
CG-SLAM: Efficient Dense RGB-D SLAM in a
Consistent Uncertainty-aware 3D Gaussian Field

- Supplementary Material -

Jiarui Hu1∗ , Xianhao Chen2∗ , Boyin Feng1 , Guanglin Li1 , Liangjing
Yang2 , Hujun Bao1 , Guofeng Zhang1 , and Zhaopeng Cui1†

1 State Key Lab of CAD&CG, Zhejiang University
2 ZJU-UIUC Institute, International Campus, Zhejiang University

In this supplementary material, we provide more details of our CG-SLAM
system, including 1) a comprehensive theoretical analysis of camera pose deriva-
tives in 3D Gaussian Splatting [4] (Sec. A); 2) further implementation details
(Sec. B); 3) quantitative and qualitative rendering results (Sec. C); 4) further
evaluation of efficiency performance, more ablation results, and comparison to
some traditional baselines (Sec. D). Moreover, we also provide a supplementary
video to visualize our system framework and experimental results.

A Mathematical Analysis Of Camera Pose Gradients

CUDA rasterization pipeline brings significant efficiency gains, but at the same
time, it disabled the Pytorch automatic differentiation mechanism. In this sec-
tion, we will report the comprehensive mathematical analysis of camera pose
gradients in the 3D Gaussian splatting [4] framework to extend this popular
algorithm to a broader range of applications.

Preliminary Framework. The 3D Gaussian splatting [4] algorithm applies
standard α-blending to render RGB values on each pixel, as depicted in Eq. (1).

RGB =

N∑
i=1

ci · αi · Ti . (1)

In CUDA implementation, the gradient of an image-level loss function w.r.t
the pose d(L)

d(pose) is essentially divided into each pixel. If not specified otherwise,
by default we define the camera pose as the transpose of the world-to-camera
transformation as follows:

pose =

[
W t
0 1

]T
=


v0 v1 v2 0
v4 v5 v6 0
v8 v9 v10 0
v12 v13 v14 1

 . (2)

For a given pixel, using the chain rule, the gradient of the rendered RGB values
w.r.t pose can be intuitively decomposed into two main parts: d(c)

d(pose) ,
d(α)

d(pose) ,

∗Jiarui Hu and Xianhao Chen contributed equally to this work.
†Corresponding authors.

https://orcid.org/0009-0006-9563-8956
https://orcid.org/0009-0004-7451-1871
https://orcid.org/0009-0002-1523-0039
https://orcid.org/0009-0000-8996-3775
https://orcid.org/0000-0002-3294-0879
https://orcid.org/0000-0002-2662-0334
https://orcid.org/0000-0001-5661-8430
https://orcid.org/0000-0002-7130-439X

2 Jiarui Hu and Xianhao Chen et al.

∂(c)
∂(pose)

L = L1(Igt , ̂Irender)

∂(RGB)
∂(c)

∂(α)
∂(pose)

∂(RGB)
∂(α)

Color(c) Opacity(α)

fig.1 dL
dpose

in 3d gaussian splatting ?

RGB = ∑ N
i=1ci ⋅ αi ⋅ Ti

Solved

To be solved

Fig.A: Derivation Framework for Computing the Derivative of L w.r.t pose. Note that
the gray boxes denote easy-to-derive parts, considered as "solved" for readers, while
the red boxes denote complicated and tedious parts, considered as "To be solved",
with their final results being provided directly for readability and reproducibility.

where c is the color of a Gaussian primitive G and α is the image-plane opacity.
We show a preliminary mathematical framework in Fig. A. Subsequently, we will
further elaborate on the above two branches.

Branch 1: the gradient of c w.r.t pose. The view-dependent color of a
Gaussian primitive is obtained from spherical harmonics coefficients, which is
further related to its normalized orientation dir = (xnorm, ynorm, znorm) in the
world coordinate, as in Eq. (3) and Eq. (4).

c =

M1∑
i=1

si · SHi · fi(dir) , (3)

fi(dir) = fi(θ, φ) , (4)

where M1 is the degree of SH coefficients, si is the optimizable parameter and
fi(dir) denotes a known function, the transformation from dir = (xnorm, ynorm,
znorm) to angles θ and φ is illustrated in Fig. B. Hence, in this branch, we only
need to calculate the gradient of this orientation w.r.t pose, that is d(dir)

d(pose) .

dir =
dirorigin
|dirorigin|

=
(Gx − Cx, Gy − Cy, Gz − Cz)

|(Gx − Cx, Gy − Cy, Gz − Cz)|
, (5)

d(dir)

d(pose)
=

d(xnorm, ynorm, znorm)

d(Cx, Cy, Cz)
, (6)

CG-SLAM 3

dir

θ

φ

X

Y

Z

o

(xnorm, ynorm, znorm)
cosθ = znorm

cosφ = xnorm

sinθ

sinθ = x2
norm + y2

norm

sinφ = ynorm

sinθ

Fig. B: The conversion from dir to the angles (θ, φ), where θ and φ respectively denotes
the zenith angle and the azimuth angle.

where Gx,y,z and Cx,y,z (Eq. (7)) represent the position of the Gaussian primitive
and camera in the world coordinate. This branch is clearly visualized in Fig. C.
Finally, we can easily derive corresponding results as shown in Fig. D.

[Cx, Cy, Cz]
T = −W−1[v12, v13, v14]

T (7)

d(dir)
d(pose)

d(c)
d(dirorigin)

d(ynorm)
d(pose)

d(dir)
d(ynorm)

d(xnorm, ynorm, znorm)
d(pose)

(d(ynorm)
d(Cx)

, d(ynorm)
d(Cy)

, d(ynorm)
d(Cz)

)

d(c)
d(pose)

d(RGB)
d(c)

d(znorm)
d(pose)

d(dir)
d(znorm)

d(xnorm)
d(pose)

d(dir)
d(xnorm)

(d(xnorm)
d(Cx)

, d(xnorm)
d(Cy)

, d(xnorm)
d(Cz)

) (d(znorm)
d(Cx)

, d(znorm)
d(Cy)

, d(znorm)
d(Cz)

)

Solved

To be solved

1 d(dirorigin)
d(dir)

2 3

1

2

c =
M1

∑
i=1

si ⋅ SHi ⋅ fi (dir)

dirorigin = (Gx − Cx , Gy − Cy , Gz − Cz)

dir =
dirorigin

|dirorigin |
= (xnorm, ynorm, znorm)3

Fig. C: The framework for the derivation of the partial derivative of Color.

4 Jiarui Hu and Xianhao Chen et al.

d(xnorm)
d(Cx)

= − 1
|dirorigin |

+ (Gx − Cx)2

|dirorigin |3
d(xnorm)

d(Cy)
=

(Gx − Cx) ⋅ (Gy − Cy)
|dirorigin |3

d(xnorm)
d(Cz)

= (Gx − Cx) ⋅ (Gz − Cz)
|dirorigin |3

d(ynorm)
d(Cx)

=
(Gx − Cx) ⋅ (Gy − Cy)

|dirorigin |3
d(ynorm)

d(Cy)
= − 1

|dirorigin |
+

(Gy − Cy)2

|dirorigin |3
d(ynorm)

d(Cz)
=

(Gy − Cy) ⋅ (Gz − Cz)
|dirorigin |3

d(znorm)
d(Cx)

= (Gx − Cx) ⋅ (Gz − Cz)
|dirorigin |3

d(znorm)
d(Cy)

=
(Gy − Cy) ⋅ (Gz − Cz)

|dirorigin |3
d(znorm)

d(Cz)
= − 1

|dirorigin |
+ (Gz − Cz)2

|dirorigin |3

Fig.D: The derivative results of the Color branch.

1

2

Gaussianp = e− 1
2 (X−μ)TΣ−1

2D(X−μ)

Σ2D = JWΣ3DWTJT, T = JW

d(α)
d(pose)

d(RGB)
d(α)

d(Gaussianp * αorigin)
d(Gaussianp)

d(RGB)
d(Gaussianp * αorigin)

d(Gaussianp)
d(μ(x, y))

d(μ(x, y))
d(pose)

d(Gaussianp)
d(Σ−12D)

d(Σ−1
2D)

d(Σ2D)

d(Gaussianp)
d(μx)

d(μx)
d(μx_ndc)

d(μx_ndc)
d(pose)

d(Σ2D)
d(T)

d(T)
d(pose)

d(Gaussianp)
d(pose)

1

d(Σ2D)
d(pose)

2

d(Gaussianp)
d(μy)

d(μy)
d(μy_ndc)

d(μy_ndc)
d(pose)

Solved

To be solved

Fig. E: The framework for the derivation of the partial derivative of Opacity.

Branch 2: the gradient of α w.r.t pose. Camera pose plays an important
role in the EWA algorithm [11]. Specifically, it determines the shape of the
projected 2D Gaussian Gaussianp=N (µ,Σ2D) and further affects the image-
plane opacity α according to Eq. (5) in the main paper. We also clearly visualize
this branch in Fig. E.

CG-SLAM 5

First, the expectation µ=(µx, µy) of a 2D Gaussian distribution is acquired
by projecting the central point of its corresponding 3D Gaussian ellipsoid as in
Eq. (8).

[gx, gy, gz, gw]
T = M ·

[
W t
0 1

]
· [Gx, Gy, Gz, 1]

T , (8)

M =


2n
r−l 0 − r+l

r−l 0

0 2n
t−b − t+b

t−b 0

0 0 n+f
n−f − 2nf

n−f

0 0 1 0

 , (9)

µndc =
[
µx_ndc, µy_ndc

]
=

[gx
gw

,
gy
gw

]
∈ [−1, 1] , (10)

d(µx)

d(µx_ndc)
=

w

2
,

d(µy)

d(µy_ndc)
=

h

2
, (11)

where M denotes the perspective matrix, set l = −r, t = −b, µndc refers to the
central point of 2D Gaussian distribution in the NDC coordinate, w and h are
the width and height of an image. Then we can derive the gradient of µ w.r.t
camera pose d(µ)

d(pose) from the forward projection process as follows:

d(µ)

d(pose)
=

d(µx)

d(µx_ndc)
·
d(µx_ndc)

d(pose)
+

d(µy)

d(µy_ndc)
·
d(µy_ndc)

d(pose)
. (12)

We have omitted some simple intermediate steps and concluded the resulting
formulas in Fig. F.

dμx_ndc

dv0
= 1

gw
⋅ (2n

r − l
) ⋅ Gx

dμx_ndc

dv4
= 1

gw
⋅ (2n

r − l
) ⋅ Gy

dμx_ndc

dv8
= 1

gw
⋅ (2n

r − l
) ⋅ Gz

dμx_ndc

dv12
= 1

gw
⋅ (2n

r − l
) ⋅ 1

dμx_ndc

dv1
=

dμx_ndc

dv5
=

dμx_ndc

dv9
=

dμx_ndc

dv13
= 0

dμx_ndc

dv2
= gx ⋅ (− 1

g2w
) ⋅ Gx

dμx_ndc

dv6
= gx ⋅ (− 1

g2w
) ⋅ Gy

dμx_ndc

dv10
= gx ⋅ (− 1

g2w
) ⋅ Gz

dμx_ndc

dv14
= gx ⋅ (− 1

g2w
) ⋅ 1

dμy_ndc

dv0
=

dμy_ndc

dv4
=

dμy_ndc

dv8
=

dμy_ndc

dv12
= 0

dμy_ndc

dv1
= 1

gw
⋅ 2n

t − b
⋅ Gx

dμy_ndc

dv5
= 1

gw
⋅ 2n

t − b
⋅ Gy

dμy_ndc

dv9
= 1

gw
⋅ 2n

t − b
⋅ Gz

dμy_ndc

dv13
= 1

gw
⋅ 2n

t − b
⋅ 1

dμy_ndc

dv2
= gy ⋅ (− 1

g2w
) ⋅ Gx

dμy_ndc

dv6
= gy ⋅ (− 1

g2w
) ⋅ Gy

dμy_ndc

dv10
= gy ⋅ (− 1

g2w
) ⋅ Gz

dμy_ndc

dv14
= gy ⋅ (− 1

g2w
) ⋅ 1

dμx_ndc

dv1
= 0

dμx_ndc

dv5
= 0 dμx_ndc

dv9
= 0

dμx_ndc

dv13
= 0

dμy_ndc

dv0
= 0

dμy_ndc

dv4
= 0

dμy_ndc

dv8
= 0

dμy_ndc

dv12
= 0

Fig. F: The derivative results of the opacity branch: d(µndc)
d(pose)

6 Jiarui Hu and Xianhao Chen et al.

Second, Eq. (13) describes in detail how the EWA splatting algorithm [11]
converts a 3D symmetric covariance Σ3D to a 2D symmetric covariance Σ2D.

Σ2D = JWΣ3DWTJT . (13)

This EWA process involves world-to-camera rotation W and an affine ap-
proximation J of the projective transformation. To make subsequent derivation
concise and readable, we temporarily define T = JW. So far, the gradient of
2D covariance w.r.t camera pose d(Σ2D)

d(pose) can be reformulated as the following
equations. Here, Eq. (15) provides a element-wise expansion of Eq. (13).

d(Σ2D)

d(pose)
=

d(Σ2D)

d(T)
· d(T)

d(pose)
, (14)

Σ2D =

[
a b
b c

]
=

 T00 T01 T02

T10 T11 T12

T20 T21 T22

ϵ0 ϵ1 ϵ2
ϵ1 ϵ3 ϵ4
ϵ2 ϵ4 ϵ5

 T00 T10 T20

T01 T11 T21

T02 T12 T22

 , (15)

T = JW =

[
fx
u2

0 − fxu0

u2
2

0
fy
u2

− fyu1

u2
2

]
·

v0 v4 v8

v1 v5 v9

v2 v6 v10

 , (16)

[
u0, u1, u2, 1

]T
=

[
W t
0 1

]
·
[
Gx, Gy, Gz, 1

]T
. (17)

Refering to the EWA algorithm [11], we ignore the third row of T matrix
(gray elements). Additionally, we multiply the first and second rows of matrix
J by camera intrinsics fx and fy, respectively, to transform Σ2D into the pixel
coordinate system. The gradient of Σ2D w.r.t T is shown in Fig. G. Furthermore,
in this branch, only d(T)

d(pose) remains to be resolved, and we combine Eq. (15),
Eq. (16) and Eq. (17) to provide the answer in the Fig. H.

d(a)
d(T00)

= 2T00ϵ0 + 2T01ϵ1 + 2T02ϵ2
d(a)

d(T01)
= 2T00ϵ1 + 2T01ϵ3 + 2T02ϵ4

d(a)
d(T02)

= 2T00ϵ2 + 2T01ϵ4 + 2T02ϵ5

d(a)
d(T10)

= 0

d(b)
d(T00)

= T10ϵ0 + T11ϵ1 + T12ϵ2
d(b)

d(T01)
= T10ϵ1 + T11ϵ3 + T12ϵ4

d(b)
d(T02)

= T10ϵ2 + T11ϵ4 + T12ϵ5

d(b)
d(T10)

= T00ϵ0 + T01ϵ1 + T02ϵ2
d(b)

d(T11)
= T00ϵ1 + T01ϵ3 + T02ϵ4

d(b)
d(T12)

= T00ϵ2 + T01ϵ4 + T02ϵ5

d(c)
d(T10)

= 2T10ϵ0 + 2T11ϵ1 + 2T12ϵ2
d(c)

d(T11)
= 2T10ϵ1 + 2T11ϵ3 + 2T12ϵ4

d(c)
d(T12)

= 2T10ϵ2 + 2T11ϵ4 + 2T12ϵ5

d(a)
d(T11)

= 0 d(a)
d(T12)

= 0

d(c)
d(T00)

= 0 d(c)
d(T01)

= 0 d(c)
d(T02)

= 0

Fig.G: The derivative results of the opacity branch: d(Σ2D)
d(T)

.

CG-SLAM 7

d(T00)
d(v0)

= fx

u2
(1 − v2Gx

u2
) d(T00)

d(v4)
= fx

u2
(−

v2Gy

u2
)

d(T00)
d(v8)

= fx

u2
(− v2Gz

u2
) d(T00)

d(v12)
= fx

u2
(− v2

u2
)

d(T00)
d(v2)

= fx

u2
(2v2u0Gx

u22
− u0

u2
− v0Gx

u2
) d(T00)

d(v6)
= fx

u2
(2v2u0Gx

u22
−

v0Gy

u2
)

d(T00)
d(v10)

= fx

u2
(2v2u0Gz

u22
− v0Gz

u2
) d(T00)

d(v14)
= fx

u2
(2v2u0

u22
− v0

u2
)

d(T00)
d(v1)

= 0 d(T00)
d(v5)

= 0 d(T00)
d(v9)

= 0 d(T00)
d(v13)

= 0

d(T01)
d(v0)

= fx

u2
(− v6Gx

u2
) d(T01)

d(v4)
= fx

u2
(1 −

v6Gy

u2
)

d(T01)
d(v8)

= fx

u2
(− v6Gz

u2
) d(T01)

d(v12)
= fx

u2
(− v6

u2
)

d(T01)
d(v2)

= fx

u2
(2v6u0Gx

u22
− v4Gx

u2
) d(T01)

d(v6)
= fx

u2
(
2v6u0Gy

u22
− u0

u2
−

v4Gy

u2
)

d(T01)
d(v10)

= fx

u2
(2v6u0Gz

u22
− v4Gz

u2
) d(T01)

d(v14)
= fx

u2
(2v6u0

u22
− v4

u2
)

d(T01)
d(v1)

= 0 d(T01)
d(v5)

= 0 d(T01)
d(v9)

= 0 d(T01)
d(v13)

= 0

d(T01)
d(v0)

= fx

u2
(− v6Gx

u2
) d(T01)

d(v4)
= fx

u2
(1 −

v6Gy

u2
)

d(T01)
d(v8)

= fx

u2
(− v6Gz

u2
) d(T01)

d(v12)
= fx

u2
(− v6

u2
)

d(T01)
d(v2)

= fx

u2
(2v6u0Gx

u22
− v4Gx

u2
) d(T01)

d(v6)
= fx

u2
(
2v6u0Gy

u22
− u0

u2
−

v4Gy

u2
)

d(T01)
d(v10)

= fx

u2
(2v6u0Gz

u22
− v4Gz

u2
) d(T01)

d(v14)
= fx

u2
(2v6u0

u22
− v4

u2
)

d(T01)
d(v1)

= 0 d(T01)
d(v5)

= 0 d(T01)
d(v9)

= 0 d(T01)
d(v13)

= 0

d(T10)
d(v1)

=
fy

u2
(1 − v2Gx

u2
) d(T10)

d(v5)
=

fy

u2
(−

v2Gy

u2
) d(T10)

d(v9)
=

fy

u2
(− v2Gz

u2
) d(T10)

d(v13)
=

fy

u2
(− v2

u2
)

d(T10)
d(v2)

=
fy

u2
(2v2u0Gx

u22
− u1

u2
− v1Gx

u2
) d(T10)

d(v6)
=

fy

u2
(
2v2u0Gy

u22
−

v1Gy

u2
)

d(T10)
d(v10)

=
fy

u2
(2v2u0Gz

u22
− v1Gz

u2
) d(T10)

d(v14)
=

fy

u2
(2v2u0

u22
− v1

u2
)

d(T10)
d(v0)

= 0 d(T10)
d(v4)

= 0 d(T10)
d(v8)

= 0 d(T10)
d(v12)

= 0

d(T10)
d(v1)

=
fy

u2
(1 − v2Gx

u2
) d(T10)

d(v5)
=

fy

u2
(−

v2Gy

u2
) d(T10)

d(v9)
=

fy

u2
(− v2Gz

u2
) d(T10)

d(v13)
=

fy

u2
(− v2

u2
)

d(T10)
d(v2)

=
fy

u2
(2v2u0Gx

u22
− u1

u2
− v1Gx

u2
) d(T10)

d(v6)
=

fy

u2
(
2v2u0Gy

u22
−

v1Gy

u2
) d(T10)

d(v10)
=

fy

u2
(2v2u0Gz

u22
− v1Gz

u2
) d(T10)

d(v14)
=

fy

u2
(2v2u0

u22
− v1

u2
)

d(T10)
d(v0)

= 0 d(T10)
d(v4)

= 0 d(T10)
d(v8)

= 0 d(T10)
d(v12)

= 0

d(T12)
d(v1)

=
fy

u2
(− v10Gx

u2
) d(T12)

d(v5)
=

fy

u2
(−

v10Gy

u2
) d(T12)

d(v9)
=

fy

u2
⋅ (1 − v10 ⋅ Gz

u2
) d(T12)

d(v13)
=

fy

u2
⋅ (− v10 ⋅ 1

u2
)

d(T12)
d(v2)

=
fy

u2
(2v10u0Gx

u22
− v9Gx

u2
) d(T12)

d(v6)
=

fy

u2
(
2v10u0Gy

u22
−

v9Gy

u2
) d(T12)

d(v10)
=

fy

u2
(2v10u0Gz

u22
− u1

u2
− v9Gz

u2
) d(T12)

d(v14)
=

fy

u2
(2v10u0

u22
− v9

u2
)

d(T12)
d(v0)

= 0 d(T12)
d(v4)

= 0 d(T12)
d(v8)

= 0 d(T12)
d(v12)

= 0

Fig.H: The derivative results of the opacity branch: d(T)
d(pose)

.

8 Jiarui Hu and Xianhao Chen et al.

B Implementation Details

More Hyperparameters. We implemented the pipeline using PyTorch 1.11.0
and Python 3.8.18. We employed the Adam optimizer with the hyperparameters
beta = (0.9, 0.999), weight_decay = 0, and epi =(1e-08, 1e-15) for tracking and
mapping. We set the learning rate of {so(3)|T} to {0.001, 0.001} in sliding bundle
adjustment. The Gaussian optimizer focuses on optimizing Gaussian properties
including XYZ coordinates (xyz), SH coefficients, opacity, scaling, and rotation.
In all our experiments, we employed the following learning rates for Gaussian op-
timization: {xyz : 0.00025; SH coefficients : 0.0025; opacity : 0.05; scaling :
0.0001; rotation : 0.001}.
Gaussian Properties Initialization. For newly added Gaussian primitives,
their 3D positions and SH coefficients are calculated from depth and color ob-
servations, and other properties are initialized similarly with the original 3D
Gaussian [4]. In addition, we will clone and split Gaussian primitives in the first
half of mapping optimization.

Table A: Rendering Performance on the Replica Dataset [7]. Our system
achieves the best performance surpassing existing methods on all three metrics: PSNR,
SSIM, and LPIPS. "*" indicates that, in the half-resolution setting, structural metrics
such as SSIM and LPIPS are not comparable to those of full-resolution images.

Method Metric rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

Vox-Fusion
PSNR [dB]↑ 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21 24.41
SSIM↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801
LPIPS↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

NICE-SLAM
PSNR [dB]↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42
SSIM↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809
LPIPS↓ 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Co-SLAM
PSNR [dB]↑ 27.27 28.45 29.06 34.14 34.87 28.43 28.76 30.91 30.24
SSIM↑ 0.910 0.909 0.932 0.961 0.969 0.938 0.941 0.955 0.939
LPIPS↓ 0.324 0.294 0.266 0.209 0.196 0.258 0.229 0.236 0.252

Point-SLAM
PSNR [dB]↑ 32.40 34.08 35.50 38.26 39.16 33.99 33.48 33.49 35.17
SSIM↑ 0.974 0.977 0.982 0.983 0.986 0.960 0.960 0.979 0.975
LPIPS↓ 0.113 0.116 0.111 0.100 0.118 0.156 0.132 0.142 0.124

GS-SLAM
PSNR [dB]↑ 31.56 32.86 32.59 38.70 41.17 32.36 32.03 32.92 34.27
SSIM↑ 0.968 0.973 0.971 0.986 0.993 0.978 0.970 0.968 0.975
LPIPS↓ 0.094 0.075 0.093 0.050 0.033 0.094 0.110 0.112 0.082

SplaTAM
PSNR [dB]↑ 32.86 33.89 35.25 38.26 39.17 31.97 29.70 31.81 34.11
SSIM↑ 0.980 0.970 0.980 0.980 0.980 0.970 0.950 0.950 0.970
LPIPS↓ 0.070 0.100 0.080 0.090 0.090 0.100 0.120 0.150 0.100

Ours
PSNR [dB]↑ 33.27 37.78 38.04 41.03 41.38 33.84 34.60 37.44 37.17
SSIM↑ 0.977 0.989 0.990 0.992 0.993 0.983 0.987 0.988 0.987
LPIPS↓ 0.077 0.043 0.055 0.036 0.038 0.086 0.074 0.073 0.060

Ours-light*
PSNR [dB]↑ 32.43 35.45 36.10 39.53 40.61 33.77 34.03 37.12 36.09
SSIM↑ 0.978 0.987 0.990 0.993 0.994 0.989 0.991 0.991 0.989
LPIPS↓ 0.074 0.047 0.039 0.026 0.027 0.054 0.039 0.050 0.045

CG-SLAM 9

O
ur
s

G
T

Room1Office3 Room0Office2 Room2

Fig. I: Rendering Performance on Replica [7] Dataset. Our system can achieve
photo-realistic rendering performance.

C Rendering Results

We evaluate the average peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and learned perceptual image patch similarity (LPIPS) as the render-
ing metrics. We compare the rendering quality of our method with the existing
NeRF-SLAM and concurrent Gaussian-based works in Tab. A, where results
show that our method can yield more photorealistic rendering images. We re-
quire fewer optimization iterations, than the most photorealistic NeRF-based
Point-SLAM [6] and concurrent methods [3,10], to achieve better rendering per-
formance. Additionally, relying on the 3D Gaussian rasterization, our method
can render at an extremely high speed of 770 FPS in the test.

Our proposed CG-SLAM is able to perform efficient and realistic rendering,
and in this section, we additionally show more qualitative rendering images. At
the same time, as a novel application, CG-SLAM allows setting a third-person
view (Novel View) to observe camera motions in real time.

Additional Qualitative Renderings Results. In Fig. I, we show our ren-
dering results on Replica [7] Dataset. We can observe that our rendered images
closely resemble the ground truth ones, demonstrating that CG-SLAM is capable
of achieving extremely photorealistic rendering performance.

Online Third-person View Rendering. Due to our highly consistent 3D
Gaussian field and GPU-accelerated rasterizer, our system is able to support
online third-person view rendering (real-time novel-view synthesis) as shown in
Fig. J. Please refer to our supplementary video for the video result.

Third-person View Rendering

ro
om

0

Fig. J: Third-person View Rendering. Benefiting from our efficient CG-SLAM
system, We can observe camera motions in real time from a third-person viewpoint.

10 Jiarui Hu and Xianhao Chen et al.

Table B: Runtime Analysis. In this table, we further compare real-time performance
between ours and Co-SLAM [9] in TUM-RGBD [8] and ScanNet [1]. CG-SLAM still
exhibits excellent efficiency in the real world. Tracking FPS is calculated solely based
on per-frame tracking time.

Dataset Method Tracking Mapping Mapping Tracking
[ms×it]↓ [ms×it]↓ Interval FPS↑

TUM Ours-light 2.47 × 25 13.5 × 50 15 16.2
Co-SLAM 6.50 × 10 17.6 × 20 5 15.4

ScanNet Ours-light 2.59 × 25 12.1 × 50 15 15.4
Co-SLAM 6.92 × 10 19.0 × 10 5 14.4

D Further Evaluation

In this section, we further analyze the efficiency performance of our proposed
system on real-world datasets in Sec. D.1. We have also provided more ablation
results (Sec. D.2), tracking variance evaluation (Sec. D.3), and qualitative re-
construction details (Sec. D.4) to illustrate the effectiveness and advancement of
our designs. In addition, we have added some traditional baselines in Sec. D.5
for a more comprehensive evaluation.

D.1 More Efficiency Analysis

Noisy depth images in real-world scenes pose an efficiency challenge to Gaussian-
based SLAM systems because low-quality Gaussian properties initialization re-
quires a higher optimization cost. Therefore, compared with the most efficient
NeRF-based Co-SLAM [9], we further evaluate the efficiency performance of
CG-SLAM in TUM-RGBD [8] and ScanNet [1]. Results in Tab. B demonstrate
that our system can still maintain better efficiency in the real world.

D.2 More Ablation Results

Uncertainty Module. We perform an ablation study on the uncertainty mod-
ule as shown in Tab. C, where the results further illustrate the improvement
from our uncertainty module. It is worth noting that the uncertainty is also
calculated in parallel, bringing negligible additional computational cost.

We have also visualized uncertainty heat maps as shown in Fig. K. Higher
uncertainty frequently appears at edge regions. This occurs as Gaussians at
edge regions may contribute to multiple pixels with significant depth differences,
resulting in noticeable ambiguity.
Bundle Adjustment. We perform an ablation study on the bundle adjustment
to demonstrate its effectiveness, as shown in Tab. D. Results show that this
strategy can utilize co-visible relationships to improve tracking accuracy
Lie Algebra. We perform an ablation study on mathematical pose formats (Lie
Algebra/Quaternion) in Tab. E to illustrate our empirical finding mentioned in
the main paper.

CG-SLAM 11

Table C: Uncertainty Model Ablation Results (ATE RMSE [cm] ↓). The
uncertainty model can effectively improve tracking performance.

Setting rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

w/ UN 0.29 0.27 0.25 0.33 0.14 0.28 0.31 0.29 0.27
w/o UN 0.32 0.28 0.27 0.33 0.18 0.40 0.46 0.29 0.32

Table D: Bundle Adjustment Ablation Results (ATE RMSE [cm] ↓). It can
be seen that the tracking accuracy gradually improves with increasing BA iterations.

Setting rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

BA-30iters 0.29 0.27 0.25 0.33 0.14 0.28 0.31 0.29 0.27
BA-20iters 0.38 0.32 0.28 0.34 0.16 0.36 0.38 0.30 0.32
BA-10iters 0.47 0.32 0.53 0.44 0.15 0.36 0.45 0.33 0.38

Table E: Pose Fromats Ablation Results (ATE RMSE [cm] ↓). We empirically
discovered that the Lie Algebra is more advantageous for tracking in a Gaussian field.
"-" indicates a failure situation.

Setting rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

Lie Algebra 0.29 0.27 0.25 0.33 0.14 0.28 0.31 0.29 0.27
Quad 0.52 1.43 0.31 0.28 0.22 0.53 1.53 - -

Table F: Isotropy Ablation in Rendering (PSNR [dB] ↓). These results indicate
that anisotropy regularization only has a slight impact on rendering quality. "-": we
don’t list results for Office-4 due to the failure of ‘w/o Liso’ setting.

Setting rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

w/ Liso 33.27 37.78 38.04 41.03 41.38 33.84 34.60 - 37.13
w/o Liso 34.92 37.89 38.66 42.31 42.01 37.01 30.63 - 37.63

Isotropy in Rendering. In Tab. F, quantitative results reveal the impact of
the anisotropy regularization term on rendering. It is evident that anisotropy
regularization is a necessary design, considering the slight decrease in rendering
quality and significant improvement in tracking.

room0 office3room2 room1low

high

Fig.K: Uncertainty Heat Map. It is clear that high uncertainty always occurs at
ambiguous edge regions.

12 Jiarui Hu and Xianhao Chen et al.

Table G: Alignment & Variance Loss Ablation Results. We analyze the effec-
tiveness of alignment and variance losses using tracking and reconstruction metrics.
We show average results from 8 Replica [7] scenes in this table.

Metric w/o Lalign w/o LV ar w/o Lalign&Lvar Ours-full

RMSE.[cm]↓ 0.28 0.30 0.33 0.27
Chamfer dis.[cm]↓ 4.74 4.57 4.79 3.85

Table H: Variance Evaluation. Experimental results show that compared to pixel-
level optimization (Ray-tracing), image-level optimization (Rasterization) can further
reduce tracking variance.

Method Metric rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

Co-SLAM
Mean [cm]↓ 0.46 0.60 0.61 0.45 0.41 1.68 0.93 0.59 0.72
Median [cm]↓ 0.42 0.52 0.57 0.39 0.38 1.56 0.86 0.50 0.65
Std [cm]↓ 0.25 0.38 0.35 0.32 0.21 0.80 0.46 0.36 0.39

Ours-light
Mean [cm]↓ 0.32 0.31 0.23 0.23 0.28 0.40 0.49 0.49 0.34
Median [cm]↓ 0.31 0.28 0.20 0.22 0.27 0.37 0.48 0.45 0.32
Std [cm]↓ 0.13 0.14 0.17 0.10 0.10 0.17 0.19 0.22 0.15

Alignment&Variance Losses. To explain the contribution of our alignment
and variance losses to a 3D Gaussian field, we add the Chamfer Distance
as a new metric to quantify the distance between Gaussian primitives and
surfaces. As shown in Tab. G, these two loss functions effectively reduce the
Chamfer Distance and further have a positive impact on the tracking metric.

D.3 Variance Evaluation

In Tab. H, we evaluate the standard deviation, median, and mean metrics from
Co-SLAM [9] and ours. It is obvious that image-level optimization can produce
lower variance compared to the pixel-level one.

D.4 Reconstruction Details.

As shown in Fig. L, compared to the most efficient NeRF-based Co-SLAM [9], we
zoomed in on qualitative reconstruction details, demonstrating that our method
can maintain fine-grained mapping performance while achieving higher efficiency.

D.5 Traditional Baselines

Experiments. We have taken the currently popular ORB-SLAM2 [5] and Bundle-
Fusion [2] as our traditional baselines, and similarly evaluated tracking accuracy
across various datasets. Tab. I shows results in Replica [7], which demonstrate
that CG-SLAM can achieve better performance than traditional baselines with
decent depth maps. Traditional feature-based pipelines are sensitive to texture-
less scenes. For example, ORB-SLAM2 failed when facing a textureless wall in

CG-SLAM 13

O
ur
s

G
T

C
o-

SL
AM

office2 room1 room2office1

Fig. L: Reconstruction Details. Some reconstruction details are emphasized in this
figure, such as folds on cushions and corners of chairs, to illustrate that our method
can produce more precise and sharp results.

Room 2. However, relying on image-level backpropagation, our system can still
solve accurate poses in the same scene. The Gaussian-based system exhibits ro-
bustness to extreme scenarios. In challenging real-world TUM-RGBD [8] and
ScanNet [1] datasets, despite being interfered by noisy depth, CG-SLAM still
produces state-of-the-art tracking results in Tabs. J and K across various scenes,
except for being slightly worse than ORB-SLAM2 [5] in the TUM-RGBD [8].
We reproduce all results from traditional methods in RGB-D mode.
Discussion. Both NeRF-based and Gaussian-based SLAM works utilize the
differentiable rendering pipeline for tracking and mapping, which is essentially
different from traditional methods. Such rendering-based works enable photore-
alistic rendering and full-dense reconstruction, which show promising potential
to solve some longstanding challenges. However, there is still a gap between these
new-developed methods and traditional ones, especially in efficiency and mem-
ory consumption. This is exactly why traditional methods can gain popularity
in real-world applications. To this end, we expect that our work can effectively
bridge this gap and make meaningful contributions to this emerging rendering-
based SLAM community.

Table I: Tracking Results on the Replica Dataset [7] (ATE RMSE [cm] ↓).
Both our versions achieve state-of-the-art performance in this dataset. "*" indicates
that ORB-SLAM2 [5] fails at the end of the Room2 sequence and we exclude those
failure frames in the evaluation.

Method rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

ORB-SLAM2 0.55 0.33 0.47* 0.49 0.58 1.09 0.91 1.29 0.71
BundleFusion 0.64 0.59 1.34 0.60 0.97 1.03 0.66 0.90 0.84

Co-SLAM 0.77 1.04 1.09 0.58 0.53 2.05 1.49 0.84 0.99
Ours 0.29 0.27 0.25 0.33 0.14 0.28 0.31 0.29 0.27
Ours-light 0.44 0.36 0.33 0.29 0.27 0.43 0.52 0.58 0.40

14 Jiarui Hu and Xianhao Chen et al.

Table J: Tracking Results on the TUM-RGBD Dataset [8] (ATE RMSE [cm]
↓). Our method demonstrates competitive performance on this dataset, compared to
traditional baselines, although slightly inferior to ORB-SLAM2 [5].

Method fr1/desk fr1/desk2 fr1/room fr2/xyz fr3/office Avg.

ORB-SLAM2 1.60 2.20 4.70 0.40 1.00 1.98
BundleFusion 3.45 3.47 14.39 1.66 3.43 5.28

Co-SLAM 2.70 4.57 30.16 1.90 2.60 8.38
Ours 2.43 4.54 9.39 1.20 2.45 4.00
Ours-light 3.14 4.73 10.67 1.28 2.60 4.48

Table K: Tracking Results on the ScanNet Dataset [1] (ATE RMSE [cm] ↓).
CG-SLAM is able to perform more accurate and robust camera tracking in ScanNet [1]
dataset. "-" indicates failure cases of BundleFusion [2].

Method Sc.0000 Sc.0059 Sc.0106 Sc.0169 Sc.0181 Sc.0207 Avg.

ORB-SLAM2 8.43 7.46 8.94 8.74 23.97 7.42 10.83
BundleFusion 9.09 18.64 - 8.06 11.33 8.47 -

Co-SLAM 7.18 12.29 10.9 6.62 13.43 7.13 9.37
Ours 7.09 7.46 8.88 8.16 11.60 5.34 8.08
Ours-light 5.62 8.73 9.78 7.93 12.02 5.45 8.17

References

1. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5828–5839 (2017)

2. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: Real-
time globally consistent 3d reconstruction using on-the-fly surface reintegration.
ACM Transactions on Graphics (ToG) 36(4), 1 (2017)

3. Keetha, N., Karhade, J., Jatavallabhula, K.M., Yang, G., Scherer, S., Ramanan,
D., Luiten, J.: Splatam: Splat, track & map 3d gaussians for dense rgb-d slam.
arXiv preprint arXiv:2312.02126 (2023)

4. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (2023)

5. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for
monocular, stereo and RGB-D cameras. IEEE Transactions on Robotics 33(5),
1255–1262 (2017). https://doi.org/10.1109/TRO.2017.2705103

6. Sandström, E., Li, Y., Van Gool, L., Oswald, M.R.: Point-slam: Dense neural point
cloud-based slam. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 18433–18444 (2023)

7. Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J.J., Mur-
Artal, R., Ren, C., Verma, S., Clarkson, A., Yan, M., Budge, B., Yan, Y., Pan,
X., Yon, J., Zou, Y., Leon, K., Carter, N., Briales, J., Gillingham, T., Mueggler,
E., Pesqueira, L., Savva, M., Batra, D., Strasdat, H.M., Nardi, R.D., Goesele, M.,
Lovegrove, S., Newcombe, R.: The replica dataset: A digital replica of indoor spaces
(2019)

https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TRO.2017.2705103

CG-SLAM 15

8. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for
the evaluation of rgb-d slam systems. In: 2012 IEEE/RSJ international conference
on intelligent robots and systems. pp. 573–580. IEEE (2012)

9. Wang, H., Wang, J., Agapito, L.: Co-slam: Joint coordinate and sparse parametric
encodings for neural real-time slam. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 13293–13302 (2023)

10. Yan, C., Qu, D., Xu, D., Zhao, B., Wang, Z., Wang, D., Li, X.: Gs-slam: Dense vi-
sual slam with 3d gaussian splatting. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 19595–19604 (2024)

11. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Ewa volume splatting. In: Pro-
ceedings Visualization, 2001. VIS’01. pp. 29–538. IEEE (2001)

	CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-aware 3D Gaussian Field - Supplementary Material -

