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Abstract. Knowing merely where the target is located is not sufficient
for many real-life scenarios. In contrast, capturing rich details about the
tracked target via its semantic trajectory, i.e. who/what this target is
interacting with and when, where, and how they are interacting over
time, is especially crucial and beneficial for various applications (e.g.,
customer analytics, public safety). We term such tracking as Semantic
Tracking and define it as tracking the target based on the user’s input and
then, most importantly, capturing the semantic trajectory of this target.
Acquiring such information can have significant impacts on sales, public
safety, etc. However, currently, there is no dataset for such comprehen-
sive tracking of the target. To address this gap, we create SemTrack, a
large and comprehensive dataset containing annotations of the target’s
semantic trajectory. The dataset contains 6.7 million frames from 6961
videos, covering a wide range of 52 different interaction classes with 115
different object classes spanning 10 different supercategories in 12 types
of different scenes, including both indoor and outdoor environments. We
also propose SemTracker, a simple and effective method, and incorporate
a meta-learning approach to better handle the challenges of this task. Our
dataset and code can be found at https://sutdcv.github.io/SemTrack.
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1 Introduction

Tracking a target (e.g ., humans or objects) in a scene is important and useful
for a wide range of applications (e.g ., customer analytics, crowd management).
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Inputs:
1. Input video sequence
2. Target initialization sentence: “The adult that is walking a dog” 

Time

adult
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Outputs:
Semantic trajectory of target 
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Fig. 1: In our Semantic Tracking, the model first localizes and tracks the target based
on the user’s input (e.g ., target initialization sentence), and returns the semantic trajec-
tory of the target (i.e., locations of the target, locations and classes of the surrounding
affiliated objects of this target, and the interactions between the target and affiliated
objects over time).

Tracking is defined in the dictionaries [1–3] as following the movement of some-
thing and recording its development over time, because we are interested in find-
ing out more about it. In the computer vision domain, the existing tracking task
mainly focuses on locating the target and obtaining its movement (i.e., posi-
tional trajectory with only its locations over time). Given that we are interested
to “find out more” about the target (i.e., keeping track of both its movement
and development of events), capturing just its positional trajectory is not enough
to obtain a complete picture of target’s movements, activities, interactions, and
development over time. As such, this is not sufficient to fulfill many needs and
requirements in various types of real-life scenarios.

Besides obtaining the target’s positional trajectory, it can be very useful
and beneficial for various scenarios if we can also obtain comprehensive details
about the tracked target (i.e., who/what this target is interacting with and
when, where, and how this target is interacting with its surrounding objects or
humans, which we collectively term as “affiliated objects”). Here, we use the term
“semantic trajectory” to refer to the trajectory of the target with such rich and
comprehensive logs detailing its every moment and development (i.e., what is
happening to the target at each timestep, including its location, the locations
and classes of its surrounding affiliated objects, and its interactions with various
affiliated objects). We thereby term this type of comprehensive tracking of the
target’s semantic trajectory as Semantic Tracking. More formally, Semantic
Tracking is defined as tracking a target based on the user’s input and then,
most importantly, capturing the rich semantic trajectory of this target. Using
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Fig. 1 as an example, the user first inputs a target initialization sentence “The
adult that is walking a dog” that describes the target to spatially locate it in the
first frame and start tracking it. The model then obtains this target’s semantic
trajectory (e.g ., her locations and interactions with affiliated objects at each
timestep such as pulling, patting, and then caressing the dog). Tracking such a
rich semantic trajectory will facilitate comprehensive tracking of the target, and
this will benefit a multitude of application scenarios.

One such application scenario that will benefit from Semantic Tracking is
the retail sector. Knowing only where a customer is moving about in the store
is not informative enough for retailers to capitalize on. In contrast, acquiring
the customers’ semantic trajectories in the store will offer richer and much more
insightful information about their customers in terms of how they move in the
store and interact with various products, as this reveals their shopping prefer-
ences that retailers are more interested in and can capitalize on. By analyzing
various semantic trajectories of many different customers (e.g ., What products
are they checking out in the store? In what sequence are they picking up the
products?), retailers can derive deeper insights that can be subsequently used
to customize and cater to their customers’ needs such as ensuring that popular
products are always in stock and certain products are strategically placed on
specific aisles or shelves so that they can cross-sell or upsell these products [43].
Additionally, tracking a customer’s semantic trajectory is useful in unmanned
stores whereby customers can pick up and pay for the products as they conve-
niently walk out of the store. By enhancing the overall shopping experience, the
store could benefit from greater business and sales. However, all of these would
not have been possible with just the tracking of positional trajectories, but would
be possible with Semantic Tracking (tracking of semantic trajectories).

Another scenario is crowd management and public safety settings. Knowing
just where the specific targets (e.g ., VIP or suspect) are located may not be
detailed enough to figure out what is happening on the ground. Instead, tracking
various targets and obtaining rich logs containing vital details of the targets and
their trajectories is especially crucial, particularly in time-critical life-or-death
situations [28]. Once these details are acquired (e.g ., Where are they? What are
they doing? Who are they approaching?), investigators can then rapidly analyze
the semantic trajectory of the target in terms of how each target moves and
interacts with others (e.g ., accomplice, hostage) or other objects (e.g ., putting
down a suspicious bag).

There are other application scenarios whereby obtaining the semantic tra-
jectories will be useful. In sports performance coaching, it can be overwhelming
for the coach to simultaneously track each player and analyze how each player
moves, acts, and interacts with objects and other players. With Semantic Track-
ing, each player’s semantic trajectory can be easily tracked and analyzed so that
detailed insights and personalized feedback can be provided to each individual
and the team [63]. Besides, Semantic Tracking can also benefit live sports ref-
ereeing (i.e., determining if there is any foul play) and live sports commentary
highlighting the events that are happening in the targets’ tracks.
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In all of these real-life application scenarios and many more, Semantic Track-
ing can offer rich and comprehensive details about the target on top of its posi-
tional trajectory, hence allowing users to achieve a deeper and complete under-
standing about the tracked target and its trajectory, happenings and moments.

To achieve such comprehensive semantic tracking, a large-scale and compre-
hensive dataset would be required. However, currently there is no such dataset
and benchmark. Existing tracking datasets [10, 11, 13, 17, 76] and tasks predict
where the target is located over time but lack the rich details of its trajectory
that will be useful for various domains and applications. Hence, this motivates
us to create SemTrack, the first-ever large-scale, comprehensive, and challenging
dataset for Semantic Tracking. Each video in our dataset contains annotations
of the target’s semantic trajectory across consecutive frames (i.e., locations of
the target, locations and classes of affiliated objects of this target, and the in-
teractions between the target and affiliated objects over time). In addition, we
also provide the target initialization sentence that describes the target so as to
conveniently localize it and initialize tracking. Our dataset contains these anno-
tations for a total of 6.7M frames from 6961 video samples, tracking 52 different
types of interactions for 115 different types of objects in 12 different types of
scenes ranging from indoor to outdoor scenes. We believe the large diversity in
our dataset will attract and facilitate the community to develop, train, and eval-
uate various advanced methods to track and analyze the semantic trajectory of
the target.

Besides constructing a new dataset SemTrack for Semantic Tracking, we also
propose a simple and effective model (SemTracker) to localize and track the
target and its interactions with affiliated objects, which we evaluate using our
newly proposed evaluation metric (Semantic Tracking-mean Average Precision
(ST-mAP)). Also, given that such comprehensive semantic tracking brings about
new challenges (introduced in Sec. 4.2), we propose a meta-learning approach to
better handle this challenge.

In summary, our contributions are as follows:

1. We create SemTrack, a new large, diverse, and challenging dataset to facili-
tate comprehensive tracking of the target’s semantic trajectory.

2. We propose a simple and effective model (SemTracker) for Semantic Track-
ing. We also incorporate a meta-learning approach to better handle the chal-
lenges of this task.

3. We propose an evaluation metric (Semantic Tracking-mean Average Preci-
sion (ST-mAP)) for this Semantic Tracking task and use it to evaluate our
model.

2 Related Works

Object tracking is important for a wide diversity of applications. We review some
of the well-known tracking datasets in Tab. 1. Readers can also refer to survey
papers [47,53,59,80] on tracking datasets and methods.
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Table 1: Key attributes of our SemTrack dataset as compared to existing tracking
datasets. Our SemTrack dataset uniquely contains the semantic trajectory of the target
with various types of information (i.e., locations of the target, locations and classes
of the affiliated objects of this target, and the interactions between the target and
affiliated objects over time). In addition, as compared to other language-initialized
tracking datasets, our dataset comprises more videos, frames, and target initialization
sentences.

Dataset # Videos # Frames Duration # Target initialization
sentence

Locations of
target

Locations of
affilitated objects Types of interaction

B
ou

nd
in

g
bo

x
In

it
ia

liz
ed

OTB2013 [71] 51 29K 16.4min ✗ ✓ ✗ ✗

OTB2015 [71] 100 59K 32.9min ✗ ✓ ✗ ✗

TC-128 [42] 128 55K 30.7min ✗ ✓ ✗ ✗

VOT2014 [33] 25 10K 5.7min ✗ ✓ ✗ ✗

VOT2017 [32] 60 21K 11.9min ✗ ✓ ✗ ✗

NUS-PRO [36] 365 135K 75.2min ✗ ✓ ✗ ✗

UAV123 [50] 123 113K 62.5min ✗ ✓ ✗ ✗

UAV20L [50] 20 59K 32.6min ✗ ✓ ✗ ✗

NfS [30] 100 383K 26.6min ✗ ✓ ✗ ✗

TrackingNet [51] 30,643 14.43M 140h ✗ ✓ ✗ ✗

GOT-10k [26] 10,000 1.5M - ✗ ✓ ✗ ✗

L
an

gu
ag

e
In

it
ia

liz
ed

OTB99-Lang [41] 99 59K 32.9min 99 ✓ ✗ ✗

ImageNet-Lang [41] 100 24K 13.3min 100 ✓ ✗ ✗

LaSOT [14] 1,400 3.52M 32.5h 1,400 ✓ ✗ ✗

TNL2K [67] 2,000 1.24M 11.5h 2,000 ✓ ✗ ✗

Web-UAV [75] 4,500 3.3M 28.9h 4,500 ✓ ✗ ✗

SemTrack (Ours) 6,961 6.7M 65.5h 9,760 ✓ ✓ 52

2.1 Tracking Datasets

As the development of tracking models depends heavily on benchmark datasets
[61], it is important to have large and comprehensive tracking datasets.

Existing object-tracking datasets generally only provide annotations to track
the location information of the target(s). Depending on the number of targets
tracked, these datasets can be categorized into Single Object Tracking (SOT)
whereby only a single target is tracked [26, 30, 31, 36, 50, 51, 65, 71] and Multi-
Object Tracking (MOT) whereby multiple targets are tracked [11, 12, 17, 35, 49,
69].

Many tracking datasets are designed to track specific targets, such as tracking
humans (e.g ., MOTChallenge [11,12, 35,49]), vehicles (e.g ., UA-DETRAC [69],
CityFlow [17]), vehicles and pedestrians (e.g ., [20, 60, 73]), and animals (e.g .,
[76]). A number of them track different object categories/classes (e.g ., [10, 56]),
while some track humans and objects in an indoor setting such as BEHAVE [6].

Among these datasets, a majority of them provide annotated bounding boxes
to initialize the target for tracking. Some of the more recent datasets (e.g .,
OTB99-Lang [41], ImageNet-Lang [41], LaSOT [14], and TNL2K [67]) provide
annotated target initialization sentences instead. Such language-initialized track-
ing datasets offer a convenient and intuitive way to locate the target for tracking.

Our SemTrack dataset provides not only the description and location infor-
mation of the target, it also contains the location information and classes of the
affiliated objects (among a wide diversity of 115), and types of interactions be-
tween the target and its affiliated objects. Thus, our large and diverse SemTrack
dataset shall facilitate the community to develop and evaluate various models
for comprehensive semantic tracking of the target.



6 Wang et al.

1) Target initialization sentence: “The adult in the middle”

2)             Target

3)        Interactions

Time

4) Affiliated 
Object

hold

catchhold

hold
serve

hold
hold

Fig. 2: (a) For each video in our SemTrack dataset, we annotate the target initial-
ization sentence that describes the target. We also annotate the bounding box of the
target, the bounding box of the affiliated objects of this target, and the interactions
between the target and affiliated objects over time. All the comprehensive information
forms the semantic trajectory of this target. (b) Distribution of object classes in terms
of number of instances.

2.2 Object Tracking Methods

With the rapid development and popularization of tracking-related applications,
the research direction of developing tracking algorithms with greater robustness
and accuracy has attracted widespread attention [53].

Existing tracking tasks and methods mainly only focus on tracking the lo-
cation information of the target. Many tracking methods consist of a two-stage
model architecture. For the first stage, to identify and localize the target, they
either require the input of the target’s bounding box in the first frame or
employ pre-trained object detectors (e.g ., Faster-RCNN [55] and YOLO se-
ries [8, 19, 37, 54]) to obtain the target’s bounding box. More recently, there are
some methods [9, 15, 16, 23, 40, 66, 67] that use target initialization sentence to
identify and localize the target instead. These are known as language-initialized
tracking methods. For the second stage, once the target is localized, the tar-
get’s bounding boxes across frames (i.e., trajectory) are associated using motion
models or appearance and re-identification models. Motion models employ se-
quential analysis tools such as particle filter [4], Kalman filter (e.g ., SORT [5],
ByteTrack [78]). In contrast, appearance models and re-identification models use
deep appearance similarities (e.g ., DeepSort [70], JDE [68], FairMOT [79], and
QDTrack [18]). Some other tracking methods do not use a two-stage model ar-
chitecture but use transformer-based architecture instead (e.g ., TransTrack [62],
TrackFormer [48], MOTR [74]).

Different from all these methods, we aim to track the target and obtain a
more comprehensive information about the target (i.e., its semantic trajectory).
Therefore, to address such a challenging Semantic Tracking task, we develop a
new method, SemTracker, to obtain its semantic trajectory. We believe that,
together with our proposed dataset SemTrack, our SemTracker method can pro-
mote further development of more intelligent Semantic Tracking algorithms.
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Fig. 3: Distribution of different interaction classes in terms of number of instances.

3 Our Proposed SemTrack Dataset

Our SemTrack dataset is the first large-scale Semantic Tracking dataset. It con-
tains 6961 videos in total, covering a wide range of 52 different interaction classes
with 115 different object classes spanning 10 different supercategories in 12
types of different scenes, ranging from indoor and outdoor scenes. To construct
the SemTrack dataset, the videos are selected from various publicly available
datasets capturing various types of activities and interactions: YFCC100M [64],
TAO [10], ImageNet-VidVRD [58], VidOR [57], HACS [81], AVA [21], GOT-
10K [26], and ILSVRC2016 [56]. 10 volunteers meticulously annotated the rich
annotations of both the target initialization sentence and bounding box to lo-
calize the target, as well as detailed semantic trajectory of the target for each
video over a period of 7 months, with the help of the existing annotations of
the above datasets. In other words, besides inputting text, users can also input
bounding box to initialize target when using our dataset, and this shall be useful
for different application scenarios. Tab. 1 summarizes the distinctive features of
our SemTrack dataset. Illustration examples of videos and annotations in our
SemTrack dataset are shown in Fig. 2a. More details of the dataset are provided
in Supplementary.

Different from existing tracking datasets, our SemTrack dataset contains an-
notations of a wide range of 52 interactions of target with affiliated
objects (115 different types), across 12 different types of scenes. These
interactions (Fig. 3) include various types of daily interactions of an individual
ranging from movement-related and daily activities (e.g ., pushing, driving) to
social interactions and display of affection (e.g ., waving, hugging). The scenes
comprise both indoor scenes (e.g ., cooking in the kitchen) and outdoor scenes
(e.g ., car racing in the desert, cycling in the mountain), and also interactions
with animals (e.g ., bullfighting in the stadium, horse-riding in an Olympics venue
etc.) and unique activities such as water sports in the river and the sea (e.g .,
water rafting, scuba diving). Having a diverse representation of interactions and
objects in a dataset that reflect the diversity in the real world is useful in de-
veloping and evaluating intelligent, robust, and generalizable tracking models
that are of great practical value to handle various complex real-world scenarios.
Besides this, our SemTrack dataset also contains the following characteristics:

Diverse object classes and unique target initialization sentence to
localize and initialize the target. The diversity in the real world is reflected in
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Fig. 4: Architecture of SemTracker model which consists of four modules: visual
grounding, object detection, interaction prediction, and object tracking. Using the first
frame of a video sequence and only the user’s language description of the target (i.e.,
target initialization sentence xl), the visual grounding module is used to localize the
target (i.e., automatically generate the red bounding boxes). For each frame of the
video sequence, objects are detected using the detection module (including a feature
extractor ΦV is and a detection head ΦDet). The location of the target in each frame is
obtained by matching between patches of the detected objects. The interaction predic-
tion module takes the information from multiple frames and adopts an LSTM structure
to predict the interactions between the target and its affiliated objects. The locations of
both the target and its affiliated objects across consecutive frames are then associated
in the tracking module ΦTrack. Details about architecture are provided in Supplemen-
tary.

the diverse representation of humans and objects (Fig. 2 b), which is important in
developing generalizable and robust models to localize and track targets. In total,
there are 115 different types of objects, including humans, animals, vehicles, and
home stuff. The various attributes (e.g ., color, size) of the target is uniquely and
manually described so that it can be precisely localized to initialize tracking.

Various scenes, views and camera angles. Taken at different vantage
points (e.g ., from Unmanned Aerial Vehicle, surveillance camera, panning cam-
era) and in 12 different types of scenes (e.g ., indoor scenes, such as stage perfor-
mances; outdoor scenes; sports scenes; and scenes with animals, including zoo
and safari), our SemTrack dataset comprehensively covers a wide range of com-
plex and challenging scenarios that are necessary to develop and evaluate robust
and accurate tracking models for the real world.

Complex illumination, occlusions, and various challenging condi-
tions. SemTrack includes videos that are taken under complex illumination and
lighting conditions (e.g ., dark or low light conditions), including illumination
changes (e.g ., spotlight and differently coloured stage light, sudden change of
lighting), partial occlusion, viewpoint changes (including zooming, panning),
abrupt slow-fast frame transition, continuous camera shaking, background blur,
and soft object focus. All of these challenging scenarios shall be able to encour-
age the community to develop advanced strategies to overcome these practical
challenges.
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4 Our Proposed Semantic Tracking Method

Existing object tracking tasks and models output the positional trajectory of
the target in a video sequence. Different from all these methods, we aim to track
the target and its semantic trajectory. More precisely, this model first takes in
a video sequence {I0, I1, ..., IT } and an input target initialization sentence xl

describing the target in I0 (e.g ., to track “the adult standing on the right side
who is playing basketball” as shown in Fig. 2a). The model then localizes this
target and outputs its semantic trajectory.

4.1 Model Architecture

To perform Semantic Tracking, we propose a new model architecture, i.e., Sem-
Tracker, which consists of a visual grounding module, an object detection mod-
ule, an interaction prediction module, and a multiple object tracking module.
Fig. 4 shows the model architecture of SemTracker.

Visual grounding module. The visual grounding module is used to locate
the target in the first frame of the video sequence. We follow TNL2K [67] and
SNLT [16] and use a pre-trained language model ΦLang (e.g ., BERT [29]) to
extract the language embedding from the input target initialization sentence xl

that describes the target object. The language embedding and the first frame of
the video are then used to localize the target.

Object detection module. The object detection module is utilized to de-
tect the affiliated objects that potentially have interactions with the target.
In this module, we follow YOLOX [19] and use the Feature Pyramid Network
(FPN) [44] backbone ΦV is to extract high-dimensional features ft from each in-
put frame It (t represents the current frame index). These features are then fed
into an object detection head ΦDet, which outputs the detected bounding boxes
bt,i and object classes ct,i for all the candidate affiliated objects in the t-th frame
(i represents the index of objects in the frame). To obtain more informative
representations of each detected object, we use RoI Align [25] ΦRoI to extract
intermediate features ft,i that correspond to the detected bounding boxes.

Interaction prediction module. The interaction prediction module pre-
dicts the interactions between the target and its affiliated objects. At frame
It, the target is determined by matching the output image patch of the visual
grounding module with the detected objects. The remaining detected objects
are designated as candidate affiliated objects.

Both the features of the target and features of the candidate affiliated ob-
jects are fed into a Convolutional Neural Network (CNN) to predict the type of
interaction between each pair. Intuitively, information in the preceding frames
can be valuable in predicting the interaction in the subsequent frames. Hence,
inspired by such observation, we use Long-Short Term Memory (LSTM) to take
intermediate features from multiple frames as input to predict the interaction.
Specifically, we concatenate the features of target to the features of the candi-
date affiliated objects in past K frames and then feed them to an LSTM net-
work. The LSTM network takes the concatenated features and produces a hidden
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state, which is then fed into a fully connected (FC) layer ΦInteract to predict the
interaction between objects in the current frame and determine which of the
candidate affiliated objects have interactions with the target. Those candidate
affiliated objects that have interactions with the target are now termed as the
affiliated objects.

Multiple object tracking module. The purpose of the multiple object
tracking module is to obtain the positional trajectories of both the target and
its affiliated objects. We adopt ByteTrack [78] for this module. Given the ob-
ject detection results of two consecutive frames (including bounding box bt−1,i,
bt,i, object class ct−1,i, ct,i, and features ft−1,i, ft,i), the object tracker ΦTrack

matches the detected objects across consecutive frames to recognize the identity
of each object and obtain the corresponding trajectories.

In summary, our SemTracker method takes in a video sequence and a target
initialization sentence as its input, and outputs the semantic trajectory of the
target.

4.2 Meta-learning of Semantic Tracking

For Semantic Tracking task, the model localizes and tracks the target and its in-
teractions with affiliated objects. Its performance may be influenced by the data
distribution of the data used during training [27]. In the real world, there can
be various scenarios with diverse data distributions that do not always match
the data distribution found in the training dataset. This can lead to a drop in
performance when the model is tested on different data distributions [7,77]. For
example, if the composition of target-interaction-affiliated object such as “adult
drink from bottle” occurs more frequently than “adult clean bottle” in the train-
ing set, then the model trained with this compositional bias will tend to directly
predict “drink from” when tracking the interaction between the target “adult”
and the affiliated object “bottle” during testing, even when the interaction is
actually “clean”. Hence, by considering the different data distributions of both
the object classes and types of interactions, we intend to optimize the model’s
performance by improving its generalization ability to diverse data distributions.

Meta Optimization Scheme. Meta-learning methods [22, 38, 52, 72] have
shown to be effective in improving the model’s generalization ability to new tasks,
domains, etc. by incorporating virtual testing during training. Inspired by such
learning-to-learn methods, we propose to improve the model’s generalization
ability to different data distributions with meta-learning scheme. Specifically, we
first split the training set into a virtual training set and a set of virtual testing
set, where each virtual testing set has different data distribution to the virtual
training set. For example, if the virtual training set contains more samples of
“adult drink from bottle”, the virtual testing set can contain more samples of
“adult clean bottle”. During model training, the model’s parameters are updated
using the virtual training set and tested using the virtual testing set. The loss
on the virtual testing set can offer a clear feedback for the model’s generaliza-
tion ability and guide the model to generalize to different data distributions.
Hence, through many iterations of mimicking different testing data distributions



SemTrack 11

w.r.t. both the object classes and interaction types during training, the model
is optimized to be more robust to different data distributions.

More concretely, we first split the training set Dtrain into a support set
Ds (i.e., virtual training set) and N query sets {Dq

n}Nn=1 (i.e., virtual testing
set), where each of the query set has a different distribution from each other
with respect to (w.r.t.) both the object classes and the types of interactions.
During training, we first perform the virtual training step and virtually update
the parameters θ of the model on the support set Ds with learning rate α via
conventional gradient descent:

θ′ = θ − α▽θ L(Ds; θ) (1)

where α denotes the learning rate of the virtual training. After that, we perform
virtual testing where the virtually updated parameters θ′ are evaluated on the
query sets {Dq

n}Nn=1 to test its generalization ability with diverse distributions
w.r.t. object classes and types of interactions. For each query set, we compute
the loss on the query set L(Dq

n; θ
′) with the virtually updated parameters θ′.

Intuitively, a model with good generalization ability towards various data distri-
butions would have low loss values on all query sets. Thus, the loss can be used
as a feedback and thus provide guidance for the model to generalize towards dif-
ferent data distributions. After the virtual testing, we optimize the parameters
θ with meta optimization such that after θ is updated on the support set, the
model can also generalize well (i.e., obtain low L(Dq

n; θ
′)) on the N query sets.

The objective of the optimization can be formulated as:

min
θ

[L(Ds; θ) +

N∑
n=1

L(Dq
n; θ

′)]

= min
θ

[L(Ds; θ) +

N∑
n=1

L(Dq
n; θ − α▽θ L(Ds; θ))]

(2)

where the first term indicates the general training performance, and the second
term reflects the generalization ability of the model with the virtually updated
parameters θ′ to different data distributions. In all, we update the model pa-
rameters θ as:

θ ← θ − β ▽θ [L(Ds; θ) +

N∑
n=1

L(Dq
n; θ − α▽θ L(Ds; θ))] (3)

where β denotes the learning rate of the overall optimization. By mimicking
different data distribution in the query sets and perform virtual training and
virtual testing, the model can be pushed to generalize towards diverse data
distributions.

Construction of the Support Set and Query Sets. The protocol for
such a dataset split is as follows: Initially, a part of the training set is randomly
extracted from Dtrain to form the support set Ds. The frequencies of object
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classes and types of interactions in Ds are calculated to obtain its data distri-
bution. Thereafter, we generate N query sets sequentially from the remaining
part of Dtrain. To maximize the differences between the m-th query set Dq

m and
previously constructed sets (i.e., the support set Ds and the previous (m − 1)
query sets {Dq

n}m−1
n=1 ), we select videos that maximize the sum of pairwise KL

divergence between the data distribution of current query set Dq
m and each of the

existing sets. In this way, we can construct a collection of query sets that have
diverse data distributions w.r.t. both object classes and types of interactions.

4.3 Our Proposed Evaluation Metric

In this work, we aim to obtain and evaluate the target’s semantic trajectory.
However, existing metrics of tracking tasks, such as Track-mAP [10] and HOTA
[46], only evaluate the estimation accuracy of the positional trajectory (i.e., posi-
tion of objects across multiple frames). Such metrics are not sufficient to evaluate
the model’s overall ability in predicting all the rich information in the seman-
tic trajectories. To evaluate the performance of Semantic Tracking methods, we
propose a new evaluation metric Semantic Tracking-mAP (ST-mAP).

Semantic Tracking-mAP. To calculate the accuracy of the predicted se-
mantic trajectory, we consider all the following criteria: (a) correctly identify
the target and correctly estimate its positional trajectory; (b) correctly identify
the affiliated (interacted) objects and correctly estimate their positional trajec-
tories; and (c) correctly predict the types of interactions between the target and
its affiliated objects for each frame.

In order to effectively evaluate all the aspects, we adapt the Track-mAP
metric [10] to develop a new metric, Semantic Tracking-mAP (ST-mAP). The
ground truth consists of the positional trajectories of the target and an affiliated
object, and the interactions between them. Similarly, the prediction is composed
of the positional trajectories of the target and an affiliated object, and the in-
teractions between them. We adopt the Hungarian algorithm [34] to match the
predicted tracks and the ground truth tracks. We follow the classical mean av-
erage precision (mAP) definition [46] to calculate our ST-mAP as Equation 4.

ST-mAP =
1

Nobj

Nobj∑
n=1

ST-APn (4)

where Nobj refers to the total number of object classes. For each object class,
the average precision (AP) of Semantic Tracking is calculated as indicated by
Equation 5.

ST-AP =
1

11

∑
r∈0,0.1,...,1.0

Pr(r) (5)

where Pr(r) is an interpolated precision that takes the maximum precision over
all recalls greater than r. More details about ST-mAP are provided in Supple-
mentary.
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5 Experimental Results

We perform experiments on our proposed SemTrack dataset using state-of-the-
art object detection (e.g ., YOLOX [19]) and tracking methods (e.g ., SORT [5],
DeepSort [70], and ByteTrack [78]). The dataset is split into training set, vali-
dation set, and testing set. In this paper, we evaluate the models on a subset of
the testing set as representatives especially focusing on human (e.g., adult and
baby). We release the split information in the dataset. More implementation
details are in the Supplementary.

5.1 Results of SemTracker Method

The object detector used in our SemTracker model is YOLOX [19] with 3 versions
(i.e., YOLOX-M, YOLOX-L, and YOLOX-X). The trackers used are SORT [5],
DeepSORT [70], and ByteTrack [78]. Tab. 2 shows the experimental results of
our framework using different detectors and trackers. The experimental results
demonstrate that the proposed framework exhibits the best performance when
utilizing the YOLOX-X detector and the ByteTrack tracker.

Table 2: Comparison of different models for SemTracker.

Setting Evaluation Metrics
Detector Tracker Track-mAP ↑ HOTA ↑ ST-mAP ↑

YOLOX-M Sort [5] 1.962 10.727 1.043
YOLOX-M DeepSort [70] 1.6489 11.341 1.364
YOLOX-M ByteTrack [78] 3.911 12.093 2.546
YOLOX-L Sort [5] 2.219 11.509 1.646
YOLOX-L DeepSort [70] 2.112 11.991 1.352
YOLOX-L ByteTrack [78] 4.076 13.051 2.938
YOLOX-X Sort [5] 2.039 11.746 1.241
YOLOX-X DeepSort [70] 1.978 11.969 1.230
YOLOX-X ByteTrack [78] 5.875 13.436 4.625

Similar to the observations seen in the results of other previous tracking
tasks [10,78], the performance of object tracking is affected by the performance
of the object detector. To investigate how the object detector affects the overall
performance of Semantic Tracking task, we provide models with the ground truth
bounding box coordinates and object classes in the first frame (i.e., in place of
an object detector). The evaluation results are shown in Tab. 3. It is observed
that by providing the model with the ground truth bounding box of the target in
the first frame, the model’s performance on each evaluation metric is increased
(by comparing Tab. 3 with Tab. 2). Therefore, using a more accurate object
detector can help improve the overall performance of Semantic Tracking.



14 Wang et al.

Table 3: Results of SemTracker that is provided with the ground truth bounding box
of the target in the first frame.

Tracker Evaluation Metrics
Track-mAP ↑ HOTA ↑ ST-mAP ↑

Sort [5] 3.394 12.544 2.461
DeepSort [70] 3.704 13.119 3.408
ByteTrack [78] 6.521 14.429 4.792

5.2 Results of SemTracker with Meta-learning

To demonstrate the generalization ability of our proposed method, we conduct
experiments with meta-learning, using the best settings obtained from using
YOLOX-X and ByteTrack as shown in Tab. 2.

We implement other classical methods for handling data distribution such
as the reweighting [24] and the focal loss [45], as well as the recent method
(GCLLoss [39]) for comparison. In Tab. 4, we observe that our proposed meta-
learning method outperforms our baseline method (SemTracker without meta-
learning) and other methods. Specifically, our method achieves an obvious im-
provement over our baseline method. This improvement demonstrates the effec-
tiveness of meta-learning in improving the performance of SemTracker. Addi-
tional experimental results are provided in Supplementary.

Table 4: Results of SemTracker with and without (w/o) meta-learning.

Method Evaluation Metrics
Track-mAP ↑ HOTA ↑ ST-mAP ↑

SemTracker w/o Meta-learning 5.875 13.436 4.625
SemTracker + Reweighting [24] 5.950 13.868 4.714
SemTracker + Focal Loss [45] 7.934 17.492 6.869
SemTracker + GCLLoss [39] 9.664 18.831 8.211
SemTracker + Meta-learning 10.656 18.854 8.668

6 Conclusion

Obtaining detailed information about the target and its semantic trajectory
is important for numerous applications. We create SemTrack, the first large-
scale, comprehensive, and challenging dataset, which consists of annotations of
the target’s semantic trajectory. We also propose SemTracker, a simple and
effective method, and incorporate a meta-learning approach to better handle
the challenges of this task. We also propose a new evaluation metric, ST-mAP,
and use it to evaluate our model. We believe that our work will inspire the
community to develop, adapt, and evaluate various types of approaches for the
Semantic Tracking task.
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