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A Comparison with Related Work

A.1 Active Domain Adaptation

Active domain adaptation (ActiveDA) aims to select the most informative sam-
ples being labeled by annotators, given a limited annotating budget. As shown
in Figure 7, the machine selects some samples using ActiveDA methods and
instructs annotators to label the selected samples. Several ActiveDA methods
have been proposed, such as CLUE [55], which employs an entropy-based clus-
tering algorithm to preserve the uncertainty and diversity of labeled data. SDM-
AG [86] and DiaNa [25] utilize margin functions between the source and target
domains to identify informative samples. In contrast to this ActiveDA scenario,
we present an NBF scenario where there is no machine-instructed sample selec-
tion, and instead, users directly provide feedback as a response to the prediction
result. It may lead to more flexible applications since (1) users have the freedom
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Fig. 7: Comparison between labeling scenarios: random feedback (RF), active domain
adaptation (ActiveDA), and negatively biased feedback (NBF).

state B
feed. amount 378 (3 labeled data per class) 1890 5040
stage C RF NBF Entropy [62] CLUE [55] DiaNA [25] CLUE [55] CLUE [55]
AdaMatch [7] 67.6 64.5 65.9 68.6 68.1 76.1 80.3
w/ ours 71.1 (+3.5) 72.0 (+7.5) 71.1 (+5.2) 71.5 (+2.9) 71.3 (+3.2) 78.0 (+1.9) 81.4 (+1.1)

Table 9: We evaluate a SemiSDA method [6] and our method under diverse labeling
scenarios. The scenarios include our proposed NBF and ActiveDA scenarios [25, 55].
The difference between ActiveDA and our method is illustrated in Figure 7.

to choose samples, and (2) individual users can impose different standards in
selecting samples.

We note that ActiveDA methods are for stage B of Figure 7, while our
method is for stage C and proposed to alleviate the problem caused by NBF.
Although out of our scope, we evaluate our method under ActiveDA labeling sce-
narios, where CLUE and DiaNA1 are employed. The results in Table 9 suggest
two points. First, our method complements existing ActiveDA methods, consis-
tently improving their performance. This highlights the importance of adapting
the model with a balanced supervised signal throughout adaptation (i.e., stage
C) using our method, even when ActiveDA methods like CLUE respect the di-
versity of labeled samples. Second, our method achieves significant performance
gains regardless of the labeling scenario, showing that our method can be applied
for reliable adaptation even when the distribution of labeled data is unknown.

A.2 Class-Imbalanced Semi-Supervised Learning

SemiSDA and SemiSL methods often struggle with the different numbers of
labeled data between classes, known as class imbalance [49]. To address this
problem, class-imbalanced SemiSL works like CReST [83] propose to balance the
quantity of labeled data by using pseudo labels [29,31] in stage D (i.e., generation
in CReST) of Figure 7. Recent advancements like DASO [49] further reduce the

1 For DiaNA [25], we utilize their proposed ‘informativeness scoring mechanism’ to maintain a
pretrained model-agnostic property.

2 If not specified, we use ResNet-50 and report the average accuracy (%) of seven domain shift
scenarios in Table 1 for additional studies.
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method feedback FP : FN average fracture pneumothorax
Source model - - .6768 .6642 .6894
Pseudo-Label. [1] RF - .7325 .7541 .7109

NBF 40 : 40 .7173 (-.0152) .7414 (-.0127) .6931 (-.0178)

with ours NBF 40 : 40 .7334(+.0162) .7625 (+.0211) .7044 (+.0113)

NBF 75 : 5 .7248 (-.0077) .7494 (-.0047) .7002 (-.0107)

with ours NBF 75 : 5 .7361 (+.0113) .7653 (+.0159) .7070 (+.0068)

NBF 5 : 75 .7170 (-.0155) .7420 (-.0121) .6921 (-.0188)

8
0
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with ours NBF 5 : 75 .7315 (+.0145) .7679 (+.0260) .6951 (+.0030)

Pseudo-Label. [1] RF - .7353 .7565 .7141
NBF 80 : 80 .7162 (-.0192) .7429 (-.0136) ..6894 (-.0247)

with ours NBF 80 : 80 .7331 (+.0169) .7680 (+.0251) .6983 (+.0088)

NBF 155 : 5 .7237 (-.0117) .7559 (-.0007) .6915 (-.0227)

with ours NBF 155 : 5 .7358 (+.0121) .7665 (+.0106) .7051 (+.0136)

NBF 5 : 155 .7166 (-.0188) .7438 (-.0128) .6894 (-.0248)1
6
0

fe
ed

b
a
ck

with ours NBF 5 : 155 .7300 (+.0134) .7696 (+.0258) .6904 (+.0010)

Fully supervised - - .7744 .8003 .7486

Table 10: Adaptation with different feedback configurations on MIMIC-
CXR-V2. We conduct additional experiments to Table 5, where the same pre-trained
model is utilized, and the two radiographic findings are considered for simplification.
We compare different NBF configurations as we vary the amount of feedback from false
positives (FP) and false negatives (FN) errors.

imbalance effect using both a similarity-based and linear classifier. Despite such
advances in class-imbalanced SemiSL, the biased (i.e., imbalanced) label distri-
bution within the same class has been overlooked in the SemiSDA, SemiSL,
and class-imbalanced SemiSL works. Therefore, we introduce the new concept
of biased labeled data called NBF and demonstrate its unexpected influence on
adaptation performance.

Even though our focus in this paper is on the bias within the same class,
accounting for the imbalance between classes can still be crucial for reliable
domain adaptation. For example, in the medical domain, while radiologists are
likely to log the mistakes of the model, the amount of feedback from false negative
samples may be small compared to those from false positive samples, given the
natural prevalence of disease (e.g., lung cancer is less than 1 in 1000). We simulate
this example scenario and evaluate our method in Table 10.

Under different feedback configurations. We take various feedback config-
urations into account, as depicted in Table 10. Assuming the model acquires 80
or 160 feedback instances for each finding, we alter the feedback quantities from
false positive (FP) and false negative (FN) errors, which is similar to the setup
of class-imbalanced SemiSL [29,83]. We only consider two radiographic findings
for simplification. The results show that our method can also mitigate the in-
tended impact of NBF even with the class-imbalanced scenario. Interestingly,
we observe better performance when FP feedback is larger than FN feedback,
which makes our method suitable for the medical domain, where radiographic
findings are rarely detected due to the natural prevalence of the disease.

Combining with class-imbalanced SemiSL methods. One naive way to
more reliably adapt to the challenging scenario could involve combining our
method with class-imbalanced SemiSL methods in stages C and D of Figure 7.
To evaluate this approach, we conduct an additional simulation study in Fig-
ure 8. The simulation replicates the NBF scenario by selecting only misclassified
samples within the same class. We further introduce class imbalance by varying
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Fig. 8: Our contribution focuses on introducing NBF and analyzing the effect of NBF
on adaptation. However, it may be required to consider both an NBF and a class-
imbalanced scenario in real-world applications. Hence, we first simulate this scenario
and perform adaptation using i) a SemiSDA method (i.e., Pseudo labeling [1]) with
our method and ii) a class-imbalanced SemiSL method (i.e., CReST [83]).

the number of feedback points between the blue and orange classes (leftmost
sub-figure).

By adapting the model with different approaches, we can find two interesting
takeaways: (1) the approach proposed in CReST [83] was not designed to solve
the unexpected effect of NBF, so it struggles with adaptation under the chal-
lenging scenario. (2) our method achieves better adaptation performance than
using only CReST, and outperforms other results by combining with CReST.
These results highlight the importance of considering an NBF case as well as a
class-imbalance problem and the efficiency of our method. We hypothesize that
defending the latent class space throughout adapting iterations helps the model
to be robust to the effect of NBF, different from a previous generation-based ap-
proach in CReST [83]. In addition, a discussion about zero feedback for certain
classes is provided in Section C.

A.3 Test-time Adaptation

To mitigate performance degradation caused by domain shift, models deployed
on edge devices like smartphones and self-driving cars can be adapted to the
target domain in an online manner, referred to as test-time adaptation (TTA).
TTA assumes two practical settings: i) adapting without source data and ii)
storing a limited amount of unlabeled target data. For instance, TENT [47,
67, 68, 77] leverages the current batch of unlabeled data to update the model’s
batch normalization parameters. Alternatively, methods like NOTE [19] and
ContraTTA [8] employ a target memory bank where a small amount of data (e.g .,
16k image features in ContraTTA) can be only stored and used for adaptation.

Extension to a TTA scenario. Our setup illustrated in Figure 2 also assumes
a source-free setup, so it can be easily extended to a TTA scenario by employing
the memory bank. In particular, on a periodic basis, when 10% of the target
training data is encountered, an adaptation is executed following a TTA setup
of TTT++ [39] and ContraTTA [8], where unlabeled data in the memory bank
and labeled data are utilized. The memory bank size is set to 5k pseudo labels,
and FreeMatch [81] is used for a SemiSDA baseline algorithm. It should be
noted that since previous TTA works do not consider the utilization of labeled
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memory bank size = 5k percentage of target data encountered in target domain
method feed. amo. 10% −−−−−→ 40% −−−−−→ 70% −−−−−→ 100%
FreeMatch [81] RF 68.4 71.4 73.0 73.4

NBF 66.9 69.5 71.0 71.5
w/ ours NBF

368
68.9 (+2.0) 72.4 (+2.9) 73.6 (+2.6) 74.3 (+2.8)

FreeMatch [81] RF 71.2 73.7 74.7 75.4
NBF 69.8 72.2 73.2 73.9

w/ ours NBF
630

71.5 (+1.7) 74.1 (+1.9) 75.0 (+1.8) 75.5 (+1.6)

Table 11: We evaluate our approach on a TTA scenario, where labeled data and
unlabeled target data in a memory bank are only available for adaptation like Con-
traTTA [8]. In the real, painting, scratch, and clipart domains of DomainNet-126, 10%
of the data consists of 5.5k, 2.4K, 1.9k, and 1.5k images. In the table, 40% means that
the model has encountered 40% of the unlabeled target training data.

data, we can not use them as a baseline or compare the adaptation performance
directly (but we attempt to alleviate this problem and implement comparisons
in Section C.). The results in Table 11 show that our method works well even
with a smaller amount of unlabeled data in the memory bank. We find this result
very surprising and wish to continue in this direction for future research.

A.4 Learning with User Feedback

Learning with User Feedback has garnered significant attention for its effective-
ness in capturing users’ preferences or intentions [42, 50, 69, 84]. Reinforcement
learning from human feedback is a powerful technique for model optimization
based on human-provided rewards [30,61,71,82]. Another application is interac-
tive image segmentation [11,64,65], where users provide pixel-level annotations,
enabling the model to enhance its understanding of user preferences over time.

B Further understanding with Simulation Study

In this section, we provide additional details and understanding about the sim-
ulation study in Figure 3.

Network architecture. We build the model consisting of three fully connected
layers and Relu activation functions. This model takes the point coordinate as
input and returns the class label as output. Please refer to example codes found
in the ‘sklearn.datasets.make_blobs’ documents [53].

Baseline. One simple SemiSL method, Pseudo labeling [1], can be easily applied
to the toy experiment. Given a mini-batch with labeled data {(xb

lb, y
b
lb) : b ∈

[1.. B]} and unlabeled data {(xb
ulb) : b ∈ [1.. µ·B]}, we simply adapt the model

with cross-entropy losses as the following:
Lsup = 1

B

∑B
b=1 H(yblb, fθ(x

b
lb)), Lunsup = 1

µ·B
∑µ·B

b=1 H(argmaxc
[
fθ(x

b
ulb)

]
c
, fθ(x

b
ulb)). (3)

fθ(·) is the output probability from the model and argmaxc

[
fθ(x

b
ulb)

]
c
refers to the

pseudo label. As shown in the equation, the updating model fθ continuously pre-
dicts pseudo labels for the unlabeled data. So, the pseudo labels can be changed
based on an updated decision boundary. Figure 9 presents this phenomenon as
the adapting epoch progresses.
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Fig. 9: During the adapting process, an updated decision boundary of the model is
depicted. The details can be found in Section 3.2.

Additional study on two moon dataset. To better understand the unex-
pected influence of NBF on domain adaptation, we conducted additional simula-
tions using the two moon datasets from scikit-learn [53]. As shown in Figure 10,
we generate source and target data so that they have domain shifts. After pre-
training a model on the source data, we evaluate its performance on the target
domain, observing a performance drop due to the shift (99.9%→81.4%). After
we simulate user-provided feedback under two scenarios (i.e., RF and NBF), we
adapt the model to the target data in a semi-supervised manner [1]. The results
highlight crucial observations shown in Section 3.2: the distribution of label data
significantly impacts adaptation performance. Notably, biased feedback distribu-
tion (NBF) leads to poorer performance compared to evenly distributed feedback
(RF). In our main paper, we showed that this problem remained the same even
with state-of-the-art SemiSDA methods and under different DA benchmarks.

C Additional Ablation Study

Reliable sample filtering. An important design of our approach is to retain
only samples having reliable pseudo labels among {(xn

ulb, ŷ
n
ulb) : n ∈ [1.. Nulb]}. We

evaluate the adaptation performance with variations in the filtering ratio p% in
Table 8. A higher p increases the likelihood of the bank being contaminated with
samples with incorrect pseudo labels (i.e., yulb ̸=ŷulb) while a lower p decreases
the diversity of the defending samples. We observe that our approach is robust
to the hyper-parameter p, yet achieves reasonable performance with p = 0.4.

Combining with SFDA methods. Recent SFDA methods [34,35] have shown
promise in computing the unsupervised loss Lunsup. So, we explore their potential
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Fig. 10: Effect of negatively biased feedback. We conduct an additional simula-
tion study with two moon dataset. We make the same observations of Figure 3, i.e.,
NBF is biasedly distributed, leading to inferior adaptation performance compared to
RF. The experimental details are provided in Section 3.2 and Section B.

feed. amount 378 (3 labeled data per class) 630 (5 labeled data per class)

method RF NBF w/ ours RF NBF w/ ours
SHOT [34] 69.6 70.7 (+1.1) 71.5 (+0.8) 71.1 72.3 (+1.2) 73.0 (+0.7)

NRC [93] 66.3 64.9 (-1.4) 69.3 (+4.4) 68.5 66.4 (-2.1) 69.6 (+3.2)

ContraTTA [8] 68.6 69.2 (+0.6) 71.6 (+2.4) 70.1 70.5 (+0.4) 72.4 (+1.9)

R
es

N
et

-5
0

GuidingSP [35] 69.7 70.2 (+0.5) 71.8 (+1.6) 70.5 71.0 (+0.5) 72.8 (+1.8)

SHOT [34] 73.4 73.7 (+0.3) 74.1 (+0.4) 74.4 74.8 (+0.4) 75.4 (+0.6)

NRC [93] 72.2 71.9 (-0.3) 72.9 (+1.0) 73.9 73.7 (-0.2) 74.6 (+0.9)

ContraTTA [8] 72.8 73.4 (+0.6) 74.9 (+1.5) 73.9 74.8 (+0.9) 76.4 (+1.6)V
iT

-S

GuidingSP [35] 73.3 73.7 (+0.4) 75.0 (+1.3) 74.1 74.9 (+0.8) 76.4 (+1.5)

Table 12: Comparisons on DomainNet-126. We combine our method and SFDA
methods. The average accuracy (%) of seven domain-shift scenarios is reported. We
use the same pre-trained model as in Table 3.

as baselines within our framework. To construct the overall loss function Ltotal

in Eq. (2), we simply combine their Lunsup with the supervised loss Lsup of
FreeMatch [81] since SFDA methods do not take the utilization of supervised
loss into account. The results are presented in Table 12. Interestingly, some SFDA
works [8,34,35] using sophisticated methods, such as k-means clustering [21] and
contrastive learning [22], are likely to be less susceptible to NBF. However, the
trend is not consistent for all methods. NRC [93], using a strategy of nearest
neighbors, shows sub-optimal performance under an NBF assumption. Notably,
all SFDA methods achieve their best adaptation performance when combined
with our method. This suggests that even methods that partially mitigate NBF’s
unexpected effects can further benefit from our method.

Number of appended defending samples. As mentioned in Section 4.2, we
incorporate k defending samples for each labeled data point (xb

lb, y
b
lb) to decrease

the unexpected impact of NBF on the supervised signal. To understand how
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k = 1 k = 2 k = 3 k = 4 baseline
FreeMatch [81] Res. 74.0 74.6 74.8 74.4 72.0
FreeMatch [81] ViT. 75.5 75.9 75.7 75.4 73.9

Table 13: We ablate the number of defending samples k in Eq. (2). We also
report the performance of the baseline without our approach (rightmost).

only Lunsup the overall loss Ltotal in Eq. (??)
pseudo-feedback per class 0 3 w/ ours 5 w/ ours
NRC [93] 63.5 63.4 64.6 (+1.2) 63.4 64.4 (+1.0)

ContrastiveTTA [8] 66.6 66.6 67.4 (+0.8) 66.5 67.2 (+0.7)

Table 14: Although out of our scope, we consider a zero-feedback scenario in which
a user does not provide any feedback. To evaluate our method in this scenario, we
leverage unlabeled target data and their pseudo label for semi-supervised adaptation.

the value of k affects performance, we conducted an ablation study in Table 13.
We fix the number of labeled data points to 16 and maintain the total batch
size at 128 by adjusting the ratio µ in Eq. (1). For instance, with k=4, the
ratio µ is set to 3 (i.e., 16 + 16×k + 16×µ = 128). Our experiments across two
different architectures reveal that a k=3 value generally yields good adaptation
performance. Consequently, we adopt k=3 for all experiments.

Under a zero feedback scenario. We note that, as previous SemiSDA [6,58]
and SemiSL [66, 81] works, we assume that a user provides a small amount of
feedback (i.e., labeled data) during their interaction with an ML application.
Nevertheless, we wondered about a broader question: how can our method be
used when no feedback is received? This scenario, while beyond the scope of
our work, presents an intriguing area for further exploration, so we attempt
to investigate the potential impact of our method under such a scenario. We
initially opted to use SFDA baselines of Table 12, which have demonstrated
potential in the absence of labeled target data, and assess their performance
within an SFDA setup (i.e., only Lunsup in Table 14). Then, pseudo-feedback
is generated by randomly selecting small unlabeled data sets and their pseudo-
labels from samples with high predicted probabilities. With the pseudo-feedback
and unlabeled target data, we conduct SemiSDA and report the results (i.e.,
the overall loss Ltotal in Table 14). We find that i) simulating pseudo-feedback
has a minor influence on SFDA baselines, yet ii) the adaptation performance is
enhanced by combining with our method. Based on these results, we believe that
even in the absence of feedback for certain classes, SemiSDA with our method
can achieve good adaptation performance by leveraging the pseudo-feedback.

D Additional Experimental Details

Details for medical experiments. We use DenseNet-121 [26] provided by the
TorchXRayVision repository [13]. This architecture consists of a shared backbone
and multiple classification heads for radiographic findings. When given a 256x256
image as input, it generates sigmoid values for thirteen different findings.

The majority of SemiSDA methods, such as AdaMatch [6] and FreeMatch [81],
depend on consistency regularization, which requires image augmentation strate-
gies, such as ColorJitter and GaussianBlur [52]. Unfortunately, applying them
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to medical images remains challenging, as most strategies have been proposed
specifically for natural images. As a result, we employ Pseudo-labeling [1], a fun-
damental SemiSL algorithm that (i) obviates the necessity for image augmenta-
tions and (ii) can be easily implemented for a multi-finding binary classification
setup. To be more specific, we substitute the cross-entropy H(·, ·) in Eq. (3) with
the binary cross-entropy loss. To generate pseudo labels (i.e., presence or ab-
sence in Table 5 (top)), thresholds that are pre-calculated in the source domain
are used. The hyper-parameters for model updates are the following.

batch size learning rate optimizer weight decay
pre-training 128 1e-3 Adam 1e-5
adaptation 128 1e-4 Adam 1e-5

Details for semantic segmentation experiments. Our experiment leverages
the GTA5 [56] and Cityscapes [14] datasets as the source and target domains.
To compute the supervised Lsup and unsupervised losses Lunsup in Eq. (1), we
employ baseline algorithms: IAST [46] in LabOR [63] and RIPU [85]. Following
previous works [63, 85], we utilize ResNet-101 as the backbone architecture and
DeepLab-v2 as the segmentation model. Further details regarding implementa-
tion and hyper-parameter for adaptation can be found in the publicly available
codebase of RIPU [85]. One of our method’s key strengths is its simplicity, which
makes it readily applicable to various tasks like semantic segmentation. To be
more specific, we first identify pixel points in an image that have the top 40%
probabilities for each class. Among them, we select three pixels (i.e., defending
pixels) for each labeled pixel in order to balance the supervised signal (i.e., Ltotal

in Eq. (2)) and obtain robust adaptation performance to the unexpected effect
of NBF.

E Additional Discussion

E.1 Technique novelty

Compared to previous works, our approach, retrieval latent defending, distin-
guishes itself in how balancing is applied to solve the novel NBF problem.: (i) We
initially anticipated that conventional tricks using confident pseudo labels or bal-
ancing strategy, such as CReST [83] for class-imbalance, CLUE [55], DiaNA [25]
for ActiveDA, GuidSP [35] and SSNLL [10] for noisy pseudo labels, would ame-
liorate the NBF issue. However, as shown in the table below 3, we found these
methods to fall short due to their lack of specific targeting of the novel problem
by NBF, thereby underscoring the need for our tailored approach. (ii) Our strat-
egy diverges from the dataset-level balancing approaches in [10,55,83]. Instead,
we focus on enhancing the supervised signal within a minibatch through iterative
retrieval of defending samples, which helps in fortifying latent spaces against the
unexpected issue by NBF as illustrated in Figure 4 and Table 5. Surprisingly,
this distinct method not only effectively addresses the NBF problem but also
leads to substantial improvements in adaptation performance.
3 We evaluate SSNL using the same experimental setup in Table 12.
4 We specify the database size when the real domain of the DomainNet dataset serves as the target

domain.
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method CReST (CVPR21) CLUE (ICCV21) DiaNA (CVPR23) SSNLL (IROS22) GuidSP (CVPR23)

reference Figure 8 Table 9 Table 9 - Table 12
accuracy 92.6 68.6 68.1 68.9 69.2
w/ ours 95.8 (+3.2) 71.5 (+2.9) 71.3 (+3.2) 71.4 (+2.5) 71.6 (+2.4)

E.2 Computational overhead

Our method incurs only negligible overhead, as the only additional data† that
needs to be stored are pseudo labels. As shown in the following table 4, our
method results in an additional 0.1 MB of memory and a 3% increase in running
time compared to existing SemiSDA [6, 81] and SFDA [35] methods, but these
modest increases facilitate significant performance enhancements. We adhere to
the standard practices of SemiSDA and SFDA, which involve storing target
images in a database (DB)‡.

method AdaMatch (ICLR22) w/ ours GuidSP (CVPR23) w/ ours FreeMatch (ICLR23) w/ ours
reference Table 3 Table 3 Table 12 Table 12 Table 11 Table 11
DB size‡ 55k images 55k images 55k images 55k images 5k images 5k images
add. data† 0MB 0.1MB 53.8MB 53.9MB 0MB 0.01MB
run. time 132min 136min 150min 155min 14min 15min
accuracy 64.5 72.0 (+7.5) 70.2 71.8 (+1.6) 66.9 68.9 (+2.0)

E.3 Limitations.

Machine learning (ML) powered products can collect target data in various ways.
Beyond unlabeled data encountered in the target environment (e.g., driving
scenes from a self-driving car), feedback containing valuable target information
can be collected by users. For example, a radiologist can log misdiagnosed chest
X-ray images in the medical application. However, leveraging effectively such
feedback to enhance the deployed model has yet to be well studied. So, this pa-
per addressed this issue by proposing a framework, domain adaptation with user
feedback, as illustrated in Figure 2. Moreover, we identified potential issues (i.e.,
the unexpected impact of NBF) and introduced a simple and scalable solution
(i.e., retrieval latent defending).

However, a few more considerations need to be made before this framework
is applied in the real world. (1) Current SemiSDA and SemiSL works typically
conduct a single adaptation round using all target training data. In practice,
however, periodic adaptation may be required since the model can continuously
collect new data. According to CoTTA [79], EATA [47], and EcoTTA [67], studies
to make initial TTA research [8,39,77] more realistic, long-term adaptation can
lead to catastrophic forgetting and error accumulation. They attempt to address
this problem by utilizing continual learning strategies, e.g ., random parameter
restoration and knowledge distillation. Repeated adaptation processes in our
setup might result in similar issues, suggesting a potential connection to contin-
ual learning techniques within the SemiSDA methods. (2) More SemiSDA meth-
ods specializing in medical imaging still need to be developed. We employed the
native SemiSDA method, Pseudo-Labeling [1], in Table 5. Developing SemiSDA
methods specific to medical imaging has the potential to significantly improve
adaptation performance beyond the results of Table 5. It is also a promising
direction for future research.
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F Results of all domain shifts

In addition to Table 3, Table 4, and Table 12, we report the adaptation results
for all domain shift scenarios in Table 15, Table 16, Table 17, Table 18, Table 19,
and Table 20.
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method feedback average real→clip. real→pain. pain.→clip. clip.→scat. scat.→pain.real→scat. pain.→real
Source model - 56.5 56.1 63.7 55.2 48.0 51.7 45.8 74.7
FixMatch [66] RF 67.6 66.2 68.3 68.2 61.0 69.8 58.7 80.8

NBF 63.4 62.4 65.1 64.8 55.8 64.6 52.7 78.4
w/ ours NBF 73.2 75.0 74.3 74.7 66.9 71.8 65.4 84.1
UDA [87] RF 69.2 68.7 70.0 69.8 62.8 70.9 60.0 82.0

NBF 64.9 64.5 66.0 67.3 57.2 66.3 53.8 79.5
w/ ours NBF 73.4 76.2 74.0 74.7 67.4 71.9 65.7 84.1
FlexMatch [96] RF 73.3 76.7 74.0 75.6 66.9 73.2 64.4 82.5

NBF 71.4 74.8 72.2 74.5 63.8 71.1 61.7 81.4
w/ ours NBF 74.7 77.9 74.8 77.8 68.9 72.2 66.9 84.4
FreeMatch [81] RF 73.8 76.6 74.2 75.5 67.7 73.5 65.1 84.0

NBF 72.0 75.5 72.9 74.6 65.0 72.3 62.0 81.7
w/ ours NBF 74.8 78.1 74.5 77.1 68.8 72.4 67.3 85.0
MME [58] RF 69.5 70.0 71.2 69.3 63.5 69.6 61.7 81.5

NBF 68.4 69.5 70.7 69.1 61.5 69.0 58.8 80.2
w/ ours NBF 70.8 72.9 71.6 72.9 64.0 68.4 62.1 83.5
CDAC [33] RF 68.3 67.1 69.0 68.9 62.6 69.9 59.5 81.1

NBF 64.6 64.5 66.2 66.3 56.9 65.8 53.6 78.6
w/ ours NBF 73.2 76.1 73.9 74.4 67.0 71.2 65.8 84.1
AdaMatch [6] RF 67.6 66.6 68.5 68.5 60.3 69.2 58.7 81.5

NBF 64.5 64.3 66.1 65.6 56.9 65.6 54.2 78.9

R
es

N
et

-5
0

[2
3]

w/ ours NBF 72.0 74.5 72.7 73.9 65.5 70.0 64.3 83.2
Fully sup. - 83.6 85.6 81.4 85.6 80.4 81.4 80.4 90.1
Source model - 64.5 63.6 70.2 61.6 56.7 65.5 53.5 80.5
FixMatch [66] RF 74.6 75.5 77.1 73.8 67.7 75.9 67.1 85.1

NBF 73.0 73.8 75.4 74.0 65.1 72.8 66.1 83.8
w/ ours NBF 75.6 77.1 77.7 77.3 67.8 76.8 68.0 84.7
UDA [87] RF 74.8 75.5 77.1 74.0 67.9 76.1 67.4 85.4

NBF 73.3 74.1 75.6 74.3 65.4 73.2 66.3 83.9
w/ ours NBF 75.8 77.1 77.8 77.6 68.2 77.1 68.2 84.9
FlexMatch [96] RF 74.9 75.5 77.0 74.7 68.4 76.2 66.7 85.7

NBF 73.9 74.5 76.6 75.1 66.1 74.5 66.4 84.1
w/ ours NBF 75.8 77.2 77.5 77.9 68.3 77.0 67.9 85.0
FreeMatch [81] RF 74.9 75.3 76.8 74.5 68.1 76.5 67.0 86.0

NBF 73.9 74.6 76.4 75.0 66.0 74.5 66.5 84.1
w/ ours NBF 75.7 76.9 77.5 77.9 68.1 76.7 67.8 85.2
MME [58] RF 73.2 74.0 74.8 73.0 66.5 74.6 65.2 84.3

NBF 72.7 73.2 74.8 73.8 65.3 73.0 64.8 83.8
w/ ours NBF 74.1 75.4 75.9 76.2 66.2 74.7 66.4 84.2
CDAC [33] RF 74.2 74.8 76.3 73.8 67.5 75.5 66.6 84.9

NBF 72.8 73.6 74.9 73.9 65.0 72.8 65.4 83.8
w/ ours NBF 75.4 76.7 77.6 77.2 67.6 76.2 67.9 84.6
AdaMatch [6] RF 74.7 75.3 76.9 73.8 68.0 76.3 67.1 85.5

NBF 73.7 74.7 76.2 74.7 65.7 74.0 66.8 84.0

V
iT

-S
[1

5]

w/ ours NBF 75.9 76.9 77.8 77.8 68.5 76.6 68.3 85.1
Fully sup. - 85.4 87.8 83.4 87.8 81.3 83.4 81.3 92.7

Table 15: Adaptation results with SemiSL and SemiSDA methods on
DomainNet-126. The adaptation performance on various domain shifts is reported,
where the number of labeled data per class is 3. The details can be found in Table ??.
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method feedback average real→clip. real→pain. pain.→clip. clip.→scat. scat.→pain.real→scat. pain.→real
Source model - 56.5 56.1 63.7 55.2 48.0 51.7 45.8 74.7
FixMatch [66] RF 71.5 71.3 70.9 73.1 65.5 71.9 65.1 83.0

NBF 66.1 66.2 67.6 67.6 57.4 67.4 56.5 79.8
w/ ours NBF 75.1 77.2 75.7 77.2 69.8 73.9 68.0 84.1
UDA [87] RF 72.9 73.4 72.6 74.6 67.1 73.1 65.9 83.4

NBF 68.8 70.3 68.7 71.1 60.3 70.3 60.5 80.5
w/ ours NBF 75.3 78.3 75.2 77.9 69.6 73.9 68.1 84.3
FlexMatch [96] RF 75.3 78.5 74.6 77.5 70.3 73.8 68.7 83.8

NBF 73.9 77.3 74.0 76.3 66.2 73.8 67.2 82.6
w/ ours NBF 76.0 79.5 75.6 78.7 70.2 74.3 69.0 84.7
FreeMatch [81] RF 75.6 78.6 74.9 77.6 70.2 74.3 69.0 84.7

NBF 74.4 77.6 74.5 76.3 66.8 73.8 68.2 83.5
w/ ours NBF 76.1 79.6 75.5 78.6 70.4 74.5 69.3 84.9
MME [58] RF 71.2 71.3 72.1 71.8 65.6 70.7 64.6 82.6

NBF 70.1 71.4 71.4 70.4 62.1 70.7 62.7 81.8
w/ ours NBF 72.5 74.5 72.7 74.9 66.4 70.7 64.6 83.8
CDAC [33] RF 71.7 71.5 71.7 73.0 66.1 72.0 64.8 82.9

NBF 68.1 69.5 68.9 69.3 59.8 69.4 59.7 80.0
w/ ours NBF 74.9 77.0 74.9 77.0 69.6 73.4 67.9 84.2
AdaMatch [6] RF 70.9 70.6 70.4 72.7 65.3 70.8 63.7 83.0

NBF 67.7 69.0 68.7 69.7 59.5 67.6 58.8 80.4

R
es

N
et

-5
0

[2
3]

w/ ours NBF 74.3 76.7 74.4 76.8 68.8 72.8 66.2 84.1
Fully sup. - 83.6 85.6 81.4 85.6 80.4 81.4 80.4 90.1
Source model - 64.5 63.6 70.2 61.6 56.7 65.5 53.5 80.5
FixMatch [66] RF 75.7 76.5 77.4 76.2 69.6 76.9 67.9 85.8

NBF 74.3 75.7 75.6 75.6 67.4 74.2 66.7 84.7
w/ ours NBF 76.5 78.0 77.9 78.3 70.2 76.9 68.7 85.4
UDA [87] RF 75.9 76.7 77.4 76.4 69.8 76.9 68.1 85.9

NBF 74.5 75.9 76.0 76.0 67.6 74.4 67.0 84.9
w/ ours NBF 76.7 78.2 78.2 78.8 70.6 76.9 68.8 85.5
FlexMatch [96] RF 76.0 76.5 77.2 76.8 70.1 77.3 68.1 86.2

NBF 75.1 76.2 76.6 76.2 68.9 75.5 67.4 85.1
w/ ours NBF 76.9 78.9 77.9 79.1 70.4 77.6 68.6 86.0
FreeMatch [81] RF 76.0 76.7 77.1 76.6 69.9 77.1 68.0 86.3

NBF 75.1 76.2 76.4 76.3 69.0 75.6 67.4 85.1
w/ ours NBF 76.8 78.5 77.8 78.5 70.5 77.4 68.8 85.9
MME [58] RF 74.5 75.3 75.4 75.2 68.2 75.4 66.5 85.1

NBF 74.0 74.9 75.2 75.2 67.3 74.1 66.3 84.7
w/ ours NBF 75.2 76.4 76.4 77.3 68.9 75.4 66.9 85.1
CDAC [33] RF 75.4 76.3 76.9 75.5 69.2 76.4 67.8 85.6

NBF 74.1 75.1 75.3 75.4 67.4 73.9 66.5 84.6
w/ ours NBF 76.2 77.8 77.4 78.3 70.0 76.4 68.5 85.3
AdaMatch [6] RF 75.9 76.6 77.1 76.6 70.0 76.9 68.2 86.1

NBF 75.1 76.2 76.7 76.3 68.1 75.5 67.5 85.2

V
iT

-S
[1

5]

w/ ours NBF 76.7 78.6 78.0 78.8 69.6 77.2 68.8 86.0
Fully sup. - 85.4 87.8 83.4 87.8 81.3 83.4 81.3 92.7

Table 16: Adaptation results with SemiSL and SemiSDA methods on
DomainNet-126. The adaptation performance on various domain shifts is reported,
where the number of labeled data per class is 5. The details can be found in Table ??.
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method feedback average a→ c a→ p a→ r c→ a c→ p c→ r p→ a p→ c p→ r r→ a r→ c r→ p
Source - 57.6 44.2 65.6 71.6 47.3 60.2 58.2 47.9 40.8 69.8 60.6 46.5 78.1
FreeMatch [81] RF 71.4 56.6 79.7 76.3 67.9 83.2 74.5 65.5 58.6 78.3 69.4 62.4 84.8

NBF 68.6 53.0 76.1 75.3 65.3 78.5 74.8 62.5 56.7 74.7 66.7 56.2 83.7
w/ ours NBF 73.7 60.8 80.3 80.5 69.2 84.0 78.6 67.7 62.3 80.1 70.0 64.1 87.2
UDA [87] RF 72.2 56.1 81.0 76.8 68.0 83.4 75.6 67.1 59.7 79.7 69.8 62.7 86.4

NBF 69.5 53.3 78.6 75.7 66.3 79.7 75.8 63.7 57.2 75.7 66.7 57.2 83.9
w/ ours NBF 74.1 61.1 80.7 80.3 69.0 85.9 79.2 68.0 62.3 80.7 70.4 63.9 87.4
FlexMatch [96] RF 73.7 58.0 84.6 79.3 68.4 84.7 78.8 68.4 62.8 79.8 70.6 62.9 86.3

NBF 72.1 56.1 79.0 77.8 68.4 83.4 77.6 67.5 60.1 79.2 68.8 60.5 86.2
w/ ours NBF 74.7 60.8 81.7 81.1 70.0 85.8 79.8 68.8 61.4 81.4 70.2 65.7 89.4
FreeMatch [81] RF 74.0 58.5 85.0 79.4 68.2 84.7 79.2 68.4 62.5 80.4 71.0 63.7 87.0

NBF 72.2 56.4 79.3 77.7 67.7 83.4 78.5 67.3 60.5 79.1 69.2 61.0 86.9
w/ ours NBF 74.8 60.6 81.4 81.5 70.8 86.7 80.0 68.6 61.6 81.7 69.8 66.2 89.2
MME [58] RF 71.2 56.2 80.4 75.7 65.1 81.0 76.7 64.5 59.0 79.8 69.0 62.0 85.1

NBF 70.2 55.0 77.6 76.8 65.1 82.2 77.7 61.1 57.1 77.1 68.8 58.1 85.4
w/ ours NBF 73.4 60.5 81.4 80.0 68.6 84.8 78.4 65.3 61.3 79.8 69.8 62.8 87.5
CDAC [33] RF 71.2 55.5 80.0 76.4 67.1 82.4 75.8 64.5 58.7 79.0 69.2 61.5 84.4

NBF 69.0 54.1 76.2 75.4 64.1 79.5 75.4 63.9 57.9 75.2 66.5 55.8 83.6
w/ ours NBF 74.3 63.7 81.3 80.4 70.0 85.4 79.0 67.9 62.2 80.3 69.6 65.1 86.9
AdaMatch [6] RF 70.9 55.4 80.4 75.9 65.7 81.5 74.6 65.9 58.7 78.4 68.8 61.5 84.3

NBF 69.3 54.2 76.6 75.3 65.9 79.3 75.5 63.7 57.4 75.9 66.7 56.8 84.2
w/ ours NBF 73.8 62.2 81.0 79.7 68.8 85.4 78.6 67.7 61.7 79.5 69.0 64.1 88.2
Fully sup. - 87.4 84.5 95.1 89.0 80.9 95.1 89.0 80.9 84.5 89.0 80.9 84.5 95.1

Table 17: Adaptation results with SemiSL and SemiSDA methods on Of-
ficeHome. The adaptation performance on various domain shifts is reported, where
the number of labeled data per class is 3. The details can be found in Table ??.

method feedback average a→ c a→ p a→ r c→ a c→ p c→ r p→ a p→ c p→ r r→ a r→ c r→ p
Source - 57.6 44.2 65.6 71.6 47.3 60.2 58.2 47.9 40.8 69.8 60.6 46.5 78.1
FreeMatch [81] RF 73.9 59.8 83.9 80.0 69.2 84.6 77.8 66.7 63.7 80.5 71.2 63.3 85.8

NBF 72.2 57.6 82.4 76.3 68.2 82.0 76.6 65.3 61.4 78.0 71.4 60.9 86.6
w/ ours NBF 75.3 63.9 84.6 79.0 70.0 85.7 79.1 68.6 64.8 81.1 73.0 65.4 88.6
UDA [87] RF 74.4 60.2 84.5 79.8 68.4 85.1 79.8 66.5 64.4 80.7 72.2 64.4 86.1

NBF 73.0 58.7 82.6 77.4 68.6 82.5 77.3 66.9 61.9 78.8 71.4 62.0 87.4
w/ ours NBF 76.0 64.9 84.5 79.4 71.2 85.8 79.8 71.4 65.4 80.5 74.2 66.3 88.9
FlexMatch [96] RF 75.9 64.3 84.9 82.1 69.6 85.7 80.4 69.2 65.7 82.3 74.2 65.4 87.3

NBF 74.9 62.9 83.2 77.6 70.2 84.7 80.5 69.8 62.9 79.5 74.4 64.4 87.7
w/ ours NBF 76.6 63.3 86.7 79.5 71.6 86.9 81.0 72.0 65.7 81.3 75.0 67.5 88.9
FreeMatch [81] RF 75.8 63.2 85.2 81.8 70.0 86.3 80.6 69.0 65.8 82.1 73.2 65.6 87.0

NBF 75.0 63.2 83.6 77.4 70.0 84.9 80.5 70.4 62.6 79.8 74.6 63.9 88.9
w/ ours NBF 76.6 63.4 85.6 79.8 71.8 86.3 81.2 71.8 65.3 81.8 74.8 67.5 89.6
MME [58] RF 73.5 59.6 82.4 78.7 67.3 83.6 79.2 67.3 62.4 80.5 71.4 63.2 86.6

NBF 73.1 59.5 83.2 77.2 66.5 82.5 78.3 65.1 61.5 79.1 72.8 62.8 88.3
w/ ours NBF 75.6 63.6 84.2 77.3 69.8 85.5 80.3 70.8 65.2 80.5 74.6 66.6 88.9
CDAC [33] RF 73.5 59.7 83.4 79.3 68.6 84.5 78.1 66.3 63.4 80.5 69.8 63.4 85.1

NBF 72.3 59.5 81.7 76.6 67.7 81.9 76.7 65.9 62.4 77.4 70.8 60.2 86.4
w/ ours NBF 75.7 64.2 84.7 79.0 72.2 85.5 79.6 70.4 65.3 80.4 73.4 65.4 88.6
AdaMatch [6] RF 73.4 60.0 83.8 78.7 68.0 84.4 77.6 66.5 62.5 80.0 71.0 63.2 85.1

NBF 72.7 60.2 81.7 76.9 67.1 81.5 77.2 66.3 61.8 78.7 71.2 62.0 87.1
w/ ours NBF 75.5 63.4 84.4 78.8 70.0 86.0 79.4 70.2 65.3 80.6 72.8 66.6 88.4
Fully sup. - 87.4 84.5 95.1 89.0 80.9 95.1 89.0 80.9 84.5 89.0 80.9 84.5 95.1

Table 18: Adaptation results with SemiSL and SemiSDA methods on Of-
ficeHome. The adaptation performance on various domain shifts is reported, where
the number of labeled data per class is 5. The details can be found in Table ??.
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method feedback average real→clip. real→pain. pain.→clip. clip.→scat. scat.→pain.real→scat. pain.→real
Source model - 56.5 56.1 63.7 55.2 48.0 51.7 45.8 74.7
SHOT [34] RF 69.6 70.2 70.9 69.6 63.4 69.1 61.4 82.8

NBF 70.7 71.7 72.7 71.0 64.1 69.7 62.0 83.6
w/ ours NBF 71.5 73.8 72.8 73.5 64.6 69.8 62.6 83.6
NRC [93] RF 66.3 66.1 69.3 64.8 58.0 67.9 57.6 80.6

NBF 64.9 63.1 68.4 63.6 56.9 67.1 55.1 80.4
w/ ours NBF 69.3 70.2 71.4 69.7 62.1 68.2 62.0 81.4
ContraTTA [8] RF 68.6 72.3 70.4 70.7 60.0 65.1 61.6 80.1

NBF 69.2 72.8 70.9 71.1 60.2 66.5 62.1 80.7
w/ ours NBF 71.6 74.6 72.1 75.3 64.1 69.7 62.7 82.7
GuidingSP [35] RF 69.7 66.6 68.5 68.5 60.3 69.2 58.7 81.5

NBF 70.2 64.3 66.1 65.6 56.9 65.6 54.2 78.9

R
es

N
et

-5
0

[2
3]

w/ ours NBF 71.8 74.5 72.7 73.9 65.5 70.0 64.3 83.2
Fully sup. - 83.6 85.6 81.4 85.6 80.4 81.4 80.4 90.1
Source model - 64.5 63.6 70.2 61.6 56.7 65.5 53.5 80.5
SHOT [34] RF 73.4 73.9 74.9 73.2 66.8 74.8 65.4 84.7

NBF 73.7 74.6 75.6 74.2 67.0 74.4 65.4 84.6
w/ ours NBF 74.1 75.1 75.7 74.9 67.6 74.6 66.0 84.7
NRC [93] RF 72.2 73.0 73.9 72.3 65.6 73.6 63.8 83.0

NBF 71.9 73.1 73.8 72.1 65.2 73.0 64.1 82.3
w/ ours NBF 72.9 73.9 74.9 73.9 65.5 73.4 64.5 84.3
ContraTTA [8] RF 72.8 73.0 74.1 74.7 66.7 73.2 62.9 84.8

NBF 73.4 74.3 75.1 74.6 67.6 73.8 63.7 84.9
w/ ours NBF 74.9 75.4 75.8 76.7 69.2 75.6 66.6 85.0
GuidingSP [35] RF 73.3 73.9 74.5 75.0 66.9 73.7 63.4 85.1

NBF 73.7 74.8 75.5 74.6 67.8 73.9 63.9 85.1

V
iT

-S
[1

5]

w/ ours NBF 75.0 75.6 75.8 76.9 69.1 75.6 66.5 85.2
Fully sup. - 85.4 87.8 83.4 87.8 81.3 83.4 81.3 92.7

Table 19: Adaptation results with SFDA methods on DomainNet-126. The
adaptation performance on various domain shifts is reported, where the number of
labeled data per class is 3. The details can be found in Table 12.

method feedback average real→clip. real→pain. pain.→clip. clip.→scat. scat.→pain.real→scat. pain.→real
Source model - 56.5 56.1 63.7 55.2 48.0 51.7 45.8 74.7
SHOT [34] RF 71.1 71.9 72.6 70.8 65.3 70.1 63.6 83.1

NBF 72.3 73.3 74.0 73.1 65.8 71.5 64.4 84.2
w/ ours NBF 73.0 75.2 74.2 74.3 66.3 71.4 65.1 84.5
NRC [93] RF 68.5 68.6 70.1 68.3 61.1 68.6 61.5 81.2

NBF 66.4 65.4 69.0 65.7 58.9 67.0 58.6 80.7
w/ ours NBF 69.6 70.6 72.2 70.2 61.9 68.1 62.4 81.6
ContraTTA [8] RF 70.1 73.7 71.0 72.4 61.8 67.0 64.0 81.0

NBF 70.5 74.4 71.8 72.3 61.4 67.8 64.2 81.3
w/ ours NBF 72.4 76.0 73.3 73.1 64.8 71.3 65.0 83.2
GuidingSP [35] RF 70.5 70.9 70.6 70.4 72.7 65.3 70.8 63.7

NBF 71.0 67.7 69.0 68.7 69.7 59.5 67.6 58.8

R
es

N
et

-5
0

[2
3]

w/ ours NBF 72.8 74.3 76.7 74.4 76.8 68.8 72.8 66.2
Fully sup. - 83.6 85.6 81.4 85.6 80.4 81.4 80.4 90.1
Source model - 64.5 63.6 70.2 61.6 56.7 65.5 53.5 80.5
SHOT [34] RF 74.4 75.1 75.6 74.6 68.5 75.2 67.0 85.0

NBF 74.8 75.9 76.3 75.1 68.7 75.8 66.7 85.3
w/ ours NBF 75.4 77.3 76.5 75.9 69.2 76.1 67.1 85.4
NRC [93] RF 73.9 75.1 75.1 73.8 67.4 74.2 66.3 85.5

NBF 73.7 74.8 74.9 73.8 67.2 73.8 66.2 85.0
w/ ours NBF 74.6 76.0 75.9 75.5 67.9 74.5 66.7 85.3
ContraTTA [8] RF 73.9 74.3 74.9 76.2 68.5 74.1 64.7 84.9

NBF 74.8 74.9 75.7 76.2 69.2 75.3 66.7 85.5
w/ ours NBF 76.4 77.2 76.4 79.0 70.9 76.8 67.8 86.5
GuidingSP [35] RF 74.1 74.2 75.0 76.5 68.9 74.2 64.9 85.0

NBF 74.9 74.9 75.8 76.3 69.1 75.2 66.8 85.9

V
iT

-S
[1

5]

w/ ours NBF 76.4 77.4 76.4 79.1 70.9 76.8 67.7 86.6
Fully sup. - 85.4 87.8 83.4 87.8 81.3 83.4 81.3 92.7

Table 20: Adaptation results with SFDA methods on DomainNet-126. The
adaptation performance on various domain shifts is reported, where the number of
labeled data per class is 5. The details can be found in Table 12.
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