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1 More Experimental Results

1.1 Proposal Selection Analysis

We validate the changes in every proposal considered as part of the crowd and
its offset after implementing Auxiliary Point Guidance (APG). By providing
auxiliary positive and negative points, APG offers a more defined learning target
for proposals, encouraging the model to favor those closer to the actual ground
truth points. This not only concentrates each matched proposal, identified as
part of the crowd, more around the actual ground truth, preventing conflicts
where different proposals match the same ground truth but also ensures that
the overall selected proposals are closer to the target heads (with a smaller
average offset distance), as illustrated in Figure 1, where dots represent the
original positions of proposals and arrows indicate the offsets. The proposed
APG simplifies and enhances the training of offset predictions and confidence
levels, thereby achieving improved counting performance.

Furthermore, for samples with significant viewpoint differences or occlusions,
not utilizing APG might result in multiple points mapping to the same head,
leading to overestimation. Overestimation is particularly likely in situations with
significant viewpoint differences (as indicated by the red circles in the first row
of Figure 2 without using APG) and arm occlusions (as shown by the red circles
in the second row of Figure 2 without using APG). In contrast, APGCC offers
strong cues for selecting the nearest proposal and avoiding farther ones (indicated
by the green circles), thereby playing a crucial guiding role in the learning process
of point-based methods. This ensures a more accurate and conflict-free proposal
selection.

Moreover, using the protocol in Dan et al. [6], we evaluate errors in overes-
timation and underestimation within our counting results. The results are pre-
sented in Table 1, which demonstrate improvements in reducing overestimation
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Fig. 1: Visualization of proposal selection. The first column shows input images,
the second column depicts models trained without APG using red arrows to mark
the proposals, and the third column shows models trained with APG, using green
arrows for marking. The fourth column offers a magnified comparison, illustrating that
without APG, the selected proposal positions are not on the same person but rather
on others or the background, using larger offsets to match the designated individual.
In contrast, the proposed APGCC achieves shorter offsets, with the selected proposal
positions accurately located on the same person.

using APG. Integrating post-processing techniques such as non-maximum sup-
pression or distance-based filtering could further refine this method for future
work.

1.2 Analysis of Crowd Counting Across Various Scales

We further validate the performance of APGCC on crowds of different scales
using the NWPU [8] dataset, which includes both large-scale and small-scale
crowds (denoted as -L and -S). We compare APGCC with existing methods such
as CSRNet [2], Bayesian+ [4], S-DCNet [9], DM-Count [7], and P2PNet [5], with
the comparison results shown in Table 2. We observe that APGCC achieves bet-
ter performance in both small and large scales. This is attributed to our proposed
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Table 1: Effectiveness of APG for Misestimation on the SHHA [10] dataset.

Method Overestimate Underestimate Overall
w/o APG 17.68 28.24 54.04
w/ APG 14.82 24.88 48.84

Inputs w/o APG APGCC
MAE=54.04 MAE=48.84

Fig. 2: Illustration of the overestimation issue in crowd counting. The first
row’s circles represent individuals’ heads from different angles (side or back). In the
counting process, point-based methods might count multiple surrounding proposals
as pointing to the same individual’s head. The second row presents situations with
occlusions, where point-based methods also treat multiple proposals as matched to the
same individual’s head. However, this issue can be avoided by using APG to assist
network training.

APGCC architecture, which integrates Implicit Feature Interpolation (IFI) with
Atrous Spatial Pyramid Pooling (ASPP) [1], demonstrating significant advance-
ment. By offering more precise feature representation across various scales and
locations, APGCC ensures more balanced and enhanced performance for differ-
ent head sizes.

This enhanced capability is further showcased in scenes with varying den-
sities, as illustrated in Figure 3, where APGCC consistently delivers precise
localization and counting across a range of conditions.
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Table 2: Comparison of crowd counting across different crowd scales on
the NWPU [8] dataset. APGCC demonstrates superior performance on both large
scales (MAE-L) and small scales (MAE-S) compared to existing methods, showcasing
its efficiency and accuracy in handling crowd counting of varying sizes.

Method MAE-O ↓ MSE-O ↓ MAE-L ↓ MAE-S ↓

CSRNet 121.3 387.8 112.0 522.7
Bayesian+ 105.4 454.2 115.8 750.5
S-DCNet 90.2 370.5 82.9 567.8

DM-Count 88.4 388.6 88.0 498.0
P2PNet 77.4 362.0 83.2 553.9
APGCC 71.1 284.4 72.4 454.6

Table 3: Impact of various auxiliary point configurations on training re-
source usage and model performance on the SHHA [10] dataset with a
V100 GPU.

(kpos, kneg) Training Time GPU Memory Epoch Time to Baseline Time to Best MAE
(0, 0) 13.73 s/ep 13G 2123 - 8.10 hrs 54.04
(1, 1) 20.91 s/ep 13G 1483 4.54 hrs 8.61 hrs 49.24
(2, 2) 26.88 s/ep 13G 1148 3.32 hrs 8.57 hrs 48.84
(3, 3) 32.81 s/ep 13G 1002 3.34 hrs 9.13 hrs 48.83
(5, 5) 44.58 s/ep 13G 886 3.61 hrs 10.97 hrs 48.81

Table 4: Different Ratio of Auxiliary Point on the SHHA [10] dataset.

(kpos, kneg) w/o APG (2, 1) (2, 2) (2, 3) (2, 4)
MAE 54.04 49.18 48.84 48.93 49.84

1.3 Effect of Auxiliary Point Quantities on Training and
Performance

We investigate the impact of utilizing different quantities of auxiliary points on
training resources and the ultimate performance. To this end, a series of exper-
iments are conducted on a V100 GPU, based on the SHHA [10] dataset with a
batch size of 32, comparing the GPU memory usage and training time across
various auxiliary point configurations. These results are summarized in Table 3.
The results reveal that while increasing the number of auxiliary points leads to
longer training time per epoch, it can improve the convergence speed and allow
the model to surpass the baseline performance in a shorter time. Moreover, the
model can perform better as the number of training epochs increases. Further
experimental results as Table 4 shown, using an equal number of positive and
negative auxiliary point (2, 2) achieves the best balance between training effi-
ciency and model performance. This balanced approach demonstrates APGCC’s
capability to improve model performance without imposing excessive computa-
tional burdens, emphasizing the importance of optimizing the number of aux-
iliary points for efficient and effective training. On the other hand, since the
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Table 5: Comparison of different
randomness ranges for auxiliary
points.

(npos, nneg) (1, 8) (2, 4) (2, 8) (3, 8) (2, 12)
MAE 49.24 49.07 48.84 50.17 49.73

Table 6: Impact of different random-
ness ranges on various head scales.

(npos, nneg) (2, 4) (2, 8) (2, 12) (2, 16)
Small Heads 137.60 145.75 158.45 171.16
Large Heads 23.22 21.79 21.09 19.03

Overall 57.77 56.43 58.76 61.91

auxiliary points are only used during the training stage, they do not introduce
additional computational costs during the inference process.

1.4 Analysis of various Randomness Range on APG

For the choice of (npos, nneg), its values are closely related to the distribution
(i.e., distance) of point proposals. Similar to P2PNet [5], we adopted a grid
layout strategy for mapping proposals, where each pixel on the feature map
corresponds to an "s×s" sized area at the image level, evenly divided into "k"
parts. For instance, with a stride of s=8 and a reference point count of k=4,
each point proposal effectively corresponds to a 4x4 area at the image level.
Consequently, we define npos = 2 to maximize the spatial range for selecting
positive points (±2), without involving other proposal areas. Additionally, as
each proposal’s length is 4, we adjusted the setting of nneg to be four times
this, creating various coverage ranges. The results are shown as Table 5, if the
coverage range is too small, the effect is limited; if set too high, it may interfere
with selecting other positive points. Thus, we use the setting (2, 8) to achieve
the best balance and effectiveness.

Furthermore, to analyze the dependency of data variability on randomness
range. We use bounding box labels from the validation set of NWPU dataset [8]
to perform a statistical analysis of head sizes, selecting the smallest and largest
20% of samples as extreme values for ablation studies. Experimental results as
the Table 6 shown, the configuration (2, 8) yields the best overall performance.
While a smaller nneg enhances stability in areas with small heads, it may neglect
to duplicate predictions for larger heads. Conversely, a larger nneg effectively mit-
igates this issue but can adversely affect predictions in dense areas. Dynamically
adjusting the randomness range will be part of our future work.

1.5 Detail of Implicit Feature Interpolation

For any arbitrary image-level coordinate pi(x, y), it is first converted into the
feature-level coordinate pf (x, y) by dividing by the stride. Using this transformed
coordinate, we identify the nearest four latent features Z∗

i |i ∈ {1, . . . , 4} from the
feature map and calculate their corresponding Euclidean distances. To extract
features more accurately, we introduce a 48-dimensional periodic spatial encod-
ing ϕ(p) that extends beyond the conventional 2D distance map. A Multi-Layer
Perceptron is then used to perform continuous transformations of these latent
features, integrating them using bilinear interpolation, as detailed in (7).
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Table 7: Analysis of Different Interpolation Strategies with Various Strides
on the SHHA [10] Dataset.

MAE (∆ with IFI)

Stride S 2 4 8 16

Nearest Neighbor 58.63 (+5.92) 55.61 (+4.71) 53.16 (+4.32) 55.45 (+4.13)
Bilinear Interpolation 55.98 (+3.27) 53.52 (+2.62) 51.25 (+2.41) 53.59 (+2.27)

IFI 52.71 50.90 48.84 51.32

Table 8: Effectiveness of APG for other point-based methods on the
SHHA [10] dataset.

P2PNet [43] CLTR [20] APGCC
Metric w/o APG w/ APG w/o APG w/ APG
MAE 53.1 50.4 58.2 54.7 48.8
MSE 85.3 80.1 97.6 87.3 76.7

Instability Rate (IR) 0.71 0.44 0.82 0.47 0.36

The Table 7 evaluate the effectiveness of different interpolation strategies by
measuring their MAE across various stride settings. The results show that IFI
consistently outperforms other interpolation methods at different strides. Note
that smaller strides require more precise feature interpolation to achieve accurate
results.

1.6 Applying APG to other point-based methods

We apply APG to existing point-based methods, including P2PNet [5] and
CLTR [3]. With the results shown in Table 8, using APG enhances the stability
(IR) and performs better (MAE and MSE) across different methods.
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Fig. (3): Localization and counting results in low-density scenes (0-400 peo-
ple). This figure demonstrates the accuracy of APGCC in scenarios with relatively few
individuals, showcasing the model’s ability to capture details in sparse environments.
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Fig. (3): Localization and counting results in medium-density scenes (400-
1000 people). Here, we highlight the model’s effectiveness in accurately estimating
head counts in moderately crowded settings, emphasizing its robustness across varying
population densities. (continued)
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Fig. (3): Localization and counting results in high-density scenes (over 1000
people). This figure illustrates APGCC’s superior performance in densely populated
areas, proving its scalability and precision in handling extreme crowd conditions. (con-
tinued)
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