
Supplementary Material for
Fully Sparse 3D Occupancy Prediction

Haisong Liu1,2, Yang Chen1, Haiguang Wang1, Zetong Yang2, Tianyu Li2,
Jia Zeng2, Li Chen2, Hongyang Li2, and Limin Wang1,2

1 State Key Laboratory for Novel Software Technology, Nanjing University
2 Shanghai AI Lab

A Sparsification Methods

Table 1: Top-k vs.thresholding for sparsification.

Sparsification Method Value RayIoU Average FPS

Top-k 32000 34.0 17.3

Thresholding 0.6 34.1 16.6
Thresholding 0.7 34.2 17.3
Thresholding 0.8 33.9 18.3

In the main paper, we use topk-k to prune the empty voxels. However, such
k is specific to specific dataset and does not generalize to scenes with different
complexities. In this section, we substitute top-k with a thresholding method,
e.g. voxels scoring less than a certain threshold (e.g. 0.5) will be pruned. Thresh-
olding achieves similar performance to top-k (see Tab. 1), and has the ability to
generalize to different scenes.

B The Effect of Training with Visible Masks

Interestingly, we observed a peculiar phenomenon. Under the traditional voxel-
level mIoU metric, methods can significantly benefit from disregarding the non-
visible voxels during training. These non-visible voxels are indicated by a binary
visible mask provided by the Occ3D-nuScenes dataset. However, we find that
this strategy actually impairs performance under our new RayIoU metric. For
instance, we train two variants of BEVFormer: one uses the visible mask during
training, and the other does not. As shown in Tab. 4, the former scores 15 points
higher than the latter on the voxel-based mIoU, but it scores 1 point lower on
RayIoU. This phenomenon is also observed on FB-Occ.

To explore this phenomenon, we present the per-class RayIoU in Tab. 4. The
table reveals that using the visible mask during training enhances performance
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Table 4: To verify the effect of the visible mask, wo provide per-class RayIoU of
BEVFormer and FB-Occ on the validation split of Occ3D-nuScenes. † uses the visible
mask during training. We find that training with visible mask hurts the performance
of ground classes such as drivable surface, terrian and sidewalk.
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BEVFormer 33.7 5.0 42.2 18.2 55.2 57.1 22.7 21.3 31.0 27.1 30.7 49.4 58.4 30.4 29.4 31.7 36.3 26.5
BEVFormer † 32.4 6.4 44.8 24.0 55.2 56.7 21.0 29.8 33.5 26.8 27.9 49.5 45.8 18.7 22.4 18.5 39.1 29.8
FB-Occ 35.6 10.5 44.8 25.6 55.6 51.7 22.6 27.2 34.3 30.3 23.7 44.1 65.5 33.3 31.4 32.5 39.6 33.3
FB-Occ † 33.5 5.0 44.9 26.2 59.7 55.1 27.9 29.1 34.3 29.6 29.1 50.5 44.4 22.4 21.5 19.5 39.3 31.1

Height Map (GT) Height Map (FB wo/ mask) Height Map (FB w/ mask) Error Map (FB wo/ mask) Error Map (FB w/ mask)
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Fig. 10: Why does the performance of background classes, such as drivable surfaces,
deteriorate when using the visible mask during training? We provide a visualization of
the drivable surface as predicted by FB-Occ. Here, “FB w/ mask” and “FB wo/ mask”
denote training with and without the visible mask, respectively. We observe that “FB
w/ mask” tends to predict a higher and thicker road surface, resulting in significant
depth errors along a ray. In contrast, “FB wo/ mask” predicts a road surface that is
both accurate and consistent.
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for most foreground classes such as bus, bicycle, and truck. However, it negatively
impacts background classes like drivable surface, terrain, and sidewalk.

This observation prompts a further question: why does performance dete-
riorate for background classes? To address this, we offer a visual comparison
of depth errors and height maps of the predicted drivable surface from FB-
Occ, both with and without the use of visible mask during training, in Fig.
10. The figure illustrates that training with visible mask results in a thicker
and higher ground representation, leading to substantial depth errors in distant
areas. Conversely, models trained without the visible mask predict depth with
greater accuracy.

From these observations, we derive some valuable insights: ignoring non-
visible voxels during training benefits foreground classes by resolving the issue
of ambiguous labeling of unscanned voxels. However, it also compromises the
accuracy of depth estimation, as models tend to predict a thicker and closer
surface. We hope that our findings will benefit future research.

C Panoptic Occupancy Prediction

Thanks to the mask transformer, our SparseOcc can produce panoptic occupancy
prediction by simply replacing the semantic queries with instance queries.

Ground Truth Preparation. To evaluate our method, we utilize the ground-
truth object bounding boxes from the 3D detection task to generate the panop-
tic occupancy ground truth. First, we define eight instance categories (includ-
ing car, truck, construction vehicle, bus, trailer, motorcycle, bicycle,
pedestrian) and ten staff categories (including terrain, manmade, vegetation,
etc). Next, we identify each instance segment by grouping the voxels inside the
box based on an existing semantic occupancy benchmark Occ3D-nuScenes.

However, we observe that using the original size of the box for grouping may
cause some boundary voxels being missed due to the compactness of the box.
Enlarging the box (such as 1.2x) leads to excessive overlap between boxes. To
address these issues, we designed a two-stage grouping scheme. In the first stage,
we use the original size of the box for grouping. Then, for voxels that have not
been assigned to a specific instance, we select the closest box and assign it. This
scheme effectively resolves the problems of boundary omission and box overlap.

Evaluation Metrics. We design RayPQ based on the well-known panoptic quality
(PQ) metric, which is defined as the multiplication of segmentation quality (SQ)
and recognition quality (RQ):

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
segmentation quality (SQ)

× |TP |
|TP |+ 1

2 |FP |+ 1
2 |FN |︸ ︷︷ ︸

recognition quality (RQ)

, (1)

where the definition of true positive (TP) is the same as that in RayIoU. The
threshold of IoU between prediction p and ground-truth g is set to 0.5.
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Table 5: Panoptic occupancy prediction performance on Occ3D-nuScenes.

Method Backbone Input Size Epochs RayPQ RayPQ1m RayPQ2m RayPQ4m

SparseOcc R50 704 × 256 24 14.1 10.2 14.5 17.6

Table 6: Experiments on enhancing sparsity by removing certain background cate-
gories (denoted by †). The RayIoU* metrics is only calculated on categories that are
not ignored. By enhancing sparsity, the inference speed of SparseOcc can be further
improved with negligible performance loss.

Method Backbone Input Size Epochs Top-k RayIoU* FPS

SparseOcc R50 704 × 256 24 32000 30.1 24.0
SparseOcc R50 704 × 256 24 24000 29.8 24.8
SparseOcc R50 704 × 256 24 16000 28.8 26.0

SparseOcc † R50 704 × 256 24 32000 30.1 24.0
SparseOcc † R50 704 × 256 24 24000 30.0 24.8
SparseOcc † R50 704 × 256 24 16000 29.4 26.0

Results. In Tab. 5, we report the performance of SparseOcc on panoptic occu-
pancy benchmark. Similar to RayIoU, we calculate RayPQ under three distance
thresholds: 1, 2 and 4 meters. SparseOcc achieves an averaged RayPQ of 14.1.
The visualizations are presented in the main paper (Fig. 9).

D Enhancing Sparsity

As mentioned in the main paper, the majority of non-free occupancy data per-
tains to the background geometry, such as the road surface. In practice, the
occupancy of road surface can be effectively substituted with High-Definition
Map (HD Map) or online mapping techniques. Thus, the sparsity of the scene
can be further enhanced by removing certain background categories, leading to
faster inference speed with negligible performance loss. This is also an advantage
of SparseOcc compared to the dense counterparts, because the dense methods
will not speed up as the sparsity of the scene increases.

Settings. We train a variant of the model that the voxels belonging to the
drivable surface and terrian in the ground truth are treated as free during
training (denoted by † in Tab. 6). For fair evaluation, all models are evaluated
on the categories that are not ignored.

Results. As shown in Tab. 6, the performance of baseline (modeling all cate-
gories) drops notably as the top-k decreases. This is reasonable as the number of
voxels is not enough to express the entire scene. In contrast, if we ignore certain
background categories, the performance loss is negligible (only 0.7 RayIoU) even
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when top-k is reduced by half. This means the inference speed of SparseOcc can
be further improved by enhancing sparsity, while for the dense counterparts it
is not possible.

E Visualization of 3D Reconstruction

Fig. 11: Visualization of 3D reconstruction results from sparse voxel decoder.

In Fig. 11, we visualize the reconstructed 3D geometry from sparse voxel
decoder. SparseOcc can reconstruct fine-grained details from camera-only inputs.
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