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Abstract. Object counting typically uses 2D point annotations. The
complexity of object shapes and the subjectivity of annotators may lead
to annotation inconsistency, potentially confusing counting model train-
ing. Some sophisticated noise-resistance counting methods have been
proposed to alleviate this issue. Differently, we aim to directly refine
the initial point annotations before training counting models. For that,
we propose the Shifted Autoencoders (SAE), which enhances annota-
tion consistency. Specifically, SAE applies random shifts to initial point
annotations and employs a UNet to restore them to their original posi-
tions. Similar to MAE reconstruction, the trained SAE captures general
position knowledge and ignores specific manual offset noise. This allows
to restore the initial point annotations to more general and thus consis-
tent positions. Extensive experiments show that using such refined con-
sistent annotations to train some advanced (including noise-resistance)
object counting models steadily/significantly boosts their performances.
Remarkably, the proposed SAE helps to set new records on nine datasets.
The code is available at https://github.com/zouyuda220/SAE.
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1 Introduction

Object counting [3,9,19,20,26,27,36,48], increasingly vital in domains like secu-
rity surveillance [34], urban planning [18], and biological research [1], has bene-
fited greatly from advancements in computer vision. Most object counting meth-
ods can be roughly classified into two categories: localization-based [25, 32, 36]
and density-map-based approaches [4, 6, 8–10, 14, 24, 27, 38, 41, 42]. Localization-
based methods focus on identifying individual objects with bounding box [32] or
point [25, 36, 47] representation. In contrast, density-map-based methods apply
regression techniques to estimate the density distribution of objects.

Object counting datasets [9, 15, 16, 28, 29, 35, 50], distinct from those for ob-
ject detection, predominantly use 2D coordinate points for marking objects. This
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SAE uses general positional knowledge to restore shifted annotations, yielding specific-offset-noise-free restoration. 

MAE
Mask

MAE uses general knowledge to reconstruct masked areas, resulting in specific-detail-free reconstruction.

Restored point annotation

SAE

Initial point annotation Random shift vector

Training image Masked image Reconstructed image

Fig. 1: Drawing inspiration from MAE, our SAE captures general positional knowledge
by being trained to restore the shifted point annotations to their original positions. In
the restoration phase, the trained SAE restores the initial point annotations to more
common positions using the learned general positional knowledge.

annotation mode is particularly advantageous for densely packed or overlapping
objects. However, this approach inevitably results in variations and inconsisten-
cies in point annotations within the dataset, primarily due to the subjective
decisions made by annotators in selecting the point annotation positions for
different objects of the same type. Inconsistencies in point annotations may in-
troduce ambiguity and confusion during the training phase of counting models,
compromising their counting accuracy.

To mitigate the issue of annotation inconsistencies in object counting datasets,
various strategies have been proposed. ADSCNet [2] employs prediction of the
network to adjust the target density map using the Gaussian Mixture Model
(GMM) [30]. Other methods like BL [27] and RSI [4] focus on enhancing noise re-
sistance by altering the loss function and convolution filter, respectively. Building
upon BL, NoiseCC [41] introduces a novel loss function that lowers the weights
of uncertain regions on the density map, thereby reducing the influence of noisy
annotations. These methods, though effective in enhancing the model’s tolerance
to annotation inconsistency, are primarily involved in the training phase based
on the inconsistent annotations. Integration of these methods into other frame-
works may complicate the training process. Additionally, their application to
localization-based methods remains unverified, as they were originally designed
for density-map-based approaches. Alternatively, directly improving initial an-
notations presents a more efficient and broadly applicable solution.
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In this paper, we aim to directly refine the inconsistent point annotations to
consistent ones. Drawing inspiration from Masked Autoencoders (MAE) [12], we
introduce the Shifted Autoencoders (SAE). Specifically, as illustrated in Fig. 1,
MAE is trained by masking a portion of an image and reconstructing the masked
image to the original unmasked one. As a form of Denoised Autoencoders [39],
the MAE captures the general knowledge and discards the specific knowledge of
all the training data through the reconstruction training process on a vast num-
ber of images [39]. As a result, the trained MAE tends to reconstruct generic
patterns and ignore specific patterns even for previously trained images (see
the reasonable overall representation of the reconstructed bus and the missing
text on the bus of Fig. 1). From the aspect of reconstruction quality, the image
reconstructed by MAE is not perfectly the same as the original one. Interest-
ingly, such a similar imperfect restoration is what we need for point
annotation restoration.

Similar to MAE [12] that applies random masks to the original image and
aims to reconstruct it, we apply random 2D shifts to the initial point annotations
and predict a restoration vector field to restore these shifted point annotations
to their original positions. While trained on numerous similar objects and their
point annotations, the SAE, akin to MAE, is compelled to capture the general
positional knowledge and discard the specific manual offset noise knowledge of all
the manual annotations in the training data. In the restoration phase, the trained
SAE regards the initial manual point annotations as shifted points and uses
learned general positional knowledge to restore them. In this way, the restored
point annotations mitigate their individual manual offset noise, presenting more
consistency with each other (see the bottom of Fig. 1).

We conduct extensive experiments on eleven datasets of three applications
(crowd counting, remote sensing object counting, and cell counting). Compared
to training with the initial point annotations, training with the ones revised by
SAE steadily boosts the performance of some state-of-the-art counting methods.

The main contributions of this work are threefold: 1) We present the idea of
directly refining the point annotations to be more consistent, which is beneficial
for both density-map-based and localization-based object counting methods. 2)
We novelly introduce the Shifted AutoEncoders (SAE), which effectively cap-
tures the general positional knowledge and ignores specific manual offset noise
within the training data, yielding consistent point annotations. 3) The proposed
SAE helps to set new state-of-the-art results on nine datasets.

2 Related Work

There are roughly two types of object counting methods: density-map-based
methods [4,6,8–10,14,41] and localization-based methods [25,32,36]. Both types
of methods heavily rely on the point annotation quality. Existing methods [2,
4, 27, 41, 45] coping with the inconsistent point annotations mainly focus on
enhancing the model’s tolerance to annotation noise. We will shortly review
these methods in the following.



4 Y. Zou et al.

Fig. 2: Illustrative example of relative spatial distribution (approximating a Gaussian
distribution [45]) of point annotations w.r.t. corresponding heads.

2.1 Density-Map-Based Object Counting

Density-map-based methods have emerged as the predominant approach in ob-
ject counting. These methods involve creating a learning target in the form of
a density map, which is constructed by applying Gaussian kernels to smooth
point annotations. Models are then trained to emulate this map, with count-
ing results derived through spatial integration over the density map. Recent
improvements in this field include the creation of more complex network archi-
tectures [8,19,24,48], refinement of loss functions [15,27,41,43], introduction of
new density map formats [6, 22, 40, 44], and the integration of scale variability
factors [9, 37, 50]. While density-map-based methods have achieved significant
success, they are limited in providing individual object location information.

2.2 Localization-Based Object Counting

Localization-based object counting methods [25, 32, 36] focus on directly pin-
pointing each target object, offering broader applicability. Early methods regard
counting as an object detection problem using pseudo bounding boxes [32], and
struggle in congested areas. Recent advancements like P2PNet [36] and PET [25]
go beyond bounding boxes. P2PNet employs point localization through Hungar-
ian matching [17] with fixed anchor points. In contrast, PET strategically places
anchor points, further improving the counting accuracy. While localization-based
methods offer detailed object localization information, they may not perform well
in extremely dense areas.

2.3 Methods Focusing on Annotation Inconsistencies

ADSCNet [2] introduces a novel framework that leverages network prediction to
refine target density map using Gaussian Mixture Models (GMM). Both BL [27]
and RSI [4] emphasize enhancing noise resistance in their respective frameworks.
In particular, BL achieves this through the introduction of an innovative loss
function. RSI redesigns the convolutional filter. Building upon BL, NoiseCC [41]
incorporates a loss function that reduces the loss weights of uncertain regions on
the density map, mitigating the impact of noisy annotations.
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Fig. 3: The pipeline of the proposed Shifted Autoencoders (SAE), consisting of three
steps: 1) Shifted point generation by adding random shift vectors to the initial an-
notated points; 2) Training the SAE with generated shift vectors by restoring shifted
points to their original positions based on predicted restoration vector field; 3) Self-
restoration that shifts the originally annotated points with corresponding restoration
vectors in the predicted vector field.

These methods primarily focus on enhancing the model’s tolerance to annota-
tion noise rather than directly improving the quality of the initial point annota-
tions. Additionally, applying these methods each time incurs additional training
costs. Furthermore, these methods are primarily tailored for density-based meth-
ods, which may impose limitations on their applicability to localization-based
methods. In contrast, our proposed approach focuses on directly refining initial
point annotations, presenting a more efficient and broadly applicable solution.

3 Methodology

3.1 Overview

The quality of point annotation affects the training of counting models, which is
vital for the final counting accuracy. Yet, the subjective decisions made by anno-
tators in selecting the point annotation positions often lead to inconsistent an-
notation. Taking crowd counting as an example, the relative spatial distribution
of manual point annotations w.r.t. corresponding objects (heads) roughly obeys
a Gaussian function [45]. As shown in Fig. 2, the manual point annotations share
a common distribution center (representing general position), and have specific
and different offsets from this center (indicating specific manual offset noise).
Inspired by Masked Autoencoders (MAE) [12], we propose the Shifted Autoen-
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coders (SAE), a novel approach designed to improve the consistency of point
annotations within object counting datasets before training counting models.

The workflow of SAE comprises three steps (see Fig. 3). Firstly, we gen-
erate shifted point annotations by applying random shifts to the initial point
annotations. Secondly, the SAE network is trained to restore these shifted point
annotations to their original positions by predicting a restoration vector field.
While trained on numerous similar objects and their point annotations, the SAE,
similar to MAE [12], is compelled to capture the general positional knowledge
and ignores the specific manual offset noise knowledge of all the manual anno-
tations in training data. Finally, we regard initial manual point annotations as
shifted point annotations, and adopt the trained SAE to restore them toward
the common distribution center, yielding more consistent annotations.

3.2 Shifted Point Annotation Generation

Given an image X in the training set, it is associated with a set of point an-
notations P = {pi = (xi, yi)}, where xi (resp. yi) represents the x (resp. y)
coordinate of the i-th point annotation pi. The i ranges from 1 to N , where N
denotes the total number of point annotations within this image. For each anno-
tation point pi = (xi, yi) in P , we apply a random 2D shift vector vi, which can
be decomposed into two separate components: angle ai and magnitude mi. Each
component is considered independently. Specifically, we uniformly sample from
(0, 2π) for the angle ai. To ensure that shift vectors remain within a reasonable
range like the limited masking ratio of MAE [12], we set an upper bound ri for
the magnitude mi. For simplicity, we uniformly sample from (0, ri) for mi. In
the following, we detail how to set ri and generate shifted point annotation.
Radius of Sampling Region for Shift Vector. As depicted in Fig. 3, the shift
vector vi is the vector pointing from the initial point annotation pi towards the
shifted point annotation p̂i. This means the upper bound, ri, for the magnitude
of vi is actually the radius of the circular region within which the p̂i is randomly
sampled. Naturally, the radius ri is expected to equal the scope radius of the
corresponding object in the ideal case.

Object counting annotations are typically in the form of two-dimensional
points, which provide no direct information about the sizes or shapes of the
corresponding objects. These 2D point annotations can only provide information
about the spatial distribution of these objects and the distances between them on
the image plane. For object counting, some density-map-based methods [19, 50]
approximate the size of objects of the same type based on the distances between
them. Following them, a straightforward solution to roughly determine the size
of objects of the same type is to leverage the distance information between them.
Specifically, for each point annotation pi in P , we denote the Euclidean distance
to its nearest neighbor as di. As stated in [50], the pixel associated with the i-th
object corresponds to an area roughly of a radius proportional to di Therefore,
a simple choice to set the radius rsi is given by:

rsi = α× di, (1)
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(a) Sampling regions with r = α × d (b) Sampling regions with r = α × min(d, d
N3 )

Fig. 4: Illustration of different strategies to define the radius of sampling region for
each annotated point in crowd images. See Eq. (1) and Eq. (2) and corresponding text
for more details. The hyper-parameter α is set to 0.4. Best viewed by zooming in on
the electronic version.

where α is a hyper-parameter which is constrained not to exceed 0.5. As il-
lustrated in Fig. 4a, this 0.5 constraint prevents the overlapping of sampling
regions with neighboring point annotations, which may bring confusion on the
target point pi, towards which the shifted point p̂i should be restored.

This simple setting for the radius ri is acceptable to approximate the size
for most objects (see Fig. 4a). However, for some objects that are distributed
sparsely, the radius obtained based on Eq. (1) would be significantly oversized.
This is due to their distances to the corresponding nearest neighbors being much
greater than their spatial size. As illustrated in the white rectangle of Fig. 4a,
an oversized sampling radius will introduce an excessive amount of background
to the sampling region. For these objects, the proposed SAE will be forced to
consider the background areas far from the objects as a part of them, which
compromises the training of SAE. To mitigate this, we comprehensively take
into account the size information of neighboring objects of pi. Specifically, the
final radius ri for the annotation point pi is defined by:

ri = α×min(di, d
N3

i ), (2)

where di
N3 denotes the mean value of d for the three nearest neighboring annota-

tion points of pi. By combining d of neighboring point annotations, the sampling
regions of the sparsely distributed point annotations are better aligned with the
spatial scales of their objects. An illustration example is shown in the white
rectangle of Fig. 4b.
Shift Vector and Shifted Point Annotation. With the angle ai and the
magnitude mi, the 2D shift vector vi for the annotation point pi can be generated
as below:

vi =
(
vxi , v

y
i

)
=

(
mi × cos ai,mi × sin ai

)
(3)
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By imposing vi to the corresponding initial point annotation pi, the shifted point
annotation p̂i is obtained as follows:

p̂i = (x̂i, ŷi) = (xi + vxi , yi + vyi ) (4)

3.3 SAE Network Training

SAE Network Architecture. In our SAE network, we employ a lightweight
UNet architecture [31], incorporating a VGG16 [33] backbone, to predict the
restoration vector field F ∈ R2×H×W . This field consists of two channels, Fx ∈
RH×W and Fy ∈ RH×W , corresponding to the x and y axes, respectively. Here,
H and W denote the height and the width of the input image, respectively.
Training Objective. In our SAE, we aim to restore the shifted point annota-
tions {p̂i} generated in Sec. 3.2 to their corresponding initial positions {pi}. In
alignment with the approach adopted in MAE [12], we adopt the Mean Squared
Error (MSE) loss to train our SAE network. Note that we only compute the MSE
loss with F on the coordinates of shifted point annotations {p̂i}. Specifically, the
restoration shift vectors {v̂i =

(
Fx(p̂i), Fy(p̂i)

)
} are supervised to align with the

inverse of the corresponding shift vectors {vi}. Formally, the training objective
L for our SAE is given by:

L =
1

N

N∑
i=1

∥v̂i − (−vi)∥2 , (5)

where N refers to the total number of annotated points in a given image within
the training set.

After training on a variety of similar objects and their corresponding point an-
notations, the SAE, similar to MAE [12], captures the general positional knowl-
edge while discarding the specific manual offset noise of all the manual point
annotations in the training data. Indeed, imaging a synthetic case where the
same head repeats multiple times with different point annotations spreading
around a fixed position (e.g ., head center), the optimal choice to simultaneously
cope with the varied annotations is to restore them to the same fixed position.
In practice, optimizing the SAE network on a large number of objects also tends
to restore the manual annotations towards the distribution center, yielding more
consistent annotation.

3.4 Point Annotation Restoration

The trained SAE network is then utilized to revise the initial point annotations.
More precisely, each image from the training set is processed through the trained
SAE network to generate the corresponding 2D restoration vector field map F .
The initial point annotations are treated as shifted point annotations and are
restored by the predicted restoration vector field map in a manner analogous to
the training phase. Specifically, the coordinate of the initial point annotation,
pi, is used to sample the corresponding restoration vector v̂i within F . The final
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restored point annotations are obtained by adding the restoration vectors to
the corresponding initial point annotations. Formally, the set of restored point
annotations Pr is given by:

Pr = {(xi + v̂xi , yi + v̂yi )} = {
(
xi + Fx(pi), yi + Fy(pi)

)
} (6)

Thanks to the captured general positional knowledge and avoidance of spe-
cific manual offset noise of our SAE, the restored point annotations have better
consistency among themselves. Compared with training with the initial point
annotations, using more consistent point annotations introduces less confusion
during the training of counting models, resulting in improved counting accuracy.

4 Experiments

4.1 Experimental Setting

Datasets. To evaluate the effectiveness of the proposed approach, we perform
extensive experiments on eleven datasets spanning three domains: crowd count-
ing, remote sensing object counting, and cell counting. These datasets include:
SH PartA [50], SH PartB [50], UCF-QNRF [15], JHU++ [35], RSOC_building [9],
RSOC_small-vehicle [9], RSOC_large-vehicle [9], RSOC_ship [9], MBM [16],
ADI [29], and DCC [28].
Evaluation Metrics. In object counting tasks, the Mean Absolute Error (MAE)
and Mean Square Error (MSE) serve as the principal evaluation metrics. Lower
values for these metrics indicate better counting performance.
Implementation Details. During the training phase for SAE, we augment
the images with random scaling, horizontal flipping, and randomly cropping to
512 × 512 pixels (except for the ADI dataset [29] which uses 128 × 128 pixels
due to limited resolution). Shift vectors for point annotations are randomly re-
generated at each iteration. We employ the Adam optimizer with a weight decay
of 5 × 10−4 and a fixed learning rate of 1 × 10−4. SAE training proceeds for
100 epochs with batches of 8 for each dataset on an RTX 3090 GPU using the
PyTorch framework. To ensure a fair comparison, we train the SAE on the train-
ing set of each dataset individually, thereby avoiding the introduction of extra
data. It is noteworthy that the proposed SAE plays the role only in the
point annotation restoration phase, rather than the object counting
phase. During the training phase for object counting, we follow the same imple-
mentation details as the baseline counting methods. The notation & SAE below
indicates that the counting methods are trained using point annotations revised
by SAE. Otherwise, they are trained with the initial manual point annotations.

4.2 Experimental Results

We conduct extensive object counting experiments on eleven publicly available
datasets across three distinct domains: crowd counting, remote sensing object
counting, and cell counting. Firstly, Fig. 5 presents some qualitative results of
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Fig. 5: Visualization of restored point annotation given by the proposed SAE. The
bottom row provides a zoomed-in view within the white box of the top row. Green
points: initial point annotations; Red points: revised point annotations; Yellow points:
initial point annotation coincides with the corresponding revised point annotation.

restored point annotation given by our SAE, illustrating the SAE’s effective-
ness in enhancing the consistency of point annotations for various object types.
To further quantify SAE’s effectiveness, we conduct quantitative comparisons
in terms of object counting accuracy by training some existing counting meth-
ods (including both density-map-based and localization-based approaches) with
initial annotations and restored annotations by SAE, respectively. The detailed
quantitative comparison is given in the following.
Crowd Counting. We mainly evaluate SAE on two types of counting methods.
Comparison with State-of-the-Art Methods. We conduct a comprehensive eval-
uation of the SAE-refined point annotations compared with the initial ones,
employing a variety of SOTA density-map-based and localization-based crowd
counting models. The quantitative results, depicted in Tab. 1, demonstrate the
effectiveness of SAE on various baseline methods. A notable improvement is ob-
served when applied to P2PNet [36], where SAE achieves a reduction of 5.8 in
MAE and 8.4 in MSE on UCF-QNRF dataset. Remarkably, the integration of
SAE leads to the establishment of new state-of-the-art results in three of the four
assessed datasets: SH PartA [50], SH PartB [50], and JHU++ [35]. On average,
SAE contributes to a reduction of 3.0 in MAE and 6.4 in MSE compared to the
results of three baseline methods (P2PNet [36], MAN [24], and STEERER [11])
on the four extensively used datasets.
Effectiveness on Anti-noise Methods. Further investigations are conducted to as-
sess SAE’s compatibility with those anti-noise approaches: BL [27], NoiseCC [41],
and RSI [4]. While these methods primarily focus on improving noise resistance,
they do not inherently improve the quality of the initial point annotations. As
depicted in Tab. 1, SAE further steadily improves these anti-noise frameworks,
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Table 1: Quantitative comparison of crowd counting results on the ShanghaiTech [50],
UCF-QNRF [15], and JHU-Crowd++ [35] datasets. & SAE indicates training with
point annotations refined by SAE. The best performance is in boldface. † represents
reproduced results with official codes.

Method SH PartA SH PartB UCF-QNRF JHU-Crowd++
MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓

CSRNet [19] (CVPR’18) 68.2 115.0 10.6 16.0 - - 85.9 309.2
CAN [26] (CVPR’19) 62.3 100.0 7.8 12.2 107.0 183.0 100.1 314.0
ADSCNet [2] (CVPR’20) 55.4 97.7 6.4 11.3 71.3 132.5 - -
GL [43] (CVPR’21) 61.3 95.4 7.3 11.7 84.3 147.5 59.9 259.5
CLTR [21] (ECCV’22) 56.9 95.2 6.5 10.6 85.8 141.3 59.5 240.6
NoiseCC [45] (TPAMI’23) 61.8 104.3 7.1 12.4 83.8 147.8 59.1 259.6
NoiseCC [45] & MAN (TPAMI’23) 56.4 89.4 6.5 10.3 75.3 128.3 53.0 208.6
CrowdHat [46] (CVPR’23) 51.2 81.9 5.7 9.4 75.1 126.7 52.3 211.8
AWCCNet [14] (ICCV’23) 56.2 91.3 - - 76.4 130.5 52.3 207.2
PET [25] (ICCV’23) 49.3 78.8 6.2 9.7 79.5 144.3 58.5 238.0
Gramformer [23] (AAAI’24) 54.7 87.1 - - 76.7 129.5 53.1 228.1
BL† [27] (ICCV’19) 62.7 99.5 7.6 13.00 87.4 149.6 74.4 290.0
BL & SAE 59.5 (↓3.2) 89.4 (↓10.1) 6.9 (↓0.7) 11.9 (↓1.1) 81.6 (↓5.8) 146.5 (↓3.1) 60.8 (↓13.6) 230.7 (↓59.3)
NoiseCC† [41] (NeurIPS’20) 62.1 100.0 7.5 11.4 86.1 149.7 67.5 255.4
NoiseCC & SAE 59.4 (↓2.7) 91.4 (↓8.6) 6.8 (↓0.7) 9.8 (↓1.6) 81.9 (↓4.2) 134.4 (↓15.3) 58.9 (↓8.6) 231.8 (↓23.6)
RSI-ResNet50† [4] (CVPR’22) 54.4 89.0 6.6 9.8 81.2 152.0 58.8 245.1
RSI-ResNet50 & SAE 52.4 (↓2.0) 85.4 (↓3.6) 6.0 (↓0.6) 9.2 (↓0.6) 77.5 (↓3.7) 146.2 (↓5.8) 54.9 (↓3.9) 240.2 (↓4.9)
P2PNet† [36] (ICCV’21) 52.8 85.8 6.5 10.9 91.7 157.0 66.8 259.5
P2PNet & SAE 48.2 (↓4.6) 76.1 (↓9.7) 6.2 (↓0.3) 10.0 (↓0.9) 85.9 (↓5.8) 148.6 (↓8.4) 62.4 (↓4.4) 253.7 (↓5.8)
MAN† [24] (CVPR’22) 55.6 93.2 7.1 10.5 77.5 132.7 53.2 219.9
MAN & SAE 52.2 (↓3.4) 81.9 (↓11.3) 5.4 (↓1.7) 7.0 (↓3.5) 74.2 (↓3.3) 128.2 (↓4.5) 49.7 (↓3.5) 204.4 (↓15.5)
STEERER† [11] (ICCV’23) 56.5 89.8 7.1 10.7 74.1 129.5 55.8 223.2
STEERER & SAE 54.3 (↓2.2) 84.5 (↓5.3) 6.4 (↓0.7) 10.1 (↓0.6) 71.4 (↓2.7) 125.1 (↓4.4) 52.9 (↓2.9) 216.4 (↓6.8)

yielding an average enhancement of 4.1 in MAE and 11.5 in MSE across the four
diverse crowd counting datasets.
Remote sensing object counting. We mainly evaluate SAE on two types of
counting methods.
Comparison with State-of-the-Art Methods. In contrast to crowd counting datasets,
remote sensing object counting task presents a different challenge with their di-
versity, encompassing four distinct types of objects. We apply SAE to several
state-of-the-art remote sensing object counting methods. The quantitative re-
sults, detailed in Tab. 2, clearly demonstrate the effective performance of SAE.
It not only consistently outperforms baseline methods but also sets new state-of-
the-art results in three of the four datasets: RSOC_Small-vehicle, RSOC_Large-
vehicle, and RSOC_Ship [9]. Notably, SAE achieves, on average, an improvement
of 9.2 in MAE and 40.6 in MSE over the three baseline models (P2PNet [36],
ASPDNet [9], and PSGCNet [8]) across these four datasets.
Effectiveness on Anti-noise Methods. In addition to state-of-the-art approaches,
we also examine the effectiveness of our SAE on two anti-noise methods, BL [27]
and NoiseCC [41]. These anti-noise methods aim to enhance the model’s noise
resilience, primarily through adjustments in the loss functions. The comparative
results shown in Tab. 2 reveal that SAE further augments the performance for
these anti-noise methods, resulting in an average improvement of 10.2 in MAE
and 51.6 in MSE across the four datasets.
Cell counting. We mainly evaluate SAE on two types of counting methods.
Comparison with State-of-the-Art Methods. The proposed SAE method extends
its utility beyond natural image datasets. We also demonstrate its ability to
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Table 2: Quantitative comparison of remote sensing object counting results on RSOC
datasets [9]. & SAE indicates training with point annotations refined by SAE. The best
performance is in boldface. † represents reproduced results with official codes.

Method RSOC_Building RSOC_Small-vehicle RSOC_Large-vehicle RSOC_Ship
MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓

MCFA [7] (TGRS’21) 7.9 11.8 238.5 625.9 12.9 20.3 50.5 65.2
ADMAL [6] (TGRS’22) 5.6 7.7 115.6 210.8 11.7 17.3 45.1 64.8
eFreeNet [13] (TGRS’23) 5.6 7.7 195.9 463.6 14.6 19.8 65.3 85.5
LMSFFNet [49] (TGRS’23) 6.3 9.4 141.7 273.0 12.7 27.1 49.5 70.0
DOPNet [5] (TGRS’24) - - 62.4 167.8 12.5 20.1 - -
BL† [27] (ICCV’19) 11.5 16.3 173.0 477.8 12.3 24.2 58.8 195.5
BL & SAE 11.1 (↓0.4) 15.9 (↓0.4) 130.6 (↓42.4) 341.4 (↓136.4) 8.5 (↓3.8) 14.6 (↓9.6) 51.0 (↓7.8) 73.6 (↓121.9)
NoiseCC† [41] (NeurIPS’20) 7.8 11.3 168.8 529.1 15.5 31.4 53.0 72.1
NoiseCC & SAE 7.3 (↓0.5) 10.2 (↓1.1) 149.7 (↓19.1) 389.4 (↓139.7) 14.6 (↓0.9) 30.8 (↓0.6) 46.3 (↓6.7) 69.0 (↓3.1)
P2PNet† [36] (ICCV’21) 6.3 9.1 63.1 198.3 8.1 13.2 28.2 42.6
P2PNet & SAE 5.7 (↓0.6) 8.1 (↓1.0) 53.3 (↓9.8) 170.4 (↓27.9) 7.0 (↓1.1) 11.6 (↓1.6) 25.0 (↓3.2) 39.5 (↓3.1)
ASPDNet† [9] (TGRS’20) 7.6 11.5 252.6 718.5 19.7 27.8 81.8 110.3
ASPDNet & SAE 6.7 (↓0.9) 10.6 (↓0.9) 182.0 (↓70.6) 353.4 (↓365.1) 16.9 (↓2.8) 24.4 (↓3.4) 75.1 (↓6.7) 97.0 (↓13.3)
PSGCNet† [8] (TGRS’22) 7.4 11.1 112.1 289.6 11.8 16.4 39.5 68.5
PSGCNet & SAE 6.6 (↓0.8) 10.2 (↓0.9) 104.9 (↓7.2) 227.2 (↓62.4) 9.7 (↓2.1) 14.0 (↓2.4) 34.6 (↓4.9) 62.8 (↓5.7)

Table 3: Quantitative comparison of cell counting results on MBM [16], ADI [29], and
DCC [28]. & SAE indicates training with point annotations refined by SAE. The best
performance is in boldface. † represents reproduced results with official codes.

Method MBM ADI DCC
MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓

BL† [27] (ICCV’19) 8.4 10.3 13.7 18.8 3.3 5.3
BL & SAE 6.3 (↓ 2.1) 8.8 (↓ 1.5) 13.2 (↓ 0.5) 18.2 (↓ 0.6) 2.9 (↓ 0.4) 4.9 (↓ 0.4)
NoiseCC† [41] (NeurIPS’20) 7.2 9.3 14.0 18.8 3.8 5.6
NoiseCC & SAE 6.0 (↓ 1.2) 8.6 (↓ 0.7) 13.1 (↓ 0.9) 17.9 (↓ 0.9) 3.4 (↓ 0.4) 5.1 (↓ 0.5)
P2PNet† [36] (ICCV’21) 5.7 8.0 12.4 17.1 3.7 6.0
P2PNet & SAE 4.4 (↓ 1.3) 6.5 (↓ 1.5) 11.9 (↓ 0.5) 16.2 (↓ 0.9) 3.2 (↓ 0.5) 5.6 (↓ 0.4)
Chen et al . † [3] (JBHI’21) 5.6 8.3 12.7 19.6 5.7 7.6
Chen et al . & SAE 4.5 (↓ 1.1) 7.5 (↓ 0.8) 11.4 (↓ 1.3) 15.8 (↓ 3.8) 4.7 (↓ 1.0) 7.1 (↓ 0.5)
SAUNet† [10] (IEEE ACM T COMPUT BI’21) 5.7 7.7 14.3 18.5 3.0 4.8
SAUNet & SAE 4.2 (↓ 1.5) 5.8 (↓ 1.9) 11.2 (↓ 3.1) 15.1 (↓ 3.4) 2.6 (↓ 0.4) 3.4 (↓ 1.4)

resolve annotation inconsistency challenges encountered in cell counting. As de-
tailed in Tab. 3, the proposed SAE consistently improves cell counting accuracy.
In particular, we establish new state-of-the-art records across all the three cell
counting datasets. Notably, with SAU [10] already achieving excellent results
on DCC [28] with an MAE of 3.0 and an MSE of 4.8, using the restored point
annotation by SAE further enhances the performance, reducing the MAE to 2.6
and MSE to 3.4, respectively.

Effectiveness on Anti-noise Methods. Additionally, we also explore SAE’s univer-
sal applicability in conjunction with two established anti-noise methods: BL [27]
and NoiseCC [41]. These two methods focus on improving noise robustness by
introducing novel loss functions. As shown in Tab. 3, the proposed SAE consis-
tently improves their performance, which further validates the effectiveness and
universality of the proposed SAE.
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Fig. 6: Evaluation of counting robustness to different levels of synthetic offset noise on
the UCF-QNRF [15] dataset. We shift the original point annotation by different pro-
portions of radius r (defined in Eq. (2)) in random directions to synthesize annotation
noise of different levels.

4.3 Robustness to Extra Point Annotation Noise

We also evaluate the robustness of our SAE to point annotation noise of different
degrees. For that, Firstly, we emulate real-world human annotation noise errors
by introducing varying offsets to each annotation point p. The magnitude of
offsets are set to 0.2× r, 0.4× r, 0.6× r, and 0.8× r pixels, where r is defined
in Eq. (2). Secondly, we train two anti-noise crowd counting methods: BL [27]
and NoiseCC [41] on these noisy point annotations. We then apply our SAE to
restore the noisy point annotations, and train a new BL on our restored point
annotations. These experiments are conducted on the UCF-QNRF [15] dataset.

As shown in Fig. 6, increasing noise levels of annotation poses challenges
to all methods in maintaining counting accuracy. Remarkably, SAE consistently
outperforms the other two techniques and is less affected by increasing noise
levels (in particular for extra noise ≤ 0.4× r), achieving lower MAE. These find-
ings confirm SAE’s effectiveness and robustness in handling noisy and imperfect
point annotation, a common occurrence in real-world counting tasks.

4.4 Ablation Study on Hyper-parameter α in Eq. (2)

The proposed SAE mainly involves one hyper-parameter α, which is involved in
Eq. (2) and plays a crucial role in defining the sampling area for shifted point
generation. To evaluate the impact of the hyper-parameter α on our model’s
performance, we conduct an ablation study with α values set to 0.3, 0.4, 0.5, and
0.6. This study utilizes BL [27] as the baseline counting method, and covers three
diverse datasets: UCF-QNRF [15], Remote_small-vehicle [9], and MBM [16].

The results, presented in Tab. 4, show how different α values influence count-
ing accuracy. Generally, in configurations that avoid overlap, we observe per-
formance improvements compared to the baseline method. For α set to 0.6,
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Table 4: Quantitative results of BL [27] (on UCF-QNRF [15], RSOC_Small-vehicle
(RSV) [9], and MBM [16] dataset) trained with point annotations refined by SAE with
different values of α involved in Eq. (2). The best performance is in boldface.

α
UCF-QNRF RSV MBM

MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓
Baseline 87.4 149.6 173.0 477.8 8.4 10.3
0.3 86.5 148.3 149.7 389.4 7.3 9.2
0.4 81.6 146.5 130.6 341.4 6.3 8.8
0.5 82.4 146.3 138.2 364.8 6.9 8.6
0.6 91.0 158.9 190.6 516.5 8.3 10.8

the overlapping sampling ranges for different objects introduce confusion in the
training process, leading to performance that falls short of the baseline. Indeed, a
smaller value of α leads to a more constrained sampling range, which may reduce
the SAE model’s effectiveness in refining annotations with large deviations from
their general positions. In contrast, a larger α tends to include more background
regions within the sampling range. Notably, when the sampling areas for different
annotation points overlap, it leads to ambiguity. This overlap challenges SAE’s
ability to distinguish between regions associated with distinct objects. Except
for this ablation study, we set α to 0.4 for our SAE in all experiments.

4.5 Limitation

As described in Sec. 3.2, the proposed SAE approximates the radius of the
sampling region based on the spatial distribution of objects. While this strategy
is functional and simple, there could be more effective strategies for determining
the optimal radius, such as depth estimation. Nevertheless, these alternatives
might complicate the proposed method and compromise its universality.

5 Conclusion

In this paper, we focus on the inconsistency problem of point annotations in
object counting tasks. This is often caused by the inevitable subjective nature of
annotators. To mitigate this issue, we propose the novel Shifted Autoencoders
(SAE) to revise the initial point annotations. Similar to MAE which uses general
knowledge to reconstruct masked areas, resulting in specific-detail-free image re-
construction, our SAE leverages general positional knowledge to restore shifted
annotations, yielding specific-offset-noise-free point restoration. Using such re-
stored consistent point annotation to train the counting model improves the
counting accuracy. Extensive experiments on eleven datasets from three differ-
ent object counting tasks verify the effectiveness of the proposed SAE. Besides,
based on the proposed SAE, we set new state-of-the-art results on nine of the
eleven datasets. We hope that this work could shed light on the research direction
of directly refining the annotation in point-based vision tasks.
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