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1 Details of Collection and Annotation of Data and
Checking of Annotations

1.1 Data Collection

In order to achieve comprehensive tracking of various types of targets in different
scenarios, we use videos from publicly available datasets, i.e. YFCC100M [15],
TAO [1], ImageNet-VidVRD [14], VidOR [13], HACS [21], AVA [5], GOT-10K
[7], and ILSVRC2016 [12]. These videos encompass different types of indoor
and outdoor scenes in a wide range of scenarios, ranging from the daily life
encounters and interactions of individuals to commercial and factory settings to
outdoor settings (e.g ., desert, forest, and river). Having a diverse representation
of objects and interactions in a wide range of complex and challenging scenarios
that reflects the diversity in the real world is helpful to develop and evaluate
robust and generalizable tracking models that are of great practical value to
handle various complex real-world scenarios, thus benefitting a large and diverse
range of applications.

We first curate the list of actions and interactions from AVA [5] and form
a vocabulary list of interaction classes (see Supp. Sec 2.3 for more details). We
define each interaction to minimize ambiguity. Using this list as a starting point,
we ask our annotators to screen the videos and shortlist suitable videos that
contain rich semantic trajectories. The criteria for the selection include:

1. The video must contain at least one target.
2. Interactions seen in the video should be found in our initial list of interaction

classes. If there are other interactions, the annotator will define them and
propose adding them to the vocabulary list, so that this list can be expanded
to comprehensively cover a wide range of interactions that occur in real life.
All the annotators meet again to standardize and refine this vocabulary list.
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Fig. 1: Distribution of different object classes in terms of number of instances

Table 1: Different types of interactions in SemTrack

SuperCategory Interaction

Movement-related and daily activities
bite, carry, chase, close, cut, fall_off, feed, fill(glass), fly_with, grab, hit, hold,
kick, knock, lick, lift, light(cigarette), open, pat, point_to, press, pull, push,
release, smell, squeeze, throw, use, wave

Hygiene clean, trim_nails
Sports swim_with, catch(ball), serve(ball), shoot
Music play(instrument)

Commuting ride, drive, get_off, get_on

Social interactions and display of affection lean_on, caress, fight, follow, hold_hand_of, hug, kiss,
play_with, shake_hand_with, shout_at, speak_to, wave_hand_to

1.2 Data Annotations

The entire annotation process is conducted using the Label Studio platform
[16]. We leverage existing annotations in the datasets mentioned in the earlier
subsection and tailor them for our semantic tracking.

Selection of target: In each video, the object with rich semantic informa-
tion is selected as the target. If there is another object that has rich interactions
with some other affiliated object, it can also be selected as a target. In other
words, there can be multiple target objects in a video clip.

Target initialization sentence: The target initialization sentence is a
statement that describes the target in its first frame of occurrence so that it
can be used to detect and localize the target for the model to start tracking
(i.e., target tracking initialization). We manually describe the target based on
its attribute, including its color and position. The combination of the target’s
attributes and actions (e.g ., stand, sit) gives rise to a rich diversity of target
descriptions.

Annotation of bounding boxes and trajectories of target and af-
filiated objects: Based on the selected target in the video, the objects that
interact with the target are annotated as affiliated objects of the target. We
follow AVA style [5] to manually annotate the bounding boxes of the target and
affiliated objects across frames. If the source dataset contains trajectories, we
use those existing trajectories.

Annotation of object classes of affiliated objects: We annotate the
object classes of the affiliated objects.

Annotation of interactions: We annotate the interactions between the
target and its affiliated object based on the predefined interaction vocabulary
list.
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1.3 Checking of Annotations

We conduct two rounds of checking.
In round 1, each annotator will check the videos that are different from the

ones that he/she has annotated. They will ensure that:

– every target initialization sentence only defines one target and can clearly
identify and distinguish it from other objects,

– the bounding box is tightly bounded around the target or affiliated objects,
and the annotated bounding boxes (e.g., not severely occluded) are consid-
ered valid following previous datasets (e.g., [1, 7, 12,13]),

– the object classes are correctly identified,
– and the interaction classes are correctly annotated.

In round 2, the video samples are re-distributed to a separate set of annota-
tors (i.e., the annotator in round 1 is different from round 2) to check for the
same items as mentioned in round 1. If there is any discrepancy, a more experi-
enced annotator will take the average coordinate value of their bounding boxes
and disambiguate the annotation.

2 Statistics of SemTrack

2.1 Various Scenes

Our SemTrack dataset covers 12 different types of scenes, including indoor and
outdoor scenes.
The indoor scenes include:

1. Home (e.g ., kitchen, bathroom, bedroom),
2. Mall (e.g ., supermarket),
3. Factory,
4. Classroom,
5. Stage (e.g ., stage performance).

The outdoor scenes include:

1. Desert,
2. Forest,
3. Transportation vehicle (e.g ., train, bus),
4. Road (e.g ., street, walkway),
5. Outdoor sports arenas (e.g ., horse riding, skiing),
6. Zoo and safari,
7. River, beach, underwater (e.g ., scuba diving).
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2.2 Diverse types of targets and affiliated objects

Our SemTrack dataset contains annotations of 115 different types of objects,
spanning 10 different supercategories. Fig. 1 shows the distribution of various
categories. The 10 supercategories are as follows:

1. Person
2. Animals (e.g ., rabbit, cat, and dog)
3. Home Stuff

– Furniture (e.g ., sofa)
– Electronics (e.g ., monitor, oven)
– Kitchen wares (e.g ., bottle, cup)
– Toiletries (e.g ., basin, tap)
– Baby items (e.g ., baby seat, toy)
– Other general items (e.g ., cutting tool)

4. Personal items (e.g ., handbag, suitcase)
5. Food (e.g ., ice-cream)
6. Tools (e.g ., hammer)
7. Sports (e.g ., ball, baseball bat)
8. Musical instruments (e.g ., piano)
9. Road and vehicle (e.g ., bicycle, car)

10. Weapon (e.g ., hunting bow)

Fig. 2: Architecture of SemTracker model consisting of four modules: visual grounding,
object detection, interaction prediction, and object tracking.

2.3 Interaction Vocabulary

We select videos that contain interactions that commonly happen in an individ-
ual’s daily life, ranging from general daily interactions and encounters to social
interactions to commuting to sports. Details of the interactions are listed in
Table 1.
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3 Further Elaboration of our SemTracker Model

3.1 Model Architecture

Our SemTracker consists of four modules as shown in Fig. 2 — a visual grounding
module, an object detection module, an interaction prediction module, and a
multiple object tracking module.

Visual grounding module. The visual grounding module is used to locate
the target in the first frame of the video sequence. We follow [3, 17] and use
the pre-trained language model BERT [8] to extract language embedding of the
input sentence and predict the location of the target.

Object detection module. The object detection module is applied to de-
tect the objects in each frame, and obtain their locations and object classes.
These detections are then used in the interaction prediction module and the
object tracking module. We adopt the YOLOX [4] model for object detection.

After obtaining the location of the objects, RoI Align ΦRoI [6] is applied
to extract the intermediate features ft,i corresponding to the detected bounding
boxes (t represents the frame index, i represents the index of the detected object).
These intermediate features are then used to determine the target and predict
the interaction classes in the interaction prediction module.

Interaction prediction module. The interaction prediction module aims
to determine the target in each frame and predict the interactions between the
target and affiliated objects. The target is determined by matching the image
patch from the visual grounding module and the detected objects in each frame.
We use the cross-correlation function to perform the matching following [3]. The
object with the highest matching score is determined as the target. The other
objects are designated as the candidate affiliated objects.

After obtaining the target and the candidate affiliated objects, the model
then aims to find out whether the candidate affiliated objects are interacting
with the target and what interactions they are having. Intuitively, information
in the preceding frames can be useful in predicting the interaction in the sub-
sequent frames. Hence, here we adopt LSTM to process the information in con-
secutive frames. Specifically, the intermediate features of both the target and
the candidate affiliated objects in the previous frames are fed into the LSTM
modules. We construct three parallel LSTM modules, with each taking in in-
termediate features obtained at a different scale in the feature pyramid network
(FPN) [4, 10] in the object detection module. The output features of the three
LSTM modules are then concatenated and fed into an interaction prediction
head [19] to predict the interaction class of each pair of the target and the can-
didate affiliated objects. We also include a “None” class to indicate that there is
no interaction between the target and the candidate affiliated object during this
process. Hence, only those candidate affiliated objects that have valid interac-
tions with the target (i.e., having predicted interaction class that is not “None”)
are then determined and confirmed as the affiliated object.

Multiple object tracking module. Now that the target and the affiliated
objects are identified and confirmed, we then obtain the positional trajectories
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of these objects with the object tracking module. We adopt the ByteTrack [20]
model to associate the bounding boxes across frames for each object.

In summary, the SemTracker model is made up of these four modules to
predict the semantic trajectory of the target (i.e., bounding boxes of the target,
bounding boxes and classes of the affiliated objects of this target, and the types
of interactions between them over time).

3.2 Network Training and Experiment Details

Overall loss function. The overall loss function of our SemTracker model
(Equation 1) is the sum of the object detection loss Ldet (same as YOLOX [4])
and the interaction prediction loss Lint.

L = Ldet + Lint (1)

The interaction prediction loss is the cross-entropy loss between the predicted
interaction class pinti and the ground truth interaction class yinti :

Lint = (− 1

Nobj

Nobj∑
i=1

[yinti log(pinti )]) (2)

where Nobj refers to the total number of interaction classes.
More implementation details. The dataset is split into 80% for training,

10% for validation, and 10% for testing. We release the split information in the
dataset. In this paper, we evaluate the method on a subset of the testing set as
representatives especially focusing on people (e.g., adult and baby). The network
is trained on four NVIDIA 3090 graphic cards for 10 hours. The batch size is 32.
We train the model with the initial learning rate set at 2e-5 and weight decay at
0.0005. Adam optimizer is used with a momentum of 0.9. In our meta-learning
method, we set the learning rates α and β (in Equation 3 in the main paper) to
0.00005 and 0.001 respectively.

4 Our Proposed Evaluation Metric

We propose a new evaluation metric Semantic Tracking-mAP (ST-mAP) to eval-
uate the performance of methods for Semantic Tracking. Each predicted sample
consists of the position of the target and an affiliated object, as well as the in-
teractions between them, which is compared with the ground truth. If there are
no interactions at a position in a trajectory for the ground truth, the affiliated
object position and interaction are considered empty.

To calculate the ST-mAP, we need to determine the true positive, false neg-
ative, and false positive. In order to determine these values, we perform a pri-
mary one-to-one matching for all the ground truth and prediction using the
Hungarian algorithm [9] that optimizes the match based on the 3D IoU of the
bounding boxes and the object classes following Track-mAP [1] and penalizes
those predictions that are missed or extraneous. This will ensure that each of
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the ground truth trajectory is matched to at most one predicted trajectory and
vice versa. Then, we calculate ST-mAP with consideration of the accuracy of
the predicted bounding boxes of the target object, the accuracy of the predicted
bounding boxes of the affiliated object, and the accuracy of the predicted inter-
action classes. The details are elaborated below.

1. IoU3D(Gtar, P tar): The 3D IoU [1] between the predicted bounding boxes
and ground truth bounding boxes across the frames for the target is larger
than a threshold (e.g ., 0.5).

2. IoU3D(Gaff , P aff ): The 3D IoU [1] between the predicted bounding boxes
and ground truth bounding boxes across the frames for the affiliated object
is larger than a threshold (e.g ., 0.5).

3. γint: The percentage of correctly predicted interactions along the trajectory
is larger than a threshold (e.g ., 0.7).

An illustration of the calculation of the three conditions for a trajectory to
be considered as true positive is shown in Fig. 3. The calculation of the 3D
IoU for both the target and the affiliated object along the trajectory follows the
calculation that is used in [1].
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Fig. 3: Illustration of the calculation of the three conditions for a sample to be con-
sidered as true positive.
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Hence, those prediction that are correctly matched to ground truth are now
considered as truth positive. Conversely, those ground truth that are not matched
(i.e., missed predictions) are defined as false negative, and those prediction that
are not matched (i.e., extraneous predictions) are defined as false positive. Based
on the values of truth positive, false negative, false positive, the precision-recall
curve can be plotted. Thus, the ST-AP and ST-mAP (Equation 4 and 5 in the
main paper) can be calculated accordingly.

5 Additional Ablation Studies and Further Analysis

5.1 Ablation Studies on Target Initialization

There are different ways to initialize the target in our SemTrack dataset, for
example:

– using the target initialization sentence to initialize the tracking of the target
in each video [17],

– or using the target’s bounding box (bbox) in the first frame to initialize
tracking in each video [11,18].

To evaluate how a model’s performance is affected by how the target is ini-
tialized, we conduct experiments with the following settings:

– (1) sentence initialization that uses the target initialization sentence to
initialize each target;

– (2) bbox initialization that uses the ground truth bounding box in the
first frame to initialize each target;

– (3) ground truth bbox for all frames that provides the ground truth
bounding boxes of the target for all frames.

Table 2: Results of how target initialization affects our SemTracker model (that uses
YOLOX-X [4] and ByteTrack [20]).

Setting Initialization Evaluation Metrics
Track-mAP ↑ HOTA ↑ ST-mAP ↑

1 sentence initialization 10.656 18.854 8.668
2 bbox initialization 12.344 20.513 10.154
3 ground truth bbox for all frames 18.423 24.054 16.703

The experimental results are listed in Table 2. From the results, we observe
that how a target is initialized does influence the overall performance in our
proposed Semantic Tracking benchmark. Specifically, we observe that using set-
ting 3 (ground truth target bounding box for all frames), the performance is
improved greatly.
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Comparing the results of settings 1 (sentence initialization) and 2 (bbox ini-
tialization), we see that initializing the target using setting 1 (sentence initializa-
tion) is more challenging than 2 (bbox initialization). With the different settings
available in our SemTrack dataset, our dataset shall facilitate the community to
develop and evaluate robust and accurate tracking models.

5.2 Results of Single Object Tracking Metrics

As our SemTrack dataset can also be used to evaluate the traditional Single Ob-
ject Tracking (SOT) task, we evaluate our dataset on this task that tracks the
target’s positional trajectory. More specifically, we perform a One Pass Evalua-
tion (OPE) and evaluate the target’s positional trajectory based on widely used
SOT metrics [11,17]: Success, Precision, and Normalized Precision. We conduct
experiments whereby the target is initialized either by a target initialization
sentence or a bounding box. The results are shown in Table 3.

Table 3: Results of single object tracking.

Initialization Evaluation Metrics
Success ↑ Norm-Precision ↑ Precision ↑

target initialization sentence 0.33 0.41 0.20
bounding box 0.36 0.53 0.25

While the results show that it may be more challenging to track a target us-
ing target initialization sentence, considering how target initialization sentence
for tracking can tremendously benefit the user (i.e., more convenient and intu-
itive for a user [2,17]), it is still worthwhile to build more robust tracking models
that leverage the benefits of using target initialization sentence. Our challeng-
ing dataset shall facilitate the community to develop and evaluate robust and
accurate tracking models.
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