Improving Point-based Crowd Counting and
Localization Based on Auxiliary Point Guidance

I-Hsiang Chen!, Wei-Ting Chen'?, Yu-Wei Liu!, Ming-Hsuan Yang?3, and
Sy-Yen Kuo'#

! National Taiwan University, Taiwan
2 University of California at Merced, USA
3 Google DeepMind, USA
4 Chang Gung University, Taiwan
{£09921058,£05943089,r12943109}@ntu.edu.tw, mhyang@ucmerced.edu,
sykuo@ntu.edu.tw

Abstract. Crowd counting and localization have become increasingly
important in computer vision due to their wide-ranging applications.
While point-based strategies have been widely used in crowd counting
methods, they face a significant challenge, i.e., the lack of an effective
learning strategy to guide the matching process. This deficiency leads to
instability in matching point proposals to target points, adversely affect-
ing overall performance. To address this issue, we introduce an effective
approach to stabilize the proposal-target matching in point-based meth-
ods. We propose Auxiliary Point Guidance (APG) to provide clear and
effective guidance for proposal selection and optimization, addressing the
core issue of matching uncertainty. Additionally, we develop Implicit Fea-
ture Interpolation (IFI) to enable adaptive feature extraction in diverse
crowd scenarios, further enhancing the model’s robustness and accuracy.
Extensive experiments demonstrate the effectiveness of our approach,
showing significant improvements in crowd counting and localization per-
formance, particularly under challenging conditions.

Keywords: Crowd Counting, Crowd Localization, Auxiliary Learning ,
Feature Interpolation

1 Introduction

Recent years have witnessed the advances and importance of crowd counting and
localization in numerous tasks, including surveillance, event management, and
urban planning [1,8,14,18,21,22,27,46,48]. The pursuit of accurately estimating
crowd size and discerning individual locations is fraught with challenges, rang-
ing from fluctuating crowd densities and occlusions to varying environmental
settings.
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Fig. 1: (Left) Crowd Counting and Localization: Comparison with state-of-the-
art methods (e.g., LSC-CNN [39], TopoCount [1], P2PNet [43] and CLTR [20]) demon-
strating the proposed APGCC’s effectiveness in accurately counting and localizing in
crowded scenes. (Right) Matching Process Instability: Illustrates the instabil-
ity in selecting point proposals during the matching process by existing point-based
methods (e.g., Matcher [16]) across training epochs, indicated by the Instability Rate
(IR), which measures the inconsistency rate of point proposal selection per epoch, lead-
ing to limited performance. Both evaluations are conducted on the ShanghaiTech A
(SHHA) [53] dataset.

Within the domain of crowd analysis, two principal methodologies emerge:
map-based and localization-based approaches. Map-based methods, employing
Gaussian kernels to render density maps, effectively provide models with critical
information for learning crowd densities. Renowned for their high accuracy in
crowd counting, these methods have been validated across a series of studies, in-
cluding [11,14,25,26,28,31]. Despite their capacity to achieve localization through
additional designs [1,13,46], they still confront challenges such as the overlap-
ping of maps in densely populated areas and the need for multi-scale represen-
tations. This leads to difficulties in precise localization with non-differentiable
post-processing techniques like "find-maxima".

Localization-based approaches encompass two divergent strategies: detection-
based and point-based methods. Detection-based techniques [29,39], character-
ized by the initiation of pseudo ground truth bounding boxes using nearest-
neighbor distances, are tailored for specific scenarios but encounter accuracy
limitations in highly congested and sparse areas. Despite their practicality, these
methods often contend with the constraints of heuristic post-processing, such as
non-maximum suppression, potentially leading to inaccuracies [20].

In contrast, the elegance of point-based methods [20,24,43] lies in directly
using point annotations as learning targets. These frameworks can direct the
regression of individual coordinates, simplifying the localization process. These
methods are celebrated for their simplicity, end-to-end trainability, and indepen-
dence from complex pre-processing and multi-scale feature map fusion. However,
a significant challenge in point-based methods for crowd analysis is the insta-
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bility of proposal-target matching during training, as illustrated in Figure 1. In
each epoch, a large proportion of target points are matched with different point
proposals compared to the previous epoch. This issue arises due to the absence
of an effective learning strategy to guide the network in consistently selecting the
most appropriate proposals during optimization. Consequently, the constantly
changing relationships between proposals and targets lead to vague and unclear
learning objectives for each proposal. This uncertainty in the learning process
often results in localized inaccuracies, manifesting as either underestimation or
overestimation in specific areas of crowded scenes.

In this paper, we address the prevailing issue of uncertainty in proposal-target
matching within point-based methods for crowd analysis. We introduce a novel
learning paradigm, Auxiliary Point Guidance Crowd Counting (APGCC), de-
signed to instruct the network on the precise selection and optimization of point
proposals for matching with target points. APGCC provides a clear and effective
directive, ensuring accurate and informed decisions in the proposal selection and
optimization process.

To facilitate the application of APGCC, which necessitates feature extraction
at arbitrary positions, we propose a method utilizing Implicit Feature Interpo-
lation. This technique adeptly addresses the challenge of accessing features from
diverse locations within the network, thereby ensuring the versatility and effi-
cacy of our model in various crowd scenarios. By enhancing the robustness of the
matching relationships between proposals and targets, our approach significantly
improves the precision and reliability of crowd analysis models.

Extensive experimental results demonstrate that the proposed APG strategy
effectively addresses the instability issues in proposal-target matching during the
training process ( in Figure 1). Moreover, it significantly enhances
the performance of crowd counting. Our method performs robustly and favorably
against state-of-the-art schemes in both crowd counting and localization tasks.
We make the following contributions in this work:

— We introduce Auxiliary Point Guidance, a novel strategy to address the
uncertainty in proposal-target matching within point-based crowd counting
methods. APG guides the precise selection and optimization of proposals,
enhancing model accuracy.

— We develop an Implicit Feature Interpolation method, enabling effective fea-
ture extraction at arbitrary positions. This technique improves the robust-
ness and versatility of our model, particularly in various crowd scenarios.

2 Related Work

In the realm of crowd counting, methodologies are broadly categorized into
map-based (2,2, 11, 14, 18, 25, 25, 26, 28, 31, 33, 49] and localization-based ap-
proaches [17,19,23,29,39], each with distinct strategies and challenges.

Map-based Approaches use Gaussian kernel density maps to achieve local-
ization and counting. Pioneered by researchers like Idrees et al. [13] and Gao et
al. [8], these methods identify individual positions as peaks on density maps.
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However, they encounter challenges with overlapping in dense crowds. Innova-
tions such as the Distance Label Map [51], Focal Inverse Distance Transform
Map (FIDTM) [21], and Independent Instance Map (IIM) [9] have been intro-
duced to mitigate these issues, though they still require complex post-processing
steps. Concurrently, these approaches also advance crowd counting accuracy by
integrating density map values, with enhancements like composition loss [13]
and inter-domain feature segregation [8]. These approaches successfully reduce
overlaps in crowded areas, yet they require a post-processing step, such as "find-
maxima", to pinpoint individual locations. Additionally, their reliance on multi-
scale feature maps adds to their complexity, detracting from their simplicity and
elegance.

Localization-based Approaches: In crowd analysis, localization-based meth-
ods integrate both detection-based and point-based strategies. Detection-based
approaches, utilizing frameworks like Faster RCNN [37], focus on generating
pseudo bounding boxes using techniques such as nearest neighbor distance, as
seen in [39], and a winner-take-all loss for refining box selection, especially ben-
eficial for high-resolution images. Liu et al. [29] employs curriculum learning to
enhance detection and bounding box prediction accuracy. However, these meth-
ods often contend with the challenge of pseudo-ground-truth boxes derived from
weak point supervision, which can be particularly unreliable in densely populated
areas, thus impeding model training and leading to imprecise box predictions.
Additionally, they typically involve Non-Maximum Suppression (NMS) in their
box filtering process, which is not designed for end-to-end training [48].

In contrast, point-based approaches like those proposed by Song et al. [43]
(P2PNet), Liang et al. [20] (CLTR), and Liu et al. [24] (PET) emphasize di-
rectly estimating individual head positions, dynamically adjusting to various
crowd densities. These methods significantly enhance the accuracy and process
efficiency of localization tasks. Nevertheless, their performance can be limited
by the instability of proposal-target matching during training, often leading to
regional underestimation or overestimation due to unclear learning objectives
for proposals.

3 Preliminary: Point-based Crowd Counting Framework

This framework [43] comprises three main components essential for point-based
crowd counting: Point Proposal Prediction, Proposal-Target Matching, and Loss
Calculation.

Point Proposal Prediction involves generating point proposals from the deep
feature map F, outputted by the backbone network, where s is the downsam-
pling stride, and F; has a size of H x W. The process includes two parallel
branches: regression for predicting point coordinate offsets and classification for
determining confidence scores. Each pixel on F; corresponds to a patch in the
input image, with a predefined set of reference points R = Rilk € {1,..., K}
where K is the total number of reference points. The regression branch outputs
H x W x K point proposals, with the coordinates of a proposal p; = (Z;, ;)
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calculated as: Z; = xy, + VA?I and §; =y + ’yA;?y where y scales the predicted
offsets, A?z and Afy present predicted offsets for its coordinates of a proposal
by = (&5,95)-

Proposal-Target Matching follows the Point Proposal Prediction, utilizing
the Hungarian algorithm [16] as proposal-target matching 2(P,P,D). This
strategy ensures a one-to-one correspondence where each ground truth target
from P is matched with a point proposal in P. The matching is based on the
pair-wise cost matrix D of size N x M where N and M denote the number of
ground truth points and point proposals. The matrix D combines the Euclidean
distance between point pairs and the confidence score ¢; of each proposal, defined
as D(P,P) = (7 ||pi — pjl|, — éj)ieN’j€M7 where 7 balances the pixel distance
and ¢; is the confidence score of proposal p;.

After the matching process, in the optimal matching results denoted as O,
each ground truth point p; is optimally matched to a point proposal p;, with the
matching result represented by the permutation ¢ = @(73,75, D). Thus, py) is
the proposal matched to ground truth point p;. The set of matched proposals,
Ppos = Pyt € {1,..., N}, are considered positives, while the unmatched ones,
Prneg = Pyt € {N +1,..., M}, are negatives.

Loss Calculation integrates Euclidean loss £;,. for point regression and Cross
Entropy loss L.s for proposal classification. The combined loss function Lpgint

1S: 1 N M
Les = =77 (Z logéy(y + A1 Y log(l— éwm)) ; (1)

i=1 i=N+1
1 & 2
Lioe = ~ Z ||pi — Py |5 » (2)
i=1
Epoint =Lys + >\2£l007 (3)

where ¢y;) is the confidence score of the matched proposal py;), A1 adjusts the
impact of negative proposals, and Ay balances the regression loss.

4 Proposed Method

While current Point-based Approaches demonstrate promising results in crowd
counting and localization, we identified instability in the optimization of the
matching process, potentially limiting overall performance. We introduce sev-
eral components designed to stabilize and enhance the matching mechanism to
address this challenge.

4.1 Auxiliary Point Guidance

We introduce an explicit guidance mechanism to enhance the optimization pro-
cess’s stability during the network’s matching phase. As shown in Figure 2,
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Fig. 2: Illustration of the Auxiliary Point Guidance framework. During the
model’s training, we additionally introduce auxiliary positive (Apos) and negative
(Apos) points based on each ground truth position to guide the network’s learning.
This approach helps in directing the optimization process more effectively by distin-
guishing between potential positive and negative matches.

this involves the strategic designation of auxiliary positive (Apos) and negative
(Apeg) points within the optimization framework, determined based on ground
truth coordinates (z,y). The sets of positive and negative points are defined as

pos = {(I+Rposay+Rp0§) ‘ i = 1 2 pOS} and Aneg - {(I+Rnegay+Rneg) |
j=1,2,...,kneq}. Here, R;ffb and R;gb represent a series of randomness num-

bers used to generate the x and y coordinates of positive points, respectively,
with each number uniformly distributed between —npos and npes. Similarly, R%gg
and R%Y, denote series of randomness numbers for generating the 2 and y coor-
dinates of negative points, each uniformly distributed between [—npeg, —7pos| Or
[pos, Mneg)- The variables kpos and kneg denote the total number of positive and
negative points generated, respectively. Each set R; and R{le is used to create
a unique set of coordinates for Apos and A,eg, thereby offsettlng the ground
truth position (x,y) by these randomness numbers.

Based on the auxiliary positive points Apes, we extract their corresponding
features. From these features, we then predict the confidence ¢, and offset and
then calculate the position of the proposal pj. for each point. Our objective
is to ensure that the confidence of auxiliary positive points is as close to one
as possible and that their predicted offsets closely match the added randomness
number. To achieve this, we formulate the loss function for the auxiliary positive

point as follows:

k)pos

05 1 Ak .
‘CZPG N kp0‘ Z Z 1Ogcpos l Z + >‘3 ||pl ppos(l, Z)H%) ’ (4)
S 1=1 =1

where A3 represents a scaling factor.

For the auxiliary negative points (Ayeg), our aim is for their confidence ¢,
to be as close to zero as possible. Similarly, we desire their offsets A7, to ap-
proach zero, preventing negative points from using offsets to bring their proposal
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Fig. 3: Illustration of Implicit Feature Interpolation. Given an arbitrary desired
point position (x,y), we concatenate the nearest four feature maps (Z7 - Z;) along with
their distances (67 - ;) to the (z,y) with positional encoding ¢ and utilize a Multi-
Layer Perceptron (MLP) fp to interpolate the latent feature for that specific location.
This approach enables precise feature extraction at non-grid locations, facilitating more
flexible and accurate feature representation.

coordinates close to the ground truth. This is crucial to mitigate the potential
of these negative points being erroneously considered as matched proposals dur-
ing the matching process. The loss function specifically formulated for auxiliary
negative points is as follows:

£t = ZZ(logu—neg(u a8 GAIB) . )

neg ;_

where A4 represents a scaling factor.
The total loss of the Auxiliary Point Guidance can be formulated as:

Larc = LYpe + LiPa (6)

Through this additional guidance, we can direct the network to train point pro-
posals closest to the ground truth points as positive points, while treating those
farther away as negative points. This guidance assists the network in consis-
tently selecting the same positive point for each ground truth point during the
matching process. Importantly, the chosen positive point is likely to be the cor-
rect match, being in close proximity to the ground truth point. By employing
this guidance, we address the instability issue inherent in the matching process,
thereby enhancing the network’s performance.

However, since auxiliary points are randomly assigned based on ground truth
coordinates, traditional bilinear interpolation is not suitable for extracting fea-
tures at these arbitrary positions. Therefore, we propose the use of implicit
feature interpolation to obtain these features. The details of this approach will
be described in the following section.



8 Chen et al.

4.2 Implicit Feature Interpolation

Implicit functions have demonstrated their efficacy in providing robust and con-
tinuous feature representations, significantly benefiting various computer vision
tasks as evidenced in previous studies [4,34,35]. In Auxiliary Point Guidance,
we leverage implicit function-based interpolation to extract latent features that
are both arbitrary and robust. As depicted in Figure 3, for a given point lo-
cation (z,y), we first determine the four nearest latent features, denoted as
Z*|i € {1,...,4}. We then calculate their respective spatial distances from the
target latent feature, represented as d7|i € {1,...,4}. These four latent features,
along with their calculated distances, are concatenated channel-wise. This con-
catenated information is then fed into a MLP to yield the target latent feature.
However, it is known that MLPs tend to prioritize low-frequency information,
often overlooking crucial high-frequency details, which can impact the perfor-
mance of the MLP [3,36,44]. To counter this limitation, we employ positional
encoding as suggested in [52], enhancing the dimensionality of the distance infor-
mation. By integrating positional encoding with the distance data, we address
this high-frequency detail loss. The entire implicit feature interpolation process
is encapsulated in the following formulation:

4
Fproposal(l'v y) = ng(Zl ) 51 ) ¢(52 ))’ (7)
i=1

where S; represents the area surrounding the diagonal point with the target
point, and S is the sum of these areas, calculated as S = Z?:l S;. Here, fo(-)
symbolizes the MLP, ¢(-) denotes positional encoding, and Foposai(®,y) is the
resultant interpolated feature for the point (z,y).

4.3 Architecture Overview

Our architecture, as illustrated in Figure 4, begins with the extraction of image
features using a pre-trained backbone, specifically VGG-16 [41]. We focus on the
feature maps from the final two layers (i.e., conv 3 and conv 4). These features
are then enhanced for scale diversity through the application of Atrous Spa-
tial Pyramid Pooling (ASPP) [7]. Following this, each set of features undergoes
an implicit feature interpolation process, which results in the computation of
the corresponding features Fjroposai(2,y). The interpolated features are subse-
quently concatenated and input into both the confidence and regression modules.
These modules are responsible for predicting the confidence level and offset for
each point in the image. The training of the network is accomplished using a
combination of the original point-based constraint, as defined in (3), and the
proposed Auxiliary Point Guidance, as stated in (6). The total loss function,
denoted as Lyyerail, is formulated as follows:

Eo’uerull = ACpoint + )\SEAPG7 (8>

where A5 represents a scaling factor.
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Fig. 4: Illustration of the proposed APGCC for crowd counting and local-
ization. A VGG encoder extracts image features, where features from conv3 and conv4
layers undergo refinement via Atrous Spatial Pyramid Pooling [7]. Subsequently, tar-
get latent features are interpolated using implicit feature interpolation. These latent
features are then processed through a prediction head to obtain confidence score ¢ and
offsets (Az, Ay), facilitating precise crowd counting and localization.

5 Implementation Details

5.1 Datasets

We use the ShanghaiTechA [53], ShanghaiTechB [53], UCF_CC_50 [12], UCF-
QNRF [13], JHU-Crowd++ [42], and NWPU-Crowd [47] datasets to evaluate the
performance of the proposed method against the state-of-the-art approaches.
ShanghaiTech A dataset [53] includes 482 images with 244,167 annotated
points. The dataset is divided into 300 training images and 182 testing images.

ShanghaiTech B (SHHB) dataset [53] features 716 images and 88,488 anno-
tated points, with a split of 400 training images and 316 testing images.

UCF _CC_ 50 dataset [12] encompasses 50 images, totaling 63,974 annotated
points. We adhere to a five-fold cross-validation as outlined in [12].
UCF-QNRF dataset [13] contains 1,535 high-resolution web-collected images,
with over 1.25 million annotated points. It splits into 1,201 training images and
334 testing images, featuring a broad people count range from 49 to 12,865.
JHU-Crowd++ dataset [42] comprises 4,372 images, totaling 1.51 million an-
notated points. It allocates 2,272 images for training, 500 for validation, and
reserves 1,600 images for testing.

NWPU-Crowd dataset [47] includes 5,109 images with more than 2.13 mil-
lion annotated points, distributed across 3,109 training images, 500 validation
images, and 1,500 testing images.
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5.2 Evaluation Protocol

Counting Metrics. We employ Mean Absolute Error (MAE) and Mean Squared
Error (MSE) as our primary performance metrics, in line with standard practices
in the field, defined as MAE = 5 Y2 | |GTi—N,|, MSE = \/5 9 (GT; — N;)2,
where @) represents the total number of images in the dataset, with GT; and N;

indicating the actual and predicted crowd counts for the i-th image, respectively.
Localization Metrics. To assess localization accuracy, we utilize Precision (P),

Recall (R), and Fl-measure (F), following the methodologies in [13,47]. A pre-
dicted point is considered a True Positive (TP) if its distance from the corre-
sponding ground truth (GT) point is within a specified threshold o. For the
NWPU-Crowd dataset [47], which includes box-level annotations, ¢ is defined
as y/(w? 4+ h?)/2, where w and h are the width and height of each head. In
contrast, for the ShanghaiTech dataset, we apply fixed thresholds of o = 4 and
o=28.

5.3 Training Details

We utilize Adam optimization [15] with a learning rate of 10~ for general model
optimization. Given that the VGG-16 backbone network weights are pre-trained
on ImageNet, a reduced learning rate of 107° is applied for these components.
We adopted a grid layout strategy [43| for mapping proposals. The initial point
proposal stride is set at s = 8. The number of reference points K varies depending
on the dataset: 4 for most and 8 for the QNRF dataset, aligned with dataset
statistics to ensure M > N. The prediction head comprises four layers with
hidden feature dimensions of [1024, 512, 256, 256|, and a shared prediction head
is used for our point proposals. For point regression, we set v at 100, and the
matching weight term 7 at 5 x 1072, In auxiliary points learning, the number
of positive and negative points (kpos, kneg) are set to (2, 2). Randomness ranges
(Mpos, Mneg) are set to (2, 8). The loss coefficients are adjusted as A; = 0.5,
Ao =2x10"% A3 =2x107% Ay =2 x 1074, and A5 = 0.2 to balance different
term contributions.

Data augmentation involves initial random scaling (factor range: [0.7, 1.3]),
ensuring the shorter side is at least 128 pixels. Images are then randomly cropped
to 128 x 128 patches and subjected to random flipping with a 0.5 probability.
The training batch size is 8. The longer side of each image is restricted to 1920
pixels for UCF-QNRF, JHU-Crowd++, and NWPU-Crowd, while maintaining
the original aspect ratio.

6 Experimental Results

In this section, we present the evaluation results of the proposed method for
crowd counting and localization. More results are available in the supplementary
material.
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Table 1: Evaluation of crowd counting on SHHA [53], SHHB [53], UCF-
QNRF [13], JHU-Crowd [42] datasets.

SHHA SHHB UCF-QNRF  JHU-Crowd+

Method Localization — Manner ‘MAE | MSE {|MAE | MSE ||MAE | MSE ||MAE | MSE |

AMSNet [11] X Map-based 56.7  93.4 6.7 10.2 | 101.8 163.2 - -
SDA+DM [30] X Map-based 55.0  92.7 - - 80.7 146.3 | 59.3 248.9
GauNet+CSRNet [5] X Map-based 612 97.8 | 7.6 127 | 842 1524 | 694 2624
DC [50] X Map-based 61.6  96.7 7.1 11.1 | 914 157.5| 67.2 288.2
ChfL [40] X Map-based 57.5  94.3 6.9 11.0 | 80.3 137.6 | 57.0 235.7
HMOoDE [6] X Map-based 544 874 6.2 9.8 - - 55.7 214.6
LSC-CNN [39] v Detection-based| 66.4 117.0 | 8.1 12.7 | 120.5 218.2 | 112.7 454.4
TopoCount [1] v Detection-based| 61.2 104.6 | 7.8 13.7 | 89.0 159.0 | 60.9 2674
GL [46] v Map-based 61.3 954 7.3 11.7 | 843 147.5| 59.9 259.5

P2PNet [43] v Point-based 52.7  85.1 6.2 9.9 85.3 154.5 - -
CLTR [20] v Point-based 56.9  95.2 6.5 10.6 | 85.8 141.3 | 59.5 240.6
PET [24] v Point-based | 49.3 78.7 | 6.1 9.6 | 79.5 1443 | 585 238.0
APGCC v Point-based 48.8 76.7 | 5.6 8.7 80.1 136.6| 54.3 225.9

Table 2: Evaluation of crowd count- Table 3: Evaluation of crowd
ing on UCF_CC_ 50 [12] dataset. counting on NWPU [47] dataset.

Method Localization Manner MAE | MSE | Method Localization Manner MAE | MSE |

NoisyCC [15) X Map-based 069 534.2

BL [31] X Map-based - 229.3 308.2 voT [3L]I x Map-based 878  387.5

AMSNet [11] X Map-based 2084 297.3 MAN [22] x Map-based 765  323.0

GauNet+CSRNet [5] X Map-based 215.4 296.4 ChfL [40] x Map-based 768 3.0
HMOoDE [6] X Map-based 159.6 211.2 HMoDE+REL [6] X Map-based  73.4

P2PNet [43] v Point-based 172.7 256.1 RCA\IZ (23] j K}ap:&se: 17591 34 233?

T 1o B - i ap-base .3 346.

PET [24] v Point-based 1599 = 223.7 AutoScale [51] v Map-based  123.9 515.5

APGCC v Point-based 154.8 205.5 TopoCount [1] V  Detection-based 1078 438.5

P2PNet [43] v Point-based 774 362.0

CLTR [20] v Point-based 743 333.8

PET [24] v Point-based  74.4  328.5

APGCC v Point-based ~ 71.7 284.4

6.1 Evaluation on Crowd Counting

This section outlines our comparative analysis of crowd counting methods, where
our approach is benchmarked against an array of state-of-the-art techniques
across diverse datasets. We evaluate our performance against both map-based [5,
6,11,22,23,30-32, 40,45, 46, 50, 51], detection-based [1,39] and point-based [20,
24,43 methodologies. Our experiments, detailed in Tables 1, 2, and 3, highlight
APGCC’s leading performance, with the best results in bold and the second-best
results underlined. These findings affirm the effectiveness and adaptability of our
approach in various crowd counting scenarios.

Table 1 focuses on datasets such as SHHA [53], SHHB [53], UCF-QNRF [13]
and JHU-Crowd [42], showcasing APGCC’s significant improvements in accuracy
metrics like MAE and MSE. For example, compared to P2PNet [43] on the
SHHA [53] and SHHB [53] datasets, APGCC achieved substantial reductions in
both MAE and MSE, demonstrating its effectiveness even in sparse and simple
scene conditions.

In Table 2, we specifically examine the UCF_CC 50 dataset [12], a chal-
lenging set of 50 images with complex scenes. Our approach notably excels,
achieving impressive results that underscore the efficiency and stability of our
learning strategy, particularly beneficial for datasets with limited images.

Finally, Table 3 presents our performance on the NWPU-Crowd dataset [47],
the most extensive congested dataset considered in our study. Our approach out-
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Table 4: Evaluation of crowd localiza- Table 5: Evaluation of crowd local-

tion on NWPU [47] dataset. ization on SHHA [53] dataset.
o (large threshold) o, (small threshold) o=4 =8
Ma r - = - a

Method fonner F(%) T P(%) T R(%) TF(%) T POR) TR T Method Mamner F(95) T P(%) TR T FUA) T PR TRIA T
RAZ [23] Map-based 59.8 66.6 54.3 57.6 47.0 51.7 LOBB [38] Map-based 25.9 34.9 20.7 53.9 67.6 44.8
AutoScale [51] Map-based 67.3 57.4 62.0 - - - LCFCN [17] Detection-based 32.5 43.3 26.0 56.3 75.1 45.1
GL HG] Map-based 66.0 80.0 56.2 58.7 71.1 50.0 LSC-CNN [39] Detection-based 32.6 33.4 31.9 62.4 63.9 61.0
TinyFaces |lﬂ‘ Detection-based 56.7 52.9 61.1 52.6 49.1 56.6 TopoCount [l] Detection-based 41.1 41.7 40.6 73.6 74.6 T2.7
TopoCount [1] Detection-based 63.7 65.1 62.4 - - P2PNet [43] Point-based 40.6 41.5 39.8 74.6 76.2 73.1
P2PNet [43] Point-based 71.2 72.9 69.5 7.5 68.4 66.6 CLTR [20] Point-based 43.2 43.6 42.7 74.2 749 73.5
CLTR [20] Point-based 68.5 69.4 67.6 59. 59.9 58.3 APGCC Point-based 48.7 49.2 483 784 79.1 T7.7

59.1
PET [24] Point-based 74.2 75.2 73.2 67.5 68.4 66.6

APGCC Point-based 76.4 79.2 73.6 689 715 665

performs the competition, including the second-best method, HMoDE+REL 6],
by achieving lower MAE and MSE. This success can be attributed mainly to our
implementation of Auxiliary Points Guidance and the enhancement provided by
the Implicit Feature Interpolation technique, which together significantly im-
prove model reliability and adaptability to different scales and densities.

6.2 Evaluation on Crowd Localization

We benchmark our approach against a diverse array of methods, including map-
based methods such as RAZ [23]|, AutoScale [51], LOBB [38], and GL [46];
detection-based methods like TinyFaces [10], TopoCount [1], LSC-CNN [39], and
LCFCN [17]; as well as point-based methods including P2PNet [43], CLTR [20],
and PET [24].

Table 4, focusing on the NWPU dataset [47], showcases APGCC’s superior
performance. Compared to detection-based methods that utilize box-level an-
notations and other point-based approaches, APGCC leverages IFI to acquire
precise features and utilizes closer proposal predictions to achieve optimal pre-
cision. Conversely, in the SHHA dataset [53], as detailed in Table 5, APGCC
secures comprehensive improvements: at a ¢ = 4, the Fl-measure increased by
5.5%, and at o = 8, it rose by 3.8%.

6.3 Evaluation of Model Complexity

In Table 6, we benchmark APGCC against other point-based methods, focusing
on the number of parameters and inference time. The inference time evaluations
are conducted on an NVIDIA 3090 GPU with an input resolution of 1024 x 1024.
The findings illustrate that APGCC maintains efficient computational complex-
ity and delivers superior performance in crowd counting and localization tasks.
Note that since our APG training mechanism is employed only during training,
it does not incur additional computational overhead during inference. Compared
to the original point-based method (i.e., P2PNet [43]) that utilizes traditional
upsampling to process features, our use of IFI allows for more accurate represen-
tation learning with fewer parameters. This method enhances computaional effi-
ciency, as employing MLPs for feature interpolation is known to be efficient [35].
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6.4 Ablation Study

We evaluate the effectiveness of the proposed two modules, APG and IFI. We
evaluate the performance on SHHA dataset [53].

Effectiveness of APG. We explore the impact of different optimization strate-
gies, with several distinct settings as follows: (a) "Matcher" solely employs the
matching strategy as described in Section 3 and [43], (b) "Nearest Point" directly
selects the proposal closest to the ground truth as the positive proposal, with
all others considered negative, (c) "APG", which exclusively utilizes the pro-
posed APG for training, and (d) "Matcher + APG" (Ours). The experimental
results, as shown in Table 7, indicate that while strategy (b) may seem intuitive
and straightforward to design, it risks multiple ground truths mapping to the
same proposal, severely underestimating the final counting. Consequently, using
(a) can guide the model on how to allocate proposals for learning and introduce
confidence information to enhance discrimination. Our proposed APG effectively
addresses the shortcomings of the nearest point, providing an equivalent number
of proposals for the model to learn to match the closest proposals. However, as
auxiliary positive points cannot be provided during the inference phase, relying
solely on APG can make the model overly dependent on reference values. There-
fore, by combining the advantages of Matcher and APG (i.e., (d)), we not only
teach the model how to allocate a fixed number of proposals but also guide it to
make more elegant choices.

Optimizing APG Setup. Our exploration into optimizing APG focuses on
two key aspects: (i) determining the optimal number of potential positive and
negative points (kpos and kneg), as defined in Section 4.1, and (ii) adjusting the
randomness scale of APG (npeg and npes), with findings detailed in Tables 8 and
9.

Table 8 explores the impact of the number of auxiliary positive and negative
points on performance, essential for validating the APG’s effectiveness. The re-
sults indicate that while using only auxiliary positive points slightly favors the
selection of nearest proposals, it’s limited in preventing duplicate predictions.
Introducing auxiliary negative points enhances differentiation and training sta-
bility by encouraging the model to reject distant proposals. Despite an increase
in auxiliary point pairs leading to better stabilization (lower Avg. IR and Avg.
A), the effect on final performance (MAE) is minimal. Thus, we suggest utilizing
a balanced (2, 2) ratio of positive to negative points to achieve better learning
performance. This is because training with a (5, 5) setting requires roughly twice
the training effort compared to (2, 2), without a significant improvement in per-
formance.

Additionally, the degree of randomness applied to auxiliary proposals plays a
pivotal role in the configuration of the APG. Our experiments, executed with a
stride of 8, have demonstrated that a precise range of randomness is crucial for
attaining optimal results, as evidenced in Table 9. While a constrained random-
ness range may limit the diversity in proposal selection, an excessive range of
randomness could jeopardize the model’s confidence uniformity across different
areas, impacting its effectiveness.
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Table 6: Comparison of model Table 7: Analysis on alternatives of
complexity with Point-based Ap- optimization strategies.

proaches. Setting] Strategy [MAE | MSE |
Method P2PNet, [43] CLTR [20] PET [24] APGCC (a) Matcher 54.04  86.97
Parameters (M) | 21.6 43.4 20.9  18.68 (b) Nearest Point 76.91 118.60
Inference Time (s) ||  0.074 0.107 0.097  0.071 (c) APG 58.46 96.71
(d) |Matcher + APG (Ours)| 48.84 76.79

Table 9: Comparison of different

Table 8: Evaluation of different s
range of randomness for auxiliary

number of auxiliary points

points
Num. of Auxiliary Points (kpes, kuee)|(0, 0) (1, 0) (2,0) (1, 1) (2,2) (5, 5)
MAE | 54.04 51.57 51.47 40.24 48.84 48.81 Randomness Range (npos; nneg)|(1, 4) (2, 8) (3, 12) (4, 16)
Avg. IR | 0.70 0.49 0.48 0.38 0.36 0.34 MAE | ‘49.25 48.84 50.23 51.23
Avg. A | 6.87 3.89 337 162 158 1.49

Table 10: Ablation study of Implicit Feature Interpolation.

Setting Method MAE | MSE ||[F1@4 1 F1@8 1
(a) Nearest Neighbor without MLP | 53.16 83.31 | 43.59  76.27
(b) |Bilinear Interpolation without MLP| 51.25 79.92 | 45.78 77.67

(c) IFT with Single Reference Point 49.73  77.97 | 47.40 78.27
(d) IFI w/o Positional Encoding 49.24 78.27 | 47.97 78.38
(e) IFI 48.84 76.79| 48.76 78.46

Effectiveness of IFI. To accurately capture the correct features for proposals
at arbitrary positions, we introduce IFI. Other feasible approaches include: (a)
Nearest Neighbor without MLP, which directly utilizes the closest latent feature
without any transformation; (b) Bilinear Interpolation without MLP, deriving
features at each position through bilinear interpolation, implying no use of coor-
dinate and continuous function transformation; (c) IFI solely employing a single
reference point for continuous transformation (MLP with coordinate informa-
tion); (d) IFI w/o Positional Encoding; and (e) IFL

The results, as displayed in Table 10, reveal several clear trends. First, the
use of interpolation outperforms the nearest-neighbor approach by providing
a richer feature context. Second, a comparison between (b) and (d) highlights
the benefits of using distance information for continuous transformation. Third,
incorporating Positional Encoding significantly aids the MLP in achieving better
learning outcomes. By integrating all these methods, we can notably enhance the
representation features obtained at any given position.

7 Conclusion

In this paper, we proposed Auxiliary Point Guidance and Implicit Feature Inter-
polation to address challenges in point-based crowd counting and localization.
APGCC improved the stability of proposal-target matching and enabled accu-
rate feature extraction at any position. Extensive experiments against state-of-
the-art methods, our approach showed superior performance in various scenarios.
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