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S1 Comparison of Computational Complexity

In this section, we compare the computational complexity of transformer-based
model and our VideoMamba. The multi-head self-attention, which is the basic
building block of transformer [9], includes computation of the following scaled
dot-product attention:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (S1)

Since the dot-product attention requires calculating n× n attention matrix,
the complexity of self-attention is quadratic in input token length n. Therefore,
for the input video token with the size (nt·nh·nw, d), the computation complexity
of ViViT [1], which uses factorized spatio-temporal encoder, would be O((nh ·
nw)

2 + n2
t ). On the other hand, since our VideoMamba utilizes selective SSM

[5], our model achieves linear computational complexity of O(nh · nw · nt).

S2 Additional Delta Visualizations

To better understand VideoMamba’s ability to dynamically select relevant spatio-
temporal contexts, we provide additional examples from HMDB51 validation set
in Fig. S1, Fig. S2 and Fig. S3. These figures depict the original video sequences
alongside their corresponding deltas across multiple layers.
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Fig. S1: Delta visualizations on HMDB51 validation set. Darker regions correspond
to smaller delta values, indicating the model prioritizing information from previous
time steps, and brighter areas represent larger delta values, representing the model
placing greater emphasis on the current input. The GT label is “Eat”. As the net-
work goes deeper into the layers, the delta values decrease, which allows the model
to effectively filter out not directly related areas(e.g., upper padded areas) or frames
(e.g., initial three frames of layers 18 and 21) and focus on the elements necessary for
key parts(e.g., hand and tomato). The high delta values in the initial layers demon-
strate the model’s process of first understanding the overall scene and then selectively
focusing on important details later. Through delta value analysis, we can glean the
VideoMamba’s capability in performing efficient spatiotemporal reasoning.
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Fig. S2: Delta visualizations on HMDB51 validation set. The GT label is “Catch”.
Within deeper layers, the VideoMamba show a growing emphasis on extracting features
relevant to the class of interest (e.g., hand and ball).
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Fig. S3: Delta visualizations on HMDB51 validation set. The GT label is
“Cartwheel”.
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S3 Importance of Pretraining

Table S1: Comparing the effectiveness of ImageNet-1K and Kinetics-400 (K400) pre-
training on Something-Something V2 (SSV2) and HMDB51 (HMDB).

Pretrain SSV2 HMDB

− 44.0 18.1
ImageNet-1K 63.7 59.3

K400 63.9 68.6

As reported in previous work [2], the performance of video recognition model
depends considerably on pretraining. In our main experiments, we initialized our
models with ImageNet pretrained weights. In this section, using our base model,
we compare the effect of different pretraining datasets on performance, including
the experimental results trained from scratch.

Table S1 reports the Top-1 accuracy of differently pretrained models, on
Something-Something V2 [4] and HMDB51 [6] datasets. When training from
scratch, we trained the model for 100 epochs in Something-Something V2, and
200 epochs in HMDB51. We observe that training VideoMamba from scratch
results in much lower accuracy, especially in small dataset such as HMDB. We
also observe that pretraining on K400 leads to superior performance in HMDB,
and slight improvement on SSV2.
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S4 Architecture

S4.1 Architectural Details

Table S2: Architectural Details of VideoMamba.

stage VideoMamba Output Sizes

data stride 2×1×1 on K400 3×32×224×224

tubelet
Conv3d 2×16×16, 384,

stride 2×16×16
3136×384

encoder


linear 384 → 384 × 2

conv1d 384 × 2 → 384 × 2
ST-SSM 384 × 2 → 384 × 2

linear 384 × 2 → 384

× 24 3136×384

projector linear 384 → 400 (# labels) 400

Table S2 outlines the structure of the VideoMamba model, highlighting its
various stages from data input to the final projection. The dimensions are em-
phasized in violet.

Data Stage: The initial stage involves processing video data with a stride
of 2×1×1 on the K400 dataset. The output size is 3×32×224×224, indicating
the transformation of video frames into a tensor with 3 channels (color depth),
32 frames per sequence, and a spatial dimension of 224×224 pixels per frame.

Tubelet Stage: At this stage, a tubelet operation is applied 3d conv with
a kernel and stride of 2×16×16, producing an output with a dimension of
3136×384. This illustrates the extracted spatial-temporal features from the in-
put video frames, where 384 represents the feature vector length for each of the
3136 tubelets.

Encoder Stage: This stage, which is repeated 24 times as indicated, involves
a sequence of operations starting with a linear transformation from 384 to 384×2
(doubling the feature dimension), followed by a 1D convolution that maintains
the feature dimension at 384×2. Spatio-Temporal SSM (ST-SSM) processes these
features without altering the dimension, leading to a final linear transformation
that maps the features back to a dimension of 384. The output retains the format
of 3136×384, emphasizing the consistency in the model’s internal representation
of features.

Projector Stage: The final stage involves a linear transformation from a
384-dimensional feature vector to the number of labels required for classifica-
tion. This stage is for adapting the model’s learned representations to specific
tasks, such as video classification or action recognition. The number of labels is
dependent on the application and, thus 400 for K400 dataset in the table.
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S4.2 Positional Embedding
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Fig. S4: Initialization strategies for learnable positional embeddings in VideoMamba.
The figure illustrates three different approaches to modify pretrained image positional
embeddings (Pimage) for use in video data, which introduces an additional temporal
dimension (T ).

When employing learnable positional embeddings for video data, initializa-
tion plays an important role in leveraging pre-trained image model knowledge.
Unlike expanding, which technically generates replicated and discontinuous PE
for each frame, spatial interpolation (similar to image interpolation) can generate
continuous PE across frames. We assumed this continuously initialized PE might
provide additional temporal information for the model. Figure S4 illustrates the
methods we propose for adapting Pimage to video data. We propose several
initialization techniques for the learnable positional embedding P , starting from
the pretrained image positional embedding Pimage ∈ Rnh·nw×d, which represents
the special case of T = 1. Our proposed methods include:

Temporal Expansion: We replicate Pimage along the temporal dimension
nt times, effectively copying the spatial embeddings across the additional time
frames.

Spatial Interpolation: We interpolate Pimage in the spatial dimensions to
obtain embeddings in R(nh·nw×nt)×d, matching the spatial-temporal structure of
video data.

Embedding Dimension Interpolation: We interpolate Pimage in the em-
bedding dimension, expanding it to Rnh·nw×(d×nt) before reshaping, to integrate
temporal information.

Each method is designed to adapt the effective spatial embeddings from image
models to the spatio-temporal domain of video data.
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S5 Implementation Details

Table S3: Training setting for VideoMamba

config K400 SSV2 HMDB

optimizer AdamW
optimizer momentum β1, β2 = 0.9, 0.999

weight decay 0.05
learning rate schedule CosineAnealing

learning rate 3e-4
batch size 64

warmup epochs 1 1 5
total epochs 30 35 50
drop path 0.1

repeated augmentation no
RandAug [3] (9,0.5)

label smoothing [8] 0.1
flip augmentation yes no yes

In this section, we provide additional experimental details. Table S3 sum-
marizes the hyperparameters employed for all experiments. We opted for the
AdamW optimizer with cosine learning rate schedule. A consistent batch size
of 64 was maintained across all experiments. For the large-scale Kinetics-400
dataset, we leveraged two NVIDIA A100 GPUs. Conversely, for the smaller
Something-Something V2 (SSV2) and HMDB51 datasets, we employed eight
NVIDIA 3090 GPUs for training. We initialized all models with pre-trained
weights [10] obtained from the ImageNet dataset. We carefully re-implement
VideoSwin-T with the VideoSwin-B training strategy [7] for the SSV2 dataset
and the HMDB51 dataset, with the same augmentation strategy as ours.
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S6 Inference Speed
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Fig. S5: Comparison of Inference Speed (Throughput).

In Fig. S5, our model (black curves) demonstrates comparable or even faster
(×8) inference speed compared to transformer-based models, especially with
longer and higher-resolution videos.

S7 Long-Term Video Modeling

To further validate VideoMamba’s long-term modeling capabilities, we con-
ducted additional experiments on the Breakfast dataset, which contains longer
untrimmed videos. Our VideoMambaf64 model, using 64 input frames, achieves
state-of-the-art performance with 91.5% accuracy on Breakfast, surpassing all
previous methods.

Table S4: Long-Term Video Modeling Results on Breakfast.

Method Backbone Pretrain TOP-1

Timeception 3D-ResNet IN-1K+K400 71.3
GHRM I3D IN-1K+K400 75.5

Distant S. TimeSformer IN-21K+HTM 89.9
Turbof32 VideoMAE-B K400 86.8

ViS4merf32 Swin-B+SSM IN-21K+K600 88.2
LSMCLf64 Swin-B+SSM K600 90.1

Oursf32 Mamba IN-1K+K400 90.4
Oursf64 Mamba IN-1K+K400 91.5
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S8 Applicability to Other Video Tasks

In addition to action recognition, our additional experiments present strong per-
formance in action detection and temporal segmentation. This demonstrates
VideoMamba’s potential as a versatile and efficient backbone for various video
understanding tasks.

Action Detection. Compared to models with similar size, Tab. S5 shows
VideoMamba outperforms the transformer-based VideoSwin-T backbone on the
AVA action detection dataset, while requiring less computation (34 vs 44 GFLOPs).

Temporal Action Segmentation. Table S6 shows that integrating Video-
Mamba into the ASFormer model leads to improved performance on the GTEA
dataset, especially in terms of the F1 score and edit score.

Table S5: Action Detection on Results AVA 2.2.

Method Backbone GFLOPs (↓) mAP

CVRLf32 SlowOnly-R50 42 16.3
VideoMAEf16 ViT-S 57 22.5
VideoSwinf16 Swin-T 44 18.0

Oursf16 Mamba 34 22.1

Table S6: Action Segmentation Results on GTEA.

Method F1@{10,25,50} MoF Edit

BCN 88.5 87.1 77.3 79.8 84.4
MS-TCN++ 88.8 85.7 76.0 80.1 83.5
ASFormer 90.1 88.8 79.2 79.7 84.6

ASFormer w/ Ours 90.6 89.7 79.9 79.6 86.6
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