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Abstract. This paper aims to adapt the source model to the target envi-
ronment, leveraging small user feedback (i.e., labeled target data) readily
available in real-world applications. We find that existing semi-supervised
domain adaptation (SemiSDA) methods often suffer from poorly im-
proved adaptation performance when directly utilizing such feedback
data, as shown in Figure 1. We analyze this phenomenon via a novel
concept called Negatively Biased Feedback (NBF), which stems from the
observation that user feedback is more likely for data points where the
model produces incorrect predictions. To leverage this feedback while
avoiding the issue, we propose a scalable adapting approach, Retrieval
Latent Defending. This approach helps existing SemiSDA methods to
adapt the model with a balanced supervised signal by utilizing latent
defending samples throughout the adaptation process. We demonstrate
the problem caused by NBF and the efficacy of our approach across
various benchmarks, including image classification, semantic segmenta-
tion, and a real-world medical imaging application. Our extensive experi-
ments reveal that integrating our approach with multiple state-of-the-art
SemiSDA methods leads to significant performance improvements.

Keywords: Rethinking user-provided feedback · Semi-supervised &
Source-free domain adaptation · Medical image diagnosis

1 Introduction

While deep neural networks have demonstrated remarkable performance in the
development domain (i.e., source domain) [15,23], they often suffer from perfor-
mance degradation in the deployed domain (i.e., target domain) due to domain
shift [17, 72, 78]. To mitigate this issue, domain adaptation (DA) techniques
have been introduced [34, 58, 70]. The most common DA tasks include semi-
supervised domain adaptation (SemiSDA) and source-free domain adaptation
(SFDA). SemiSDA aims to adapt the model given a small amount of labeled
target data along with massive unlabeled target data [6, 58, 66, 99]. SFDA con-
ducts adaptation with only target data without accessing source data considering
data privacy or memory constraints in edge devices [34,67,92].
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Fig. 1: (a) User feedback. Users can provide feedback while interacting with an ML
product, where feedback is likely to be biased towards misclassified samples, which we
define as Negatively Biased Feedback (NBF ). (b) Adaptation results. We adapt the
source model with small user feedback and large unlabeled target data using previ-
ous semi-supervised domain adaptation (SemiSDA) algorithms. Compared to random
feedback, which is the classical SemiSDA setup where labeled data is a random subset
of target data, model adaptation with NBF leads to subpar performance. This paper
analyzes this problem and introduces a scalable solution.

Despite such advances in DA, adapting the model with user feedback still re-
mains an open area for further research, even though practical machine learning
(ML) products often allow users to provide feedback in order to further improve
the model in the target environment. For example, facial recognition or medi-
cal image diagnosis applications enable users to give feedback correcting wrong
model predictions, as depicted in Figure 1 (a). Since feedback can be modeled in
this case as a small amount of labeled target data, it is anticipated that previ-
ous SemiSDA methods assuming the same setup would yield promising results.
However, we observe that they show inferior adaptation performance on multi-
ple DA benchmarks when using such user feedback in practice, as shown in the
dark-gray bar in Figure 1 (b).

We introduce a novel concept called Negatively Biased Feedback (NBF) to
explain this phenomenon. NBF is based on the observation that user feedback
is more likely to be derived from incorrect model predictions. For example, a
radiologist might log a misdiagnosed chest X-ray by the model, as its accuracy
directly impacts the patient’s survival. Interestingly, our observation aligns with
findings from cognitive psychology literature [3,57] that proves that humans are
more likely to react and provide feedback to negative events (i.e., wrong model
predictions). Since such an NBF scenario is feasible, we analyze its unexpected
impact on SemiSDA observed above. We identify that a biased distribution of
NBF within the overall data distribution leads to sub-optimal adaptation results,
particularly compared to Random Feedback (RF). RF represents the classical
SemiSDA setup, where labeled data is randomly selected from the target data.

To address the problem caused by NBF, we present a scalable approach
named Retrieval Latent Defending, which can be seamlessly integrated with ex-
isting SemiSDA methods. Our approach allows them to adapt the model without
a strong dependence on the biasedly distributed labeled data. Specifically, we
balance the supervised adapting signal by appending latent defending samples
to the mini-batch and help to keep the model’s balanced class discriminability
throughout adapting iterations. We evaluate the unexpected influence of NBF
using various benchmarks, including image classification, semantic segmentation,
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Fig. 2: Adaptation with user feedback can be effective in alleviating performance
degradation caused by domain shift. However, there are some challenges: (i) user feed-
back may be a biased sampling of the true target distribution due to the nature of
feedback, (ii) the amount of the ground truths (GT) labels obtained through feedback
is small, and (iii) only unlabeled target data is typically available, not source data.

and medical image diagnosis. Building upon these evaluations, we demonstrate
that our approach not only complements, but significantly enhances the perfor-
mance of multiple SemiSDA methods.

The contributions of the paper are as follows:
◦ We introduce the novel concept called Negatively Biased Feedback and un-

cover that it can lead to sub-optimal adaptation performance of existing
SemiSDA methods.

◦ We analyze this problem and present a scalable solution, Retrieval Latent
Defending, that combines with SemiSDA methods and allows them to avoid
the unexpected effect of NBF.

◦ We show that our approach generalizes through diverse DA benchmarks
and improves adaptation results of state-of-the-art SemiSDA methods.

◦ We publicly release the code on https://github.com/junha1125/RLD-
SemiSDA.

2 Related Work

Adaptation in the deployment environment. Real-world ML products of-
ten encounter performance degradation caused by gaps between the source and
target environment [17]. One solution is to adapt the model using unlabeled data
observed in the target domain, referred to as unsupervised domain adapta-
tion (UDA) [37, 59, 72]. Works on UDA use both source and target data to
improve the target performance by using methods such as domain discrepancy
minimization by adversarial training [18, 41, 59, 70, 72, 73, 76], and self-training
with pseudo labels [45,51,97,98]. Source-free DA (SFDA) builds on UDA and
imposes an additional constraint that the source data can not be accessed during
domain adaptation. This has practical implications for addressing data privacy
concerns or barriers in data transmission to edge devices [34,38,77,95]. The ma-
jority of recent SFDA works rely on strategies like domain clustering [34], near-
est neighbors [91–93], and contrastive learning [8, 35, 101]. Nevertheless, SFDA
does not consider the availability of small labeled data, which may be avail-
able in practical ML systems. Semi-supervised DA (SemiSDA) works mainly
demonstrate that permitting small labeled data in the target domain can sub-
stantially enhance adaptation performance compared to traditional UDA [58].

https://github.com/junha1125/RLD-SemiSDA
https://github.com/junha1125/RLD-SemiSDA
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Their primary strategy is to use domain alignment [20, 33, 58, 94], multi-view
consistency [2, 6, 33,89], and asymmetric co-training [36,90].
Active domain adaptation (ActiveDA) [25, 55, 86] envisions a scenario in
which the machine selects specific target samples and instructs annotators to
label them. The primary objective of ActiveDA is to strategically identify and
select the most informative samples for annotation. These chosen samples (i.e.,
labeled target data) are subsequently utilized to update the source model us-
ing SemiSDA methods [33,58], and the effectiveness of ActiveDA is assessed by
evaluating the target performance of the adapted model.
Semi-supervised learning (SemiSL) aims to reduce expensive human anno-
tations, and propose methods to train a model from scratch using massive unla-
beled data along with limited amounts of labeled data [43, 74]. The majority of
SemiSL methods depend on consistency regularization [4,5,16,60,66,87], which
helps the model to make similar predictions for augmented versions of the same
image. Moreover, adaptive thresholding [9, 12, 24, 66, 81, 88, 99] is also popularly
utilized to produce reliable pseudo labels from unlabeled data.

SemiSDA and SemiSL setups mimic small labeled datasets by randomly se-
lecting subsets of the target dataset, whereas ActiveDA involves selections in-
structed by the machine. In contrast, this paper posits that in real-world applica-
tions, labeled data is typically acquired through user intervention. Additionally,
users often provide feedback on samples misclassified by the model (i.e., nega-
tively biased feedback), a process detailed in the following section.

UDA SFDA ActiveDA SemiSDA SemiSL Our setup
Adaptation ◦ ◦ ◦ ◦ × ◦
Source-free × ◦ × × - ◦
Feedback × × machine-instructed randomly selected randomly selected user-provided

The table above summarizes the comparison of relevant studies to our setup.
In the table, adaptation means fine-tuning the source pre-trained model (as
opposed to training from scratch); feedback represents a small number of labeled
target samples. Appendix A provides further comparisons with settings like class-
imbalanced SemiSDA and test-time adaptation (TTA).

3 Negatively Biased Feedback

3.1 Adaptation with user feedback.
Our adaptation setup is illustrated in Figure 2. A model is pre-trained on the
source data Ds. Next, the model is deployed to the target domain, such as a
smartphone or a hospital, where we assume the transfer of Ds is prohibited
due to data privacy regulations or resource constraints (same setup as SFDA
[34]). While users utilize ML products on the target domain, the model provides
prediction results for data observed in the target domain Dt and occasionally
obtains user feedback in the form of annotations y. We represent the target data
as Dt = X lb

t ∪Xulb
t , where X lb

t = {(xn
lb, y

n
lb) : n ∈ [1.. Nlb]}, Xulb

t = {(xn
ulb) : n ∈

[1.. Nulb]}, xlb and xulb denote labeled and unlabeled data and Nlb and Nulb is
their number of data. Lastly, the model can utilize Dt and SemiSDA algorithms
for adaptation during its inactive phase (e.g ., when users do not use the product,
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Fig. 3: Effect of negatively biased feedback. Our novel observations are that
(a) user-provided feedback in practice has a biased distribution in each class cluster
(the bottom center sub-figure) which is in contrast to random feedback, (b) Existing
SemiSDA methods adapt the model by dominating the labeled data points (the right
sub-figures) even though they are biasedly positioned, and (c) NBF prevents the model
from having a decision boundary for true class clusters and leads to inferior adaptation
performance (the bottom right sub-figure).

like at nighttime) in order to alleviate performance degradation due to domain
shift or to personalize the model based on user feedback.

Rethinking user-provided feedback. Classical SemiSDA works simply as-
sume that a random subset in target data Dt is labeled by users when building
X lb

t . However, as illustrated in Figure 2 (i), we suggest that users are more likely
to provide feedback on misclassified samples by the source model, named nega-
tively biased feedback (NBF). This behavior can be understood from two per-
spectives: (a) users generally expect their feedback to be used as a basis of model
improvement, motivating them to provide NBF, and (b) humans tend to react
more strongly to negative experiences, such as receiving incorrect predictions, as
observed in psychological studies [3,57]. We note that the NBF assumption holds
more strongly for the medical application: it is reasonable to imagine that the
user (i.e., radiologist) logs the mistakes of the model while diagnosing a chest
X-ray exam because the diagnostic accuracy of the model is directly related to
the patient’s chances of survival. Furthermore, applications beyond the medical
domain can also exhibit NBF. For instance, users in self-driving cars can report
errors, such as object detection failures or navigation mistakes, to enhance the
car’s driving capabilities.

3.2 Influence of NBF on SemiSDA

Simulation study. As shown in Figure 3, we conduct a simulation study to
understand the effect of NBF on SemiSDA. We first use the blobs dataset [53]
and construct the source and target data so that domain shift exists between
them (left sub-figures). We pre-train a source model on the source data and
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compute the accuracy in the target domain, where the performance drop due
to domain shift is observed (98.5%→76.4%). Next, we simulate two types of
feedback (i.e., labeled data): random feedback and negatively biased feedback
following a previous SemiSDA setup and our setup, respectively. Specifically,
NBF is randomly selected among misclassified samples by the source model.
We find that random feedback (RF) points are evenly distributed, while NBF
points are biasedly positioned across each class cluster (refer to blue points in
the dashed circle in the center sub-figures).

To alleviate the performance drop caused by domain shift, we adapt the
model using the target data and a semi-supervised method, Pseudo-labeling [1].
This method iteratively optimizes the model by the cross-entropy loss computed
by the ground truth of labeled data and pseudo labels of unlabeled data in a mini-
batch (pseudo labels are predicted by the current adapting model so they can
be changed according to an updating decision boundary. Further comprehension
can be achieved by referring Appendix B.). The SemiSDA results are shown
in the right sub-figures, where we make two interesting observations: (i) the
distribution of labeled data can contribute significantly to a decision boundary
of the adapted model (red arrows in the figure), and (ii) the adapted model
under NBF has poorly improved performance compared with one under RF
(76.4%→88.1% with NBF, but 76.4%→91.7% with RF).
Unexpected influence of NBF. Our intuitive reasoning probably suggests
that NBF provides more information than RF by correcting more source model
deficiencies, and thus leads to better adaptation performance. However, we em-
pirically show that NBF can result in inferior adaptation performance due to its
biased distribution across each class cluster, as illustrated in Figure 3. Surpris-
ingly, we also show that this problem persists, even with other state-of-the-art
SemiSDA methods and large datasets for various DA benchmarks, including
image classification, semantic segmentation, and medical image diagnosis. Our
work highlights the importance of careful design when using user feedback in
real-world scenarios and, to the best of our knowledge, is the first study to un-
cover and analyze this phenomenon.

4 Approach

4.1 Prerequisite: Previous SemiSDA method

Previous SemiSDA and SemiSL works typically construct a mini-batch with
labeled data {(xb

lb, y
b
lb) : b ∈ [1.. B]}, and unlabeled data whose size is µ times

larger than labeled ones {(xb
ulb) : b ∈ [1.. µ·B]}, where B is the mini-batch size

for labeled data. To adapt the model iteratively, they compute the cross-entropy
loss H(·, ·) with labeled data and the consistency regularization to multi-view of
unlabeled data, which are formulated as the following:

Lsup =
1

B

B∑
b=1

H(yb
lb, fθ(x

b
lb)), Lunsup =

1

µ ·B

µ·B∑
b=1

H(ŷb
ulb, fθ(Ω(xb

ulb))), (1)

where fθ(·) is the output probability from the model, ŷulb denotes a pseudo label
obtained from fθ(ω(xulb)), and ω(·) and Ω(·) represent weak and strong image
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Fig. 4: Even though labeled data (xlb, ylb) is biasedly positioned, the model needs to
be adapted with balanced class discriminability (i.e., decision boundary). (i) However,
previous SemiSDA methods have overlooked this fact and used the labeled data naively
by applying a cross-entropy loss, leading to inadequate adaptation performance. (ii)To
alleviate this problem, we propose a scalable adapting approach, retrieval latent de-
fending, which allows the model to adjust the balance of a mini-batch on each iteration
by using latent defending samples xLD together with labeled data xlb.

augmentation, respectively. While sharing the core framework, each SemiSDA
method employs distinct adapting strategies, especially to enhance the effective-
ness of the use of unlabeled data rather than labeled data [6, 81,96].

Problem of previous works. Since previous SemiSDA methods have over-
looked the unexpected impact of NBF, they often suffer from sub-optimal perfor-
mance under the NBF assumption (shown in Section 5). To address this problem,
we focus on developing a scalable solution that (i) can easily combine with ex-
isting DA methods without modifying their core adapting strategies and (ii) can
be applied to a wide range of benchmarks, including medical image diagnosis.

4.2 Retrieval Latent Defending

Based on the observations in Figure 3, we illustrate the unintended effect of
NBF when using an existing SemiSDA method in Figure 4 (top center), where
NBF is likely to exhibit a biased distribution, leading to undesirable adaptation
results. To alleviate this issue, we propose Retrieval Latent Defending as depicted
in Figure 4 (bottom). 1 Prior to each epoch, we generate a candidate bank of
data points, denoted as xLD. 2∼ 4 For each adapting iteration, we balance the
mini-batch by retrieving latent defending samples xLD from the bank. 5∼ 6

The model is then adapted using the reconfigured mini-batch and following the
baseline SemiSDA approach. We hypothesize that the latent space progressively
created by the xLD candidates throughout the adaptation process (bold dashed
circle in Figure 4 (top right)) mitigates the issue caused by NBF, thereby allowing
the SemiSDA baseline to achieve robust adaptation against NBF.
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Candidate bank generation. The candidate bank serves as a repository of
pseudo labels Ŷ ulb

t for a subset of the target unlabeled data Xulb
t . Before each

epoch, we freeze the model and use it to generate pseudo labels Ŷ ulb
t ={(ŷnulb) :

n ∈ [1.. Nulb]}, where ŷnulb is assigned to xn
ulb as the predicted class with the high-

est softmax probability: ŷn
ulb = argmaxc [fθ(x

n
ulb)]c. We then retain only samples

with the top p% highest probabilities within each class. This filtering step helps
mitigate the inclusion of data with potentially inaccurate pseudo labels, as the
model’s predictions on Xulb

t might not always be perfect.

Defending sample selection. We select k latent defending samples xLD from
the bank at random for each labeled data (xb

lb, y
b
lb). These selected samples share

the same pseudo label as the ground-truth label of their associated counter-
parts (i.e., ŷLD = yblb). By incorporating these defending samples, we balance
the data distribution within the current mini-batch. For example, consider x1

lb

and x2
lb in Figure 4 (top right). As these labeled samples are included in the

current mini-batch alongside the selected defending samples x1
LD and x2

LD, we
expect to prevent the supervised adapting signal from becoming overly depen-
dent on the labeled samples. We imagine the effect of the defending samples
throughout the adaptation process and depict the latent space formed gradually
by the xLD candidates as bold dashed circles in Figure 4 (top right).

Consequently, the overall loss consists of the sum of losses in Eq. (1) and a
loss from our proposed method as,

Ltotal = Lsup + Lunsup︸ ︷︷ ︸
baseline

+
1

k · B

k·B∑
b=1

H(ŷ
b
LD, fθ(x

b
LD))

︸ ︷︷ ︸
retrieval latent defending

. (2)

Importance of our method. Understanding the impact of NBF on adapta-
tion performance is crucial. For example, naively adapting a model for a medical
application using radiologist-provided feedback can actually cause performance
degradation (shown in Table 5), potentially posing significant risks to patients.
We propose a scalable and simple approach to solve the problem caused by NBF,
which can not be addressed by existing methods. Given the practicality of the
NBF problem and the scalability of our solution, we believe our work holds
considerable potential for real-world applications.

5 Experiments

5.1 Experimental Setups

Our approach is simple enough to seamlessly combine with existing SemiSDA
algorithms and also be applied to diverse benchmarks. This section describes our
experimental setup for natural image classification tasks and a real-world medical
application. Details for semantic segmentation experiments are in Appendix D.
Baselines. We validate our approach by combining various state-of-the-art algo-
rithms for SemiSDA [58] (e.g ., CDAC [33] and AdaMatch [6]) and SemiSL [66,87]
(e.g ., FlexMatch [96] and FreeMatch [81]). Note that the SemiSL methods have
been demonstrated to be strong SemiSDA learners [99], so we can consider them
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method feedback average r→c r→p p→c c→s s→p r→s p→r
AdaMatch [6] RF 67.6 66.6 68.5 68.5 60.3 69.2 58.7 81.5

NBF 64.5 (-3.1) 64.3 66.1 65.6 56.9 65.6 54.2 78.9

R
es

N
et

w/ ours NBF 72.0 (+7.5) 74.5 72.7 73.9 65.5 70.0 64.3 83.2
AdaMatch [6] RF 74.7 75.3 76.9 73.8 68.0 76.3 67.1 85.5

NBF 73.7 (-1.0) 74.7 76.2 74.7 65.7 74.0 66.8 84.0
V

iT

w/ ours NBF 75.9 (+2.2) 76.9 77.8 77.8 68.5 76.6 68.3 85.1

Table 1: Adaptation results on DomainNet-126. We simulate seven domain-shift
scenarios (i.e., source → target). The model is pre-trained on the source domain and
then adapted to a training set of the target domain. The results on the test set of the
target domain are reported as the top-1 accuracy (%). DomainNet-126 [54,58] dataset
includes real, painting, sketch, and clip-art domains. In this experiment, we assume
that the 378 feedback samples (i.e., 3 labeled data per class) are obtained from users.
A state-of-the-art SemiSDA method, AdaMatch [6], is used as a baseline.

method feedback average a→ c a→ p a→ r c→ a c→ p c→ r p→ a p→ c p→ r r→ a r→ c r→ p
AdaMatch [6] RF 70.9 55.4 80.4 75.9 65.7 81.5 74.6 65.9 58.7 78.4 68.8 61.5 84.3

NBF 69.3 (-1.6) 54.2 76.6 75.3 65.9 79.3 75.5 63.7 57.4 75.9 66.7 56.8 84.2
w/ ours NBF 73.8 (+4.5) 62.2 81.0 79.7 68.8 85.4 78.6 67.7 61.7 79.5 69.0 64.1 88.2

Table 2: Adaptation results on OfficeHome. OfficeHome [75] dataset includes
real, product, art, and clip-art domain. We assume that the 195 feedback samples (i.e.,
3 labeled data per class) are obtained. AdaMatch [6] and ResNet-50 [23] are used.

as SemiSDA methods. For medical experiments, we use Pseudo-labeling [1] as a
baseline since it is easily applicable to medical image adaptation.
Datasets. We utilize natural image datasets containing multiple kinds of do-
mains (e.g ., real and painting). The datasets include DomainNet-126 [54,58] with
142k images of 126 classes, and OfficeHome [75] with 15K images of 65 classes.

To conduct medical experiments, we present a practical medical setting. We
adopt the MIMIC-CXR-V2 dataset [27]. It assumes a multi-finding binary clas-
sification setup, where multiple radiographic findings, like Pneumonia and At-
electasis, can coexist in a single chest X-ray (CXR) sample. Thus, the model
predicts the presence or absence (binary classes) of each individual finding. We
simulate domain shift by using Posterior-Anterior (PA)-view data as the source
and AP-view data as the target, capturing real-world variations in data acqui-
sition. Typically, patients requiring an AP X-ray are those facing positioning
challenges that prevent them from undergoing a PA X-ray. Therefore, this setup
can be seen as a scenario where the target environment is the intensive care unit,
which hospitalizes critically ill patients.

Following the recent SemiSDA [94] and SFDA [8] setups, we assume the
model is pre-trained in the source domain and deployed in the target domain.
Since the datasets above were not initially divided into training and test sets, we
performed a random 8:2 split within each domain, designating them respectively
for training and testing. The training set is used to adapt the model, while the
test set is used to report the top-1 accuracy.
User feedback. Feedback given by users is modeled as annotations {ynlb : n ∈
[1.. Nlb]} on a small subset of the target’s training set Dtrain

t , while the remaining
of them are used as unlabeled target data. In our experiments, we take into
account two types of feedback: random feedback (RF) and negatively biased
feedback (NBF). RF is the same setup of classical SemiSDA and SemiSL, where
randomly selected samples from Dtrain

t are used as small labeled set X lb
t . For

NBF, we randomly select samples that are incorrectly predicted in Dtrain
t by
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feed. amount 378 (3 labeled data per class) 630 (5 labeled data per class)

method RF NBF w/ ours RF NBF w/ ours
Source model 56.5
MME [58] 69.5 68.4 (-1.1) 70.8 (+2.4) 71.2 70.1 (-1.1) 72.5 (+2.4)

CDAC [33] 68.3 64.6 (-3.7) 73.2 (+8.6) 71.7 68.1 (-3.6) 74.9 (+6.8)

AdaMatch [6] 67.6 64.5 (-3.1) 72.0 (+7.5) 70.9 67.7 (-3.2) 74.3 (+6.6)

FixMatch [66] 67.6 63.4 (-4.2) 73.2 (+9.8) 71.5 66.1 (-5.4) 75.1 (+9.0)

UDA [87] 69.2 64.9 (-4.3) 73.4 (+8.5) 72.9 68.8 (-4.1) 75.3 (+6.5)

FlexMatch [96] 73.3 71.4 (-1.9) 74.7 (+3.3) 75.3 73.9 (-1.4) 76.0 (+2.1)

FreeMatch [81] 73.8 72.0 (-1.8) 74.8 (+2.8) 75.6 74.4 (-1.2) 76.1 (+1.7)R
es

N
et

-5
0

[2
3]

Fully supervised 83.6
Source model 64.5
MME [58] 73.2 72.7 (-0.5) 74.1 (+1.4) 74.5 74.0 (-0.5) 75.2 (+1.2)

CDAC [33] 74.2 72.8 (-1.4) 75.4 (+2.6) 75.4 74.1 (-1.3) 76.2 (+2.1)

AdaMatch [6] 74.7 73.7 (-1.0) 75.9 (+2.2) 75.9 75.1 (-0.8) 76.7 (+1.6)

FixMatch [66] 74.6 73.0 (-1.6) 75.6 (+2.6) 75.7 74.3 (-1.4) 76.5 (+2.2)

UDA [87] 74.8 73.3 (-1.5) 75.8 (+2.5) 75.9 74.5 (-1.4) 76.7 (+2.2)

FlexMatch [96] 74.9 73.9 (-1.0) 75.8 (+1.9) 76.0 75.1 (-0.9) 76.9 (+1.8)

FreeMatch [81] 74.9 73.9 (-1.0) 75.7 (+1.8) 76.0 75.1 (-0.9) 76.8 (+1.7)

V
iT

-S
[1

5]

Fully supervised 85.4

Table 3: Comparisons on DomainNet-126. We evaluate our method by integrating
it with SemiSDA and SemiSL methods. The average accuracy of seven domain-shift
scenarios in Table 1 is reported. Source model represents the pre-trained model without
adaptation. Fully supervised means the model is adapted with fully labeled target data.

feed. amount 195 (3 labeled data per class) 325 (5 labeled data per class)

method RF NBF w/ ours RF NBF w/ ours
Source model 57.6
MME [58] 71.2 70.2 (-1.0) 73.4 (+3.2) 73.5 73.1 (-0.4) 75.6 (+2.5)

CDAC [33] 71.2 69.0 (-2.2) 74.3 (+5.3) 73.5 72.3 (-1.2) 75.7 (+3.4)

AdaMatch [6] 70.9 69.3 (-1.6) 73.8 (+4.5) 73.4 72.7 (-0.7) 75.5 (+2.8)

FixMatch [66] 71.4 68.6 (-2.8) 73.7 (+5.1) 73.9 72.2 (-1.7) 75.3 (+3.1)

UDA [87] 72.2 69.5 (-2.7) 74.1 (+4.6) 74.4 73.0 (-1.4) 76.0 (+3.0)

FlexMatch [96] 73.7 72.1 (-1.6) 74.7 (+2.6) 75.9 74.9 (-1.0) 76.6 (+1.7)

FreeMatch [81] 74.0 72.7 (-1.3) 74.8 (+2.1) 75.8 75.0 (-0.8) 76.6 (+1.6)

Fully supervised 87.4
Table 4: Comparisons on OfficeHome. The average accuracy of twelve domain-
shift scenarios in Table 2 is reported. ResNet-50 is used.

the source model (i.e., the pre-trained model before adaptation). Note that we
focus on the impact of a biased label distribution within the same class, as
shown in Figure 3, and thus take the same number of feedback for each class.
Further discussion about the imbalance in the number of feedback between classes
presented in [31,49,83] is provided in Appendix A.2.
Network architectures. We adopt commonly used networks, ResNet [23] and
ViT [15] for natural image tasks and DenseNet [26] for a medical task. We employ
ResNet-50 with the last classification layer comprising a weight normalization
layer and a bottleneck layer, following previous works [8, 34] and use the ViT-
Small (i.e., ViT-S) introduced in [80]. The DenseNet-121 is used, provided in
TorchXrayVision [13], like existing medical works [32,44].
Implementation details. We implement our framework by extending the pub-
licly available USB [80] repository. Both pre-training and adaptation are con-
ducted with a mini-batch size of 128 and the SGD optimizer. Diverse baselines
for SemiSDA and SemiSL are used to compute the losses in Eq. (1). The hyper-
parameters for each baseline simply follow USB [80] or public code [33, 58]. For
all experiments, our approach uses the same hyper-parameters of the appended
defending samples k and reliable filtering rate p as 3 and 0.4, respectively.

5.2 Main Results
Natural image classification. Following recent DA works [8, 94], we con-
duct experiments on seven and twelve domain shift scenarios provided with the
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Source mo. .7738 .7784 .7919 .8236 .8500 .7646 .6642 .7555 .7818 .8271 .8288 .7535 .6894 .7500
PseudoL [1] RF .7850 .7828 .7965 .8453 .8615 .7639 .6832 .7598 .7947 .8333 .8565 .7702 .6957 .7622

NBF .7691 .7719 .7851 .8202 .8468 .7403 .6934 .7446 .7809 .8070 .8260 .7521 .6979 .7324
gap -.0159 -.0109 -.0114 -.0252 -.0147 -.0236 +.0102 -.0152 -.0138 -.0262 -.0304 -.0181 +.0022 -.0298

w/ ours NBF .7884 .7895 .7956 .8515 .8606 .7730 .6821 .7599 .7973 .8445 .8611 .7753 .6851 .7736
gain +.0193 +.0176 +.0105 +.0313 +.0138 +.0326 -.0113 +.0153 +.0164 +.0375 +.0351 +.0232 -.0128 +.0412

NBF-CE .7639 .7682 .7834 .8124 .8418 .7403 .6808 .7472 .7744 .8005 .8199 .7469 .6879 .7277
gap -.0211 -.0146 -.0131 -.0330 -.0198 -.0236 -.0024 -.0126 -.0203 -.0328 -.0366 -.0233 -.0079 -.0344

w/ ours NBF-CE .7875 .7895 .7956 .8515 .8606 .7730 .6731 .7599 .7973 .8445 .8611 .7753 .6831 .7736
gain +.0236 +.0213 +.0122 +.0391 +.0189 +.0327 -.0077 +.0126 +.0229 +.0440 +.0412 +.0284 -.0048 +.0459

Fully super. .8117 .8150 .8277 .8758 .8820 .7984 .6949 .7750 .8200 .8725 .8441 .8044 .7398 .8025

Table 5: Adaptation in a medical application. We use samples with PA-view
as the source data and samples with AP-view as the target data in MIMIC-CXR-
V2 dataset [27]. NBF-CE represents a scenario when NBF is composed of cases with
confident errors. We use DensNet-121 [13, 26] and assume the 20 feedback for the
absence and presence per finding.

DomainNet-126 and OfficeHome datasets, respectively. Table 1 and Table 2 show
the results, where AdaMatch [6] is used as the baseline. We observe consistent
results with Figure 3 even on large natural datasets: when simply applying
the baseline under the NBF assumption, the adapted model shows inferior per-
formance for most domain shifts than applying it under RF, e.g ., 64.5<67.6.
Combining our approach with the baseline mitigates this issue and achieves a
performance increase, e.g ., 64.5→72.0.

We also use other promising baselines and report the average accuracy of all
domain shifts in Table 3 and Table 4 (all results can be found in Appendix F).
While both feedback types bring performance improvement from the source
model, lower performance is observed with NBF. Our method enables the base-
lines to not only address this problem but surpass performance under RF. The
above results suggest that the biased distribution of labeled samples, which has
been overlooked in previous SemiSDA works, is actually problematic, and our
retrieval latent defending approach is effective.
Medical image diagnosis. Table 5 shows the results (bottom) and also de-
picts the effect of NBF (top center). We report the AUROC [7] for each find-
ing following standard practice for measuring computer-aided-diagnosis model
evaluation [32, 44]. The baseline SemiSDA method under NBF exhibits inferior
performance compared to one under RF, but this issue can be mitigated by
combining our approach.

In addition, we propose an interesting and practical scenario named NBF
with more confident errors (NBF-CE). In this scenario, we assume that a radi-
ologist is likely to give feedback when the model makes confidently wrong predic-
tions. Imagine that the model predicts a 1% likelihood of cancer in a CXR image,
but the person actually has cancer. Such failure to detect potential patients early
on can significantly reduce the patient’s chances of survival, so a radiologist may
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labeling type feed. amount RF NBF NBF w/ ours ENT [62] ENT w/ ours
IAST [46,63] PA, 40 points 55.3 53.0 (-2.3) 56.3 (+3.3) 53.5 56.0 (+2.5)

RIPU [85] PA, 40 points 57.6 54.5 (-3.1) 58.0 (+3.5) 54.6 57.7 (+3.1)

Table 6: Adaptation on semantic segmentation. The GTA5 [56] → Cityscapes
[14] setup is used [72]. The target performance of the source model is 36.6 mIoU.

provide feedback to the model. To simulate NBF-CE, we select samples where
the source model most confidently predicts a finding to be absent (ŷ≈0) although
it is clearly visible in the radiograph (y=1), and vice versa, i.e., samples of ŷ≈1
but y=0. Table 5 also shows the results under an NBF-CE scenario, where the
model’s adaptation performance is further reduced compared with NBF (0.7691
for NBF → 0.7639 for NBF-CE). By combining our method, we observe perfor-
mance improvements for both NBF variants, e.g ., 0.7639 for NBF-CE → 0.7875
with ours. We illustrate the hypothesized impact of our method in Table 5.
Semantic segmentation. We evaluate the influence of NBF and our approach
on a semantic segmentation task. We utilize the most common adaptation bench-
mark of GTA5 [56] to Cityscapes [14]. The baseline DA algorithms are used as
IAST [46,63] and RIPU [85] in a source-free scenario. We regard Pixel-based An-
notation (PA) in which we assume 40 pixels per image like LabOR [63]. Table 6
shows results similar to those we observed in the classification and medical imag-
ing tasks. The baselines under NBF exhibit inferior performance compared to
those under RF (54.5 for NBF<57.6 for RF), but this issue is addressed by com-
bining our approach with them (+3.5 mIoU). Although out of our scope (refer to
Appendix A.1), we validate one active labeling strategy ENT [62], which assigns
highly uncertain (i.e., probably misclassified) pixels as feedback. Consequently,
the feedback instructed by ENT is biasedly distributed in a manner similar to
NBF. ENT also causes unexpected results (54.6 for ENT<57.6 for RF), and our
approach alleviates this issue (+3.1 mIoU).

5.3 Ablation Study

Positive vs. Negative feedback. We study the role of feedback on the adapta-
tion results by varying feedback configurations. Let positively-provided feedback
(PF) be obtained from samples that the source model correctly predicts, as op-
posed to negatively-provided feedback (NF). We adjust the ratio of PF:NF while
keeping the total number of labeled samples constant, as shown in Figure 5.

When using only FreeMatch (gray dot-dashed line), both biased feedback
types (i.e., NBF and PBF) result in worse adaptation performance compared to
balanced feedback for the baseline, e.g ., 72.6 in 378:0 (PBF)< 73.3 in 252:126.
In contrast, when our method is applied (red line), NBF yields the best perfor-
mance. PBF and NBF can be respectively regarded as contributing previously
known knowledge of the model and new knowledge that complements model
deficiencies. Hence, it may be natural that NBF, which actually encodes the
model’s mistakes, contributes to favorable adaptation results.
Number of unlabeled samples in a mini-batch. Existing SemiSDA meth-
ods [6, 81] typically set the ratio µ between labeled and unlabeled samples in a

If not specified, we use ResNet-50 and report the average accuracy (%) of seven
domain shift scenarios in Table 1 for ablation studies.
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Fig. 5: NBF leads to higher performance than PBF. We compare different
user-feedback configurations when the total number of feedback is 378 (top) and 630
(bottom). Positive and negative feedback refers to feedback from correct and incorrect
model predictions, respectively. We run three random seed experiments and describe
the average performance and standard deviation in the parenthesis.

method feed. negatively biased feedback (NBF)
#xulb, #xLD , #xlb 112, 0, 16 112, 48, 16 64, 48, 16
total batch size 128 176 128
FreeMatch [81] 72.0 74.2 74.8 (+0.6)

AdaMatch [6]
368

64.5 71.3 72.0 (+0.7)

FreeMatch [81] 74.4 75.5 76.1 (+0.6)

AdaMatch [6]
630

67.7 73.4 74.3 (+0.9)

Table 7: In the mini-batch, diminishing the number of unlabeled samples and adding
our defending samples achieves better performance with our approach. We ablate them
by changing the ratio µ in Section 4.1, while keeping the size of labeled samples.

mini-batch to 1:7. However, we observe that adhering to this ratio is not optimal
for our approach, as shown in Table 7. Our method shows better performance
when the ratio is varied to 1:4, i.e., decreasing unlabeled sample sizes. This find-
ing contradicts observations in several TTA works [28,48,67], where adaptation
performance tends to increase with larger batch sizes. We speculate that it is
beneficial to prioritize more reliable information, which refers to labeled data
and our defending samples selected from the filtering-applied bank, during the
adapting process. This result may be aligned with previous works for curriculum
learning [40,100] and adaptive thresholding [96].
Number of labeled data. We measure the impact of feedback size (number
of labeled samples) in Figure 6. The results show that the inferior performance
on NBF persists even with an increased amount of feedback (gray → black line);
however, our approach mitigates it and improves performance (black → red line).
We make an interesting observation that the performance gap between black
and red lines becomes larger as the number of available feedback decreases.
Since obtaining large feedback may be challenging in real-world applications,
our method is expected to be more helpful in this practical case.
Data selecting strategy. We explore various strategies for selecting defending
samples to balance the mini-batch, as shown in Table 8 (top). The strategies
include: in the xLD candidate bank, (i) random selection regardless of the class
of the labeled data, (ii) random selection in the same class as the labeled data
(i.e., class-aware), (iii) selecting samples close to the cluster center obtained by k
means clustering [21] and (iv) selecting samples with embedded features distant
from the labeled data where cosine distance is used. While our approach consis-
tently outperforms the baseline regardless of the chosen strategy, we empirically
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Fig. 6: More reliable adaptation with NBF. In addition to Table 3, we conduct
experiments with different amounts (1,3,5,10, and 15 labeled data per class) of feedback
using FreeMatch [81]. The number of available feedback is likely to be small in practice.
In this case, our method achieves large performance improvement, e.g ., our method
increases the baseline performance by +4.9 when one feedback per class is available.

selection strategy random random kmeans cosine baseline
class-aware ✗ ✓ ✓ ✓ -
FreeMatch [81] Res. 74.1 74.8 74.6 74.0 72.0
FreeMatch [81] ViT. 75.0 75.7 75.6 75.1 73.9

filtering rate 0.2 0.4 0.6 0.8 baseline only
FreeMatch [81] Res. 74.5 74.8 74.3 73.7 72.0
FreeMatch [81] ViT. 75.5 75.7 75.9 75.5 73.9

Table 8: We ablate a component of our approach with 378 feedback: xLD selection
strategy and filtering rate p for bank generation.

find that strategy (ii) achieves the best performance. Therefore, we adopt this
strategy for our proposed method.

Further studies, such as extension to a TTA scenario, combining with SFDA
methods and different feedback configurations, are presented in Appendix C.

6 Conclusion & Discussion

User feedback can play an integral part in adapting the practical ML product
to the target environment. However, we have shown that naive adaptation using
existing SemiSDA methods led to undesirable adaptation results. We explained
this through the lens of Negatively-Biased Feedback (NBF). In this paper, we
uncovered the unexpected results of NBF and presented a scalable solution,
Retrieval Latent Defending. This method prevents the mini-batch from becoming
overly dependent on labeled samples that may have a biased distribution within
the overall target distribution. Under the diverse DA benchmarks, from the
simulation study to the medical imaging task, we demonstrated the practical
problem caused by NBF and the effectiveness of our approach by combining it
with multiple SemiSDA baselines. We hope our efforts will inspire future DA
works on leveraging user feedback to improve an ML model in the deployment
environment.
Broader impact. The proposed setup assumes that an ML product obtains
feedback as a form of annotations (i.e., labeled data). In some cases, users can
provide feedback in different forms, like thumbs up & down and rating of model
prediction, or noise feedback whose information is different from the ground
truth. Further research considering these points will pave the way for developing
safer and more reliable adapting strategies.
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Lunit Inc., and we would like to thank Donggeun Yoo, Seonwook Park, and
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