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Abstract. Occupancy prediction plays a pivotal role in autonomous
driving. Previous methods typically construct dense 3D volumes, ne-
glecting the inherent sparsity of the scene and suffering high computa-
tional costs. To bridge the gap, we introduce a novel fully sparse oc-
cupancy network, termed SparseOcc. SparseOcc initially reconstructs
a sparse 3D representation from visual inputs and subsequently pre-
dicts semantic/instance occupancy from the 3D sparse representation
by sparse queries. A mask-guided sparse sampling is designed to en-
able sparse queries to interact with 2D features in a fully sparse man-
ner, thereby circumventing costly dense features or global attention. Ad-
ditionally, we design a thoughtful ray-based evaluation metric, namely
RayIoU, to solve the inconsistency penalty along depths raised in tra-
ditional voxel-level mIoU criteria. SparseOcc demonstrates its effective-
ness by achieving a RayIoU of 34.0, while maintaining a real-time infer-
ence speed of 17.3 FPS, with 7 history frames inputs. By incorporating
more preceding frames to 15, SparseOcc continuously improves its per-
formance to 35.1 RayIoU without bells and whistles. Code is available
at https://github.com/MCG-NJU/SparseOcc.

Keywords: 3D Occupancy Estimation · Semantic Scene Completion ·
3D Reconstruction · Autonomous Driving

1 Introduction

Vision-centric 3D occupancy prediction [1] focuses on partitioning 3D scenes into
structured grids from visual images. Each grid is assigned a label indicating if
it is occupied or not. This task offers more geometric details than 3D detection
and produces an alternative representation to LiDAR [22,31,32,61–64].

Existing methods [16,27,28,45,58] typically construct dense 3D features yet
suffer from computational overhead (e.g ., 2 ∼ 3 FPS on Tesla A100). However,
dense representations are not necessary for occupancy predictions. We statistic
the geometry sparsity and find that more than 90% of the voxels are empty.
This manifests a large room in occupancy prediction acceleration by exploiting
the sparsity. Some works [19,26] explore the sparsity of 3D scenes, but they still
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Fig. 1: (a) SparseOcc reconstructs a sparse 3D representation from camera-only inputs
by a sparse voxel decoder, and then estimates the mask and label of each segment via a
set of sparse queries. (b) Performance comparison on the validation split of Occ3D-nus.
FPS is measured on a Tesla A100 with the PyTorch fp32 backend.

rely on sparse-to-dense modules for dense predictions. This inspires us to seek a
pure sparse occupancy network without any dense design.

In this paper, we propose SparseOcc, the first fully sparse occupancy net-
work. As depicted in Fig. 1 (a), SparseOcc includes two steps. First, it leverages
a sparse voxel decoder to reconstruct the sparse geometry of a scene in a coarse-
to-fine manner. This only models non-free regions, saving computational costs
significantly. Second, we design a mask transformer with sparse semantic/in-
stance queries to predict masks and labels of segments from the sparse space.
The mask transformer not only improves performance on semantic occupancy
but also paves the way for panoptic occupancy. A mask-guided sparse sampling
is designed to achieve sparse cross-attention in the mask transformer. As such,
our SparseOcc fully exploits the sparse property and gets rid of any dense design
like dense 3D features, sparse-to-dense modules, and global attention.

Besides, we notice flaws in popular voxel-level mean Intersection-over-Union
(mIoU) metrics for occupancy evaluation and further design a ray-level evalu-
ation, RayIoU, as the solution. The mIoU criterion is an ill-posed formulation
given the ambiguous labeling of unscanned voxels. Previous methods [50] relieve
this issue by only evaluating observed areas but raise extra issues in inconsis-
tency penalty along depths. Instead, RayIoU addresses the two aforementioned
issues simultaneously. It evaluates predicted 3D occupancy volume by retrieving
depth and category predictions of designated rays. To be specific, RayIoU casts
query rays into predicted 3D volumes and decides true positive predictions as
the ray with the correct distance and class of its first touched occupied voxel
grid. This formulates a more fair and reasonable criterion.

Thanks to the sparsity design, SparseOcc achieves 34.0 RayIoU on Occ3D-
nus [50], while maintaining a real-time inference speed of 17.3 FPS (Tesla A100,
PyTorch fp32 backend), with 7 history frames inputs. By incorporating more
preceding frames to 15, SparseOcc continuously improves its performance to 35.1
RayIoU, achieving state-of-the-art performance without bells and whistles. The
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comparison between SparseOcc with previous methods in terms of performance
and efficiency is shown in Fig. 1 (b).

We summarize our contributions as follows:

1. We propose SparseOcc, the first fully sparse occupancy network without
any time-consuming dense designs. It achieves 34.0 RayIoU on Occ3D-nus
benchmark with an inference speed of 17.3 FPS.

2. We present RayIoU, a ray-wise criterion for occupancy evaluation. By query-
ing rays to 3D volume, it solves the ambiguous penalty issue for unscanned
free voxels and the inconsistent depth penalty issue in the mIoU metric.

2 Related Work

Camera-based 3D Occupancy Prediction. Occupancy Networks were originally
proposed by Mescheder et al . [37, 42], focusing on continuous object repre-
sentations in 3D space. Recent variations in occupancy networks [1, 4, 12, 45,
50, 55, 57, 59] mostly draw inspiration from Bird’s Eye View (BEV) percep-
tion [15–18,23,24,27,33–35,54,56,60] and predicts voxel-level semantic informa-
tion from image inputs. For instance, MonoScene [4] completes scene occupancy
through a 2D and a 3D UNet [43] connected by a sight projection module. Sur-
roundOcc [58] proposes a coarse-to-fine architecture. However, the large number
of voxel queries is computationally heavy. TPVFormer [19] proposes using tri-
perspective view representations to supplement vertical structural information,
but this inevitably leads to information loss. VoxFormer [26] initializes sparse
queries based on monocular depth prediction. Nevertheless, VoxFormer is not
fully sparse as it still requires a sparse-to-dense MAE [13] module to complete the
scene. Some methods emerged in the CVPR 2023 occupancy challenge [10,28,40],
but none of them exploits a fully sparse design. In this paper, we make the first
step to explore the fully sparse architecture for 3D occupancy prediction from
camera-only inputs.

Sparse Architectures for 3D Vision. Sparse architectures find widespread adop-
tion in LiDAR-based reconstruction [48] and perception [8,61,62,64], leveraging
the inherent sparsity of point clouds. However, when it comes to vision-to-3D
tasks, a direct adaptation is not feasible due to the absence of point cloud inputs.
A prior work, SparseBEV [33], proposes a fully sparse architecture for 3D object
detection. Nevertheless, directly adapting this approach is non-trivial because
3D object detection focuses on a sparse set of objects, whereas 3D occupancy
requires dense predictions for each voxel. Consequently, designing a fully sparse
architecture for 3D occupancy remains a challenging task.

End-to-end 3D Reconstruction from Posed Images. As a related task to 3D
occupancy prediction, 3D reconstruction recovers the 3D geometry from multiple
posed images. Recent methods focus on more compact and efficient end-to-end
3D reconstruction pipelines [2, 11, 39, 46, 47]. Atlas [39] extracts features from
multi-view input images and maps them to 3D space to construct the truncated
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Fig. 2: SparseOcc is a fully sparse architecture since it neither relies on dense 3D fea-
ture, nor has sparse-to-dense and global attention operations. The sparse voxel decoder
reconstructs the sparse geometry of the scene, consisting of K voxels (K ≪ W×H×D).
The mask transformer then uses N sparse queries to predict the mask and label of each
segment. SparseOcc can be easily extended to panoptic occupancy by replacing the se-
mantic queries with instance queries.

signed distance function [9]. NeuralRecon [47] directly reconstructs local surfaces
as sparse TSDF volumes and uses a GRU-based TSDF fusion module to fuse
features from previous fragments. VoRTX [46] utilizes transformers to address
occlusion issues in multi-view images.

Mask Transformer. Recently, unified segmentation models have been widely
studied to handle semantic and instance segmentation concurrently. Cheng et
al . first propose MaskFormer [7] for unified segmentation in terms of model
architecture, loss functions, and training strategies. Mask2Former [6] then intro-
duces masked attention, with restricted receptive fields on instance masks, for
better performance. Later on, Mask3D [44] successfully extends the mask trans-
former for point cloud segmentation with state-of-the-art performance. Open-
Mask3D [49] further achieves the open-vocabulary 3D instance segmentation
task and proposes a model for zero-shot 3D segmentation.

3 SparseOcc

SparseOcc is a vision-centric occupancy model that only requires camera inputs.
As shown in Fig. 2, SparseOcc has three modules: an image encoder consisting of
an image backbone and FPN [30] to extract 2D features from multi-view images;
a sparse voxel decoder (Sec. 3.1) to predict sparse class-agnostic 3D occupancy
with correlated embeddings from the image features; a mask transformer decoder
(Sec 3.2) to distinguish semantics and instances in the sparse 3D space.

3.1 Sparse Voxel Decoder

Since 3D occupancy ground truth [45, 50, 55, 58] is a dense volume with dimen-
sions W ×H ×D (e.g ., 200×200×16), existing methods typically build a dense
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Fig. 3: The sparse voxel decoder employs a coarse-to-fine pipeline with three layers.
Within each layer, we utilize a transformer-like architecture for 3D-2D interaction.
At the end of every layer, the voxel resolution is upsampled by a factor of 2×, and
probabilities of voxel occupancy are estimated.

3D feature of shape W ×H ×D × C, but suffer from computational overhead.
In this paper, we argue that such dense representation is not necessary for occu-
pancy prediction. As in our statistics, we find that over 90% of the voxels in the
scene are free. This motivates us to explore a sparse 3D representation that only
models the non-free areas of the scene, thereby saving computational resources.

Overall architecture. Our designed sparse voxel decoder is shown in Fig. 3. In
general, it follows a coarse-to-fine structure but only models the non-free regions.
The decoder starts from a set of coarse voxel queries equally distributed in the
3D space (e.g ., 25×25). In each layer, we first upsample each voxel by 2×, e.g ., a
voxel with size d will be upsampled into 8 voxels with size d

2 . Next, we estimate
an occupancy score for each voxel and conduct pruning to remove useless voxel
grids. Here we have two approaches for pruning: one is based on a threshold (e.g .,
only keeps score > 0.5); the other is by top-k selection. In our implementation,
we simply keep voxels with top-k occupancy scores for training efficiency. k is a
dataset-related parameter, obtained by counting the maximum number of non-
free voxels in each sample at different resolutions. The voxel tokens after pruning
will serve as the input for the next layer.

Detailed design. Within each layer, we use a transformer-like [52] architecture to
handle voxel queries. The concrete architecture is inspired by SparseBEV [33],
a detection method using a sparse scheme. To be specific, in layer l with Kl−1

voxel queries described by 3D locations and a C-dim content vector, we first
use self-attention to aggregate local and global features for those query voxels.
Then, a linear layer is used to generate 3D sampling offsets {(∆xi, ∆yi, ∆zi)}
for each voxel query from the associated content vector. These sampling offsets
are utilized to transform voxel queries to obtain reference points in global coor-
dinates. We finally project those sampled reference points to multi-view image
space for integrating image features by adaptive mixing [20,51]. In summary, our
approach differs from SparseBEV by shifting the query formulation from pillars
to 3D voxels. Other components such as self attention, adaptive sampling and
mixing are directly borrowed.
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Temporal modeling. Previous dense occupancy methods [16, 27] typically warp
the history BEV/3D feature to the current timestamp, and use deformable at-
tention [65] or 3D convolutions to fuse temporal information. However, this ap-
proach is not applicable in our case, given our sparse 3D features. To handle
this, we leverage the flexibility of the aforementioned global sampled reference
points by warping them to previous timestamps to sample history multi-view
image features. The sampled multi-frame features are stacked and aggregated
by adaptive mixing so as for temporal modeling.

Supervision. We compute loss for sparse voxels from each layer. We use binary
cross entropy (BCE) loss as the supervision, given that we are reconstructing
a class-agnostic sparse occupancy space. Only the kept sparse voxels are super-
vised, while the discarded regions during pruning in earlier stages are ignored.

Moreover, due to the severe class imbalance, the model can be easily domi-
nated by categories with a large proportion, such as the ground, thereby ignoring
other important elements in the scene, such as cars, people, etc. Therefore, vox-
els belonging to different classes are assigned with different loss weights. For
example, voxels belonging to class c are assigned with a loss weight of:

wc =

∑C
i=1 Mi

Mc
, (1)

where Mi is the number of voxels belonging to the i-th class in ground truth.

3.2 Mask Transformer

Our mask transformer is inspired by Mask2Former [6], which uses N sparse
semantic/instance queries decoupled by binary mask queries Qm ∈ [0, 1]N×K

and content vectors Qc ∈ RN×C . The mask transformer consists of three steps:
multi-head self attention (MHSA), mask-guided sparse sampling, and adaptive
mixing. MHSA is used for the interaction between different queries as the com-
mon practice. Mask-guided sparse sampling and adaptive mixing are responsible
for the interaction between queries and 2D image features.

Mask-guided sparse sampling. A simple baseline of mask transformer is to use
the masked cross-attention module in Mask2Former. However, it attends to all
positions of the key, with unbearable computations. Here, we design a simple
alternative. We first randomly select a set of 3D points within the mask predicted
by the previous (l− 1)-th Transformer decoder layer. Then, we project those 3D
points to multi-view images and extract their features by bilinear interpolation.
Besides, our sparse sampling mechanism makes the temporal modeling easier by
simply warping the sampling points (as done in the sparse voxel decoder).

Prediction. For class prediction, we apply a linear classifier with a sigmoid acti-
vation based on the query embeddings Qc. For mask prediction, the query em-
beddings are converted to mask embeddings by an MLP. The mask embeddings
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M ∈ RQ×C have the same shape as query embeddings Qc and are dot-producted
with the sparse voxel embeddings V ∈ RK×C to produce mask predictions. Thus,
the prediction space of our mask transformer is constrained to the sparsified 3D
space from the sparse voxel decoder, rather than the full 3D scene. The mask
predictions will serve as the mask queries Qm for the next layer.

Supervision. The reconstruction result from the sparse voxel decoder may not
be reliable, as it may overlook or inaccurately detect certain elements. Thus,
supervising the mask transformer presents certain challenges since its predictions
are confined within this unreliable space. In cases of missed detection, where
some ground truth segments are absent in the predicted sparse occupancy, we
opt to discard these segments to prevent confusion. As for inaccurately detected
elements, we simply categorize them as an additional “no object” category.

Loss Functions. Following MaskFormer [7], we match the ground truth with the
predictions using Hungarian matching. Focal loss Lfocal is used for classification,
while a combination of DICE loss [38] Ldice and BCE mask loss Lmask is used
for mask prediction. Thus, the total loss of SparseOcc is composed of:

L = Lfocal + Lmask + Ldice + Locc, (2)

where Locc is the loss of sparse voxel decoder.

4 Ray-level mIoU

4.1 Revisiting the Voxel-level mIoU

The Occ3D dataset [50], along with its proposed evaluation metrics, are widely
recognized as benchmarks in this field. The ground truth occupancy is recon-
structed from LiDAR point clouds, and the mean Intersection over Union (mIoU)
at the voxel level is employed to assess performance. Due to factors such as dis-
tance and occlusion, accumulated LiDAR point clouds are not perfect. Some ar-
eas unscanned by LiDAR are marked as free, resulting in fragmented instances.
This raises the problem of label inconsistency. To solve this problem, Occ3D uses
a binary visible mask that indicates whether a voxel is observed in the current
camera view. Only the observed voxels contribute to evaluation.

However, we found that solely calculating mIoU on the observed voxel po-
sitions remains vulnerable and can be hacked by predicting a thicker surface.
Dense methods (e.g ., BEVFormer [27]) can easily achieve this by training with
the visible mask. During training, the area behind the surface lacks supervision,
causing the model to fill it with duplicated predictions, resulting in a thicker
surface. As an example, consider BEVFormer, which generates a thick and noisy
surface when trained with the visible mask (see Fig. 4). Despite this, its perfor-
mance exhibits an unreasonably inflated improvement (+5∼15 mIoU) under the
current evaluation protocol.
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Fig. 4: Visualization of the discrepancy between qualitative and quantitative results.
We observe that training existing dense occupancy methods (e.g . BEVFormer) with a
visible mask results in a thick surface, leading to an unreasonably inflated improvement
in the current mIoU metrics. In contrast, our new RayIoU metrics provide a more
accurate reflection of model performance.

The misalignment between qualitative and quantitative results is caused by
the inconsistent penalty along the depth direction. A toy example in Fig. 5
reveals several issues with the current evaluation metrics:

1. If the model fills all areas behind the surface, it inconsistently penalizes depth
predictions. The model can obtain a higher IoU by filling all areas behind
the surface and predicting a closer depth. This thick surface issue is very
common in models trained with visible masks or 2D supervision.

2. If the predicted occupancy represents a thin surface, the penalty becomes
overly strict. Even a deviation of just one voxel results in an IoU of zero.

3. The visible mask only considers the visible area at the current moment,
thereby reducing 3D occupancy to a depth estimation task with categories
and overlooking the scene completion ability.

4.2 Mean IoU by Ray Casting

To address the above issues, we propose a new metric: Ray-level mIoU (RayIoU
for short). In RayIoU, the set elements are query rays rather than voxels. We em-
ulate LiDAR behavior by projecting query rays into the predicted 3D occupancy
volume. For each query ray, we compute the distance it travels before intersecting
any surface and retrieve the corresponding class label. We then apply the same
procedure to the ground-truth occupancy to obtain the ground-truth depth and
class label. In case a ray does not intersect with any voxel present in the ground
truth, it will be excluded from the evaluation process.
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Fig. 5: Illustration of inconsistent depth penalties caused by current metrics. Consider
a scenario where we have a wall in front of us, with a ground-truth distance of d and
a thickness of dv. When the prediction has a thickness of dp ≫ dv, we encounter an
inconsistent penalty along depth. Specifically, if the predicted wall is dv farther than
the ground truth (total distance d+dv), its IoU will be zero. Conversely, if the predicted
wall is dv closer than the ground truth (total distance d− dv), the IoU remains at 0.5.
This occurs because all voxels behind the surface are filled with duplicated predictions.
Similarly, when the predicted depth is d− 2dv, the resulting IoU is 1

3
, and so forth.

(a) Simulating LiDAR (b) Equal-distant resampling (c) Temporal casting

Fig. 6: Covered area of RayIoU. (a) The raw LiDAR ray samples are unbalanced at
different distances. (b) We resample the rays to balance the weight on distance. (c) To
investigate the performance of scene completion, we propose evaluating occupancy in
the visible area on a wide time span, by casting rays on visited waypoints.

As shown in Fig. 6 (a), the original LiDAR rays in a real dataset tend to be
unbalanced from near to far. Thus, we resample the LiDAR rays to achieve a
balanced distribution across different distances (Fig. 6 (b)). In the near field, we
modify the LiDAR ray channels to achieve equal-distant spacing when projected
onto the ground plane. In the far field, we increase the angular resolution of
the ray channels to ensure a more uniform data density across varying ranges.
Moreover, our query ray can originate from the LiDAR position at the current,
past, or future moments of the ego path. Temporal casting (Fig. 6 (c)) allows us
to evaluate scene completion performance while maintaining a well-posed task.

A query ray is classified as a true positive (TP) if the class labels coincide
and the L1 error between the ground-truth depth and the predicted depth is less
than a certain threshold (e.g ., 2m). Let C be the number of classes,

RayIoU =
1

C

C∑
c=1

TPc

TPc + FPc + FNc
, (3)
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Table 1: 3D occupancy prediction performance on Occ3D-nuScenes [50]. We use
RayIoU to compare our SparseOcc with other methods. “8f” and “16f” mean fusing
temporal information from 8 or 16 frames. SparseOcc outperforms all existing meth-
ods under a weaker setting.

Method Backbone Input Size Epoch RayIoU RayIoU1m,2m,4m mIoU FPS

BEVFormer (4f) [27] R101 1600×900 24 32.4 26.1 32.9 38.0 39.2 3.0
RenderOcc [40] Swin-B 1408×512 12 19.5 13.4 19.6 25.5 24.4 -
SimpleOcc [12] R101 672×336 12 22.5 17.0 22.7 27.9 31.8 9.7
BEVDet-Occ (2f) [15] R50 704×256 90 29.6 23.6 30.0 35.1 36.1 2.6
BEVDet-Occ-Long (8f) R50 704×384 90 32.6 26.6 33.1 38.2 39.3 0.8
FB-Occ (16f) [28] R50 704×256 90 33.5 26.7 34.1 39.7 39.1 10.3

SparseOcc (8f) R50 704×256 24 34.0 28.0 34.7 39.4 30.1 17.3
SparseOcc (16f) R50 704×256 24 35.1 29.1 35.8 40.3 30.6 12.5
SparseOcc (16f) R50 704×256 48 36.1 30.2 36.8 41.2 30.9 12.5

where TPc, FPc and FNc correspond to the number of true positive, false posi-
tive, and false negative predictions for class ci.

RayIoU addresses all three of the aforementioned problems:

1. Since the query ray calculates the distance to the first voxel it touches, the
model cannot obtain a higher IoU by predicting a thicker surface.

2. RayIoU determines true positives based on a distance threshold, which mit-
igates the overly strict nature of voxel-level mIoU.

3. The query ray can originate from any position in the scene. This flexibility
allows RayIoU to consider the model’s scene completion ability, preventing
the reduction of occupancy estimation to mere depth prediction.

5 Experiments

We evaluate our model on the Occ3D-nus [50] dataset. Occ3D-nus is based on
the nuScenes [3] dataset, which consists of large-scale multimodal data collected
from 6 surround-view cameras, 1 lidar and 5 radars. The dataset has 1000 videos
and is split into 700/150/150 videos for training/validation/testing. Each video
has roughly 20s duration and the key samples are annotated every 0.5s.

We use the proposed RayIoU to evaluate the semantic segmentation perfor-
mance. The query rays originate from 8 LiDAR positions of the ego path. We
calculate RayIoU under three distance thresholds: 1, 2 and 4 meters. The final
ranking metric is averaged over these distance thresholds.

5.1 Implementation Details

We implement our model using PyTorch [41]. Following previous methods, we
adopt ResNet-50 [14] as the image backbone. The mask transformer consists of
3 layers with shared weights across different layers. In our main experiments,
we employ semantic queries where each query corresponds to a semantic class,
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Table 2: Sparse voxel decoder vs. dense voxel decoder. Our sparse voxel decoder
achieves nearly 4× faster inference speed than the dense counterparts.

Voxel Decoder RayIoU RayIoU1m RayIoU2m RayIoU4m FPS

Dense coarse-to-fine 29.9 24.0 30.4 35.4 6.3
Dense patch-based 25.8 20.4 26.0 30.9 7.8

Sparse coarse-to-fine 29.9 23.9 30.5 35.2 24.0

rather than an instance. The ray casting module in RayIoU is implemented based
on the codebase of [21].

During training, we use the AdamW [36] optimizer with a global batch size of
8. The initial learning rate is set to 2×10−4 and is decayed with cosine annealing
policy. For all experiments, we train our models for 24 epochs. FPS is measured
on a Tesla A100 GPU with the PyTorch fp32 backend (single batch size).

5.2 Main Results

In Tab. 1 and Fig. 1 (b), we compare SparseOcc with previous state-of-the-art
methods on the validation split of Occ3D-nus. Despite under a weaker setting
(ResNet-50 [14], 8 history frames, and input image resolution of 704 × 256),
SparseOcc significantly outperforms previous methods including FB-Occ, the
winner of CVPR 2023 occupancy challenge, with many complicated designs in-
cluding forward-backward view transformation, depth net, joint depth and se-
mantic pre-training, and so on. SparseOcc achieves better results (+1.6 RayIoU)
while being much faster and simpler than FB-Occ, which demonstrates the su-
periority of our solution.

We further provide qualitative results in Fig. 7. Both BEVDet-Occ and FB-
Occ are dense methods and make many redundant predictions behind the sur-
face. In contrast, SparseOcc discards over 90% of voxels while still effectively
modeling the geometry of the scene and capturing fine-grained details.

5.3 Ablations

In this section, we conduct ablations on the validation split of Occ3D-nuScenes
to confirm the effectiveness of each module. By default, we use the single frame
version of SparseOcc as the baseline. The choice for our model is made bold.

Sparse voxel decoder vs. dense voxel decoder. In Tab. 2, we compare our sparse
voxel decoder to the dense counterparts. Here, we implement two baselines, and
both of them output a dense feature map with shape as 200×200×16×C. The
first baseline is a coarse-to-fine architecture without pruning empty voxels. In
this baseline, we also replace self-attention with 3D convolution and use 3D de-
convolution to upsample predictions. The other baseline is a patch-based archi-
tecture by dividing the 3D space into a small number of patches as PETRv2 [35]
for BEV segmentation. We use 25×25×2 = 1250 queries and each one of them
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Fig. 7: Visualized comparison of semantic occupancy prediction. Despite discarding
over 90% of voxels, our SparseOcc effectively models the geometry of the scene and
captures fine-grained details (e.g ., the yellow-marked traffic cone in the bottom row).

corresponds to a specific patch of shape 8×8×8. A stack of deconvolution layers
are used to lift the coarse queries to a full-resolution 3D volume.

As we can see from the table, the dense coarse-to-fine baseline achieves a good
performance of 29.9 RayIoU but with a slow inference speed of 6.3 FPS. The
patch-based one is slightly faster with 7.8 FPS inference speed but with a severe
performance drop by 4.1 RayIoU. Instead, our sparse voxel decoder produces
sparse 3D features in the shape of K × C (where K = 32000 ≪ 200×200×16),
achieving an inference speed that is nearly 4× faster than the counterparts with-
out compromising performance. This demonstrates the necessity and effective-
ness of our sparse design.

Mask Transformer. In Tab. 3, we first ablate the effectiveness of mask trans-
former. The first row is a per-voxel baseline which directly predicts semantics
from the sparse voxel decoder using a stack of MLPs. Introducing mask trans-
former with vanilla dense cross attention (as it is the common practice in Mask-
Former and Mask3D) gives a performance boost of 1.7 RayIoU, but inevitably
slows down the inference speed. Therefore, to speed up the dense cross-attention
pipeline, we adopt a sparse sampling mechanism which brings a 50% reduction
in inference time. Then, by further sampling sparse 3D points via predicted mask
guidance, we finally achieve 29.2 RayIoU with 24 FPS.
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Table 3: Ablation of mask transformer (MT) and the cross attention module in MT.
Mask-guided sparse sampling is stronger and faster than the dense cross attention.

MT Cross Attention RayIoU RayIoU1m RayIoU2m RayIoU4m FPS

- - 27.0 20.3 27.5 33.1 29.0√
Dense cross attention 28.7 22.9 29.3 33.8 16.2

√
Sparse sampling 25.8 20.5 26.2 30.8 24.0√
+ Mask-guided 29.2 23.4 29.8 34.5 24.0
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Fig. 8: Ablations on voxel sparsity and temporal modeling. (a) The optimal perfor-
mance occurs when k is set to 32000 (5% sparsity). (b) The performance continues to
increase with the number of frames, but it starts to saturate after 12 frames.

Is a limited set of voxels sufficient to cover the scene? In this study, we delve
deeper into the impact of voxel sparsity on final performance. To investigate this,
we systematically ablate the value of k in Fig. 8 (a). Starting from a modest value
of 16000, we observe that the optimal performance occurs when k is set to 32000,
which is only 5% of the total number of dense voxels (200×200×16 = 640000).
Surprisingly, further increasing k does not yield any performance improvements;
instead, it introduces noise. Thus, our findings suggest that a 5% sparsity level
is sufficient, and additional sparsity would be counterproductive.

Temporal modeling. In Fig. 8 (b), we validate the effectiveness of temporal fu-
sion. We can see that the temporal modeling of SparseOcc is very effective, with
performance steadily increasing as the number of frames increases. The perfor-
mance peaks at 12 frames and then saturates.

5.4 More Studies

Panoptic occupancy. We then show that SparseOcc can be easily extended for
panoptic occupancy predictions, a task derived from panoptic segmentation that
segments images to not only semantically meaningful regions but also to de-
tect and distinguish individual instances. Compared to panoptic segmentation,
panoptic occupancy prediction requires the model to have geometric awareness
in order to construct the 3D scene for segmentation. By additionally introducing
instance queries to the mask transformer, we seamlessly achieve the first panop-
tic occupancy prediction framework using camera inputs. In Fig. 9, we visualize
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Fig. 9: Panoptic occupancy prediction. Different instances are distinguished by colors.
Our model can capture fine-grained objects and road structures simultaneously.

the panoptic occupancy results of SparseOcc. As illustrated, semantic regions
and individual objects as well as their occupancy grids are well predicted. For
more details, we refer the readers to the appendix.

Enhancing sparsity by removing the road surface. The majority of non-free oc-
cupancy data pertains to background geometry. In practice, the drivable surface
occupancy can be effectively substituted with High-Definition Map (HD Map)
or online mapping techniques [5, 25, 29, 53]. This replacement not only stream-
lines the sparsity but also enriches the semantic and structural understanding
of roads. We construct experiments to investigate the effect of removing road
surface in SparseOcc. The details can be found in the appendix.

6 Limitations

Accumulative errors. In order to implement a fully sparse architecture, we dis-
card a large number of empty voxels in the early stages. However, empty voxels
that are mistakenly discarded cannot be recovered in subsequent stages. More-
over, the prediction of the mask transformer is constrained within a space pre-
dicted by the sparse voxel decoder. Some ground-truth instances do not appear
in this unreliable space, leading to inadequate training of the mask transformer.

7 Conclusion

In this paper, we proposed a fully sparse occupancy network, named SparseOcc,
which neither relies on dense 3D feature, nor has sparse-to-dense and global
attention operations. We also created RayIoU, a ray-level metric for occupancy
evaluation, eliminating the inconsistency flaws of previous metric. Experiments
show that SparseOcc achieves the state-of-the-art performance on the Occ3D-
nuScenes dataset for both speed and accuracy. We hope this exciting result will
attract more attention to the fully sparse 3D occupancy paradigm.
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