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1 Implementation Details

Training Details. We introduce a multi-stage training pipeline for reconstruct-
ing the geometry, UV mapping MLP, and a high-quality texture from multi-view
images captured from real-world scenes. Initially, we train vanilla 3D Gaussians
using a combination of the losses proposed in Sec. 4.3 to obtain an initial geom-
etry, written as:

LGS = L1 + Lmask + λssimLssim + λ01L01 + λn(Lnorm + Lsm). (1)

Here, λssim = 0.2, λ01 = 0.001 and λn = 0.1 are used to balance the loss compo-
nents. Following 3D-GS [3], we initialize the parameters of 3D Gaussians with
the point clouds produced by Structure-from-Motion (SfM) [5] techniques and
optimize them for 30K iterations. To ensure the stability of the optimization
process, we only apply the additional constraints L01, Lnorm and Lsm after 2K
iterations. We prune any semi-transparent 3D Gaussians with opacity values less
than 0.5 every 6K iterations. Furthermore, we flatten each 3D Gaussian along its
shortest axis by resetting the scaling value of the shortest axis as e−20 every 1K
iterations. Subsequently, we freeze the parameters of 3D Gaussians and render
depth maps for training the UV mapping MLP, utilizing the loss function LUV
introduced in Sec. 4.2. Finally, we reconstruct a high-quality texture from multi-
view images and finetune the parameters of 3D Gaussians using differentiable
texture mapping-based splatting. Owing to the highly under-constrained nature
of the parameter space for jointly optimizing the position of 3D Gaussians, the
UV mapping MLP, and the texture, we freeze the UV mapping MLP and opti-
mize the remaining parts. We supervise them with the loss function defined in
Sec. 4.3, written as:

L = LGS + λ(LnoSH
1 + λssimLnoSH

ssim ), (2)

where the hyperparameter λ = 2 is used to encourage most (especially view-
independent) appearance information to be stored in the texture. We start by
optimizing only the texture image for 10K iterations, followed by jointly learning
the parameters of 3D Gaussians and the texture for another 30K iterations.

† Corresponding authors.
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Fig. 1: Shadow-preserving texture swapping.

Network Architectures. We train a UV mapping network ϕ, which regresses
a 2D UV coordinate u ∈ R2 for each 3D point x ∈ R3 either on or close to the
underlying surface of the scene, and couple it with an inverse 3D-to-2D network
ϕ−1. We use Multi-Layer-Perceptrons (MLPs) to learn the functions ϕ and ϕ−1,
which consists of 4 linear layers with feature dimensions set as 128. Notably, we
only employ multi-resolution hash encoding [4] on the inverse function ϕ−1 to
ensure the local smoothness of the UV mapping ϕ, similar to NeuTex [7].

Shadow-preserving Texture Swapping. We employ a 2D texture to capture
the view-independent appearance of the 3D scene from multi-view images. No-
tably, the appearance consists of the base color and ambient occlusion of the
scene. To maintain the ambient occlusion during texture swapping, we follow
NeuTex [7] and apply an ambient mask to the new texture, namely shadow-
preserving texture swapping. Technically, let us denote the reconstructed texture
and the new texture as Tori ∈ RH×W×3 and Tnew ∈ RH×W×3, respectively. We
replace Tori with an altered version of Tnew, denoted as T ′

new ∈ RH×W×3, which
is given by:

T ′
new = Tnew × mean(min(Tori × 3, 1.0)), (3)

where mean(·) is the mean operation along the channel axis. Fig. 1 shows the
visual comparison between directly swapping with the texture image Tnew and
our method. Leveraging the ambient mask, our method can preserve the shadows
present in the original texture, thereby achieving photo-realistic results.

2 More Analysis

Number of Gaussians. We present a visual comparison between our method
and the vanilla 3D Gaussians under the same number of Gaussians to eval-
uate the improvement in representation power. As shown in Fig. 2, reducing
the number of 3D Gaussians leads to a minor degradation in visual quality for
scenes with rich textures when using our method, whereas 3D-GS [3] exhibits
a significant loss of appearance details. These findings demonstrate that our
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Fig. 2: Visual comparison with 3D-GS under the same number of 3D Gaussians. Please
zoom in for a better view.

Table 1: Ablation studies of our method on the DTU dataset

Method DTU
PSNR↑ L1↓ LPIPS↓ FPS

Ours 30.03 0.0135 0.1440 58
w.o. Pruning 30.39 0.0129 0.1310 31

proposed method significantly enhances the representational capabilities of each
3D Gaussian, ultimately improving the extensibility of 3D Gaussians to various
computing platforms.

Pruning Strategy. We employ a pruning strategy and opacity regularization
to remove 3D Gaussians with high transparency. Tab. 1 shows that ablating the
pruning strategy (w.o. Pruning) only leads to a minor improvement in average
metrics while increasing the geometry complexity and reducing the rendering
speed (31 FPS v.s. 58 FPS). Fig. 3 shows the visual comparison for texture
swapping. The pruning strategy can also deblur the view synthesis results for
high-contrast texture swapping, such as the chessboard.

Limitations. The visual quality of appearance editing results relies heavily on
the precision of UV mapping, which is dependent on the ray-Gaussian intersec-
tions described in Sec. 4.3 and the learned UV mapping MLP. The computation
of the intersections depends on the normal vectors of 3D Gaussians, which are
supervised by the pseudo ground truth normal maps derived from SfM [5] results
under the local planarity assumption. Consequently, for objects with complex
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Fig. 3: Ablation study of the pruning strategy during 3D Gaussian optimization
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Fig. 4: Failure cases. Due to the limited representational power of the UV mapping
MLP, our method fails to learn a uniform and reasonable texture space for objects that
have thin plates or holes, thereby hindering downstream applications.

geometry that do not satisfy the assumption or the orientations of 3D Gaussians
are not accurate enough ( Fig. 3), our method may produce sub-optimal view
synthesis results for texture swapping. Besides, we eliminate the positional en-
coding from the UV mapping MLP to ensure local smoothness, which inevitably
restricts the representation capability of the MLP. We additionally provide a fail-
ure case from the NeRF synthetic dataset in Fig. 4a, where our method cannot
differentiate the front face from the back, leading to the wrong texture values
and UV mapping. Furthermore, we define the 2D UV space as a unit spherical
domain, which poses challenges when dealing with 3D scenes containing multiple
objects, thin plates or holes, as shown in Fig. 4b. In such cases, the UV mapping
MLP struggles to generate accurate 2D coordinates, potentially hindering down-
stream applications. Representing the 2D UV space with multiple charts, such as
Nuvo [6], offers a potential solution to address the challenges posed by complex
geometries and multiple objects. However, multiple charts can also lead to dis-
continuities at the boundaries between charts, which may ultimately confound
the global appearance editing operation such as texture swapping.
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3 More Visual Results

As illustrated in Fig. 5, we present additional qualitative results of texture swap-
ping on real-world scenes from the DTU dataset [1] and the Omni3D dataset [2].
These results demonstrate the ability of our approach to generate photo-realistic
images under various textures while maintaining a consistent appearance across
different viewpoints.
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Fig. 5: More visual results for texture swapping with Texture-GS.
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