model.

ity. Our 4Diff is especially advantageous for view synthesis in complex scenes,
such as the cooking scenario, where numerous objects exhibit intricate layouts.
The qualitative results align well with our quantitative results in Table 1.

4.3 Qualitative Analysis

Investigating the visual results helps to gain a deeper insight into generative
models. Thus, we perform a qualitative analysis below.
Is the egocentric prior useful? We address this question by visualizing the
rendered egocentric prior RGB image. In Figure 6, the NeRF-based renderer
GNT [61] generates blurry images for all scenes, possibly due to its limited
capacity to model many diverse scenes with limited views for supervision. In
contrast, our rendered egocentric images produced by point cloud rasterization
are mostly correct, offering valuable egocentric cues to the diffusion model. De-
spite distortions and missing pixels, our diffusion model demonstrates sufficient
capacity to rectify these issues effectively.
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Fig. 7: Results on the unseen scenes. When synthesizing views from the scenes not
encountered during training, our 4Diff exhibits slight hallucinations but consistently
outperforms existing methods, producing significantly improved results.

Generalization to unseen scenes. Figure 7 shows our generation results on
the unseen scenes. We observe that our 4Diff displays slight hallucinations,
particularly noticeable in elements such as walls. Despite this, our method con-
sistently outperforms existing methods. Such a robust performance can be at-
tributed to the highly generalizable depth-based geometry priors used by our
model.
What causes poor generation? We conduct an analysis to discern errors
arising from the diffusion model or geometry priors. In Figure 8, we present
two representative examples. The first showcases generation results in an unseen
scene, where the egocentric prior image is reasonably good, but the diffusion
model exhibits significant hallucinations, yielding an incorrectly generated im-
age. We posit that this discrepancy arises because the diffusion model focuses
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Ego GTExo Input Intermediate Ego Layout Final Prediction

Fig. 8: Failure case examples of our method. Top: While the point cloud rasterization
module performs effectively, the diffusion model produces errors when generating an
egocentric view. Bottom: Although the diffusion model accurately predicts objects, the
synthesized egocentric view appears more zoomed-out than the ground truth view.
This can be attributed to suboptimal egocentric layout synthesis.

on modeling the conditional training distribution, limiting its generalization to
substantially different scenes not present in the training data. This limitation
can be mitigated by employing a large-scale pretrained diffusion model that has
already acquired knowledge from diverse scenes and objects in 2D space.

In the second example, we show that despite the incorrectly rendered egocen-
tric prior image, the diffusion model can generate a photorealistic image, which
is more zoomed-out than the ground-truth egocentric image. This observation
suggests that the diffusion model can robustly handle inaccurately generated
egocentric geometry priors.

4.4 Ablation Studies

How important are our proposed modules? We study the importance of (i)
3D-aware rotary cross-attentions and (ii) egocentric point cloud rasterization by
sequentially removing them from our framework. As shown in Tab. 3a, removing
the 3D cross-attention worsens the LPIPS by 2.4%. Additionally, removing the
point cloud rasterization further degrades LPIPS by 3.9%. Moreover, as shown
in Figure 5, our 4Diff with the proposed geometry priors consistently out-
performs geometry-free diffusion models DiT and 3DiM in all scenarios. These
results show the effectiveness of our proposed modules.
Can we pretrain the depth estimator from scratch? Tab. 3b shows that
training our model without using a pretrained depth estimator results in a sig-
nificant 4.3% degradation in LPIPS. This suggests that an inaccurate depth
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Table 3: Ablation studies on various design choices. (a) We study the importance
of each module by removing each module sequentially; (b) Using a pretrained depth
estimator significantly improves the LPIPS by 4.3%); (c) DINOV2 outperforms CLIP
by 1.7% in LPIPS.

(a) Module ablation.

Model LPIPS ↓
4Diff 0.349
− 3D Rotary CA 0.373
− ego rasterization 0.412

(b) Depth estimator.

Pretrained LPIPS ↓
✓ 0.349
✗ 0.392

(c) Feature encoder.

Feat. Enc. LPIPS ↓
DinoV2 0.349
CLIP 0.366

estimation may lead to most points from the exocentric view projected outside
of the egocentric view. Consequently, these points will not receive sufficient gra-
dient updates during training, leading to poor convergence. Thus, we conclude
that a sufficiently accurate initial depth prediction is crucial for good perfor-
mance.
Which feature encoder should we use? We evaluate two strong feature
encoders for obtaining a semantic representation for an exocentric RGB image:
DINOv2 [36], and CLIP [42], both employing a ViT-L/14 backbone. The DI-
NOv2 variant outperforms the CLIP variant by 1.7% LPIPS. We conjecture
that compared to CLIP’s vision-language pretraining, DINOv2’s self-supervised
pretraining leads to higher quality lower-level visual features which are impor-
tant for exocentric to egocentric image translation problem.

5 Discussion and Conclusion

In this work, we proposed 4Diff, a 3D-aware transformer-based diffusion model
that significantly outperforms prior approaches on the challenging Ego-Exo4D-
VT benchmark. Our method demonstrates robust generalization to novel envi-
ronments not encountered during training. Despite our excellent results, we also
acknowledge a few limitations. Firstly, our method assumes known camera poses
during training and inference, limiting its applicability to real-world scenarios.
Integrating camera pose estimation via a head pose estimator could address
this limitation, while remains difficult to estimate automatically Secondly, our
method focuses on image-to-image translation, leaving room for video genera-
tion by incorporating spatial-temporal cues. Thirdly, enhancing the quality of
generated objects and improving generalization to unseen environments could be
achieved by leveraging a more powerful pretrained diffusion model (e.g., Stable
Diffusion [49]). Lastly, extending our framework from frame-level synthesis to
object-level synthesis, considering the locations and appearances of objects such
as hands and interacted objects, would bring it closer to real-world applications
like AR/VR coaching. We plan to explore these research directions in our future
work.
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