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Abstract. The unprecedented advancements in Large Language Mod-
els (LLMs) have shown a profound impact on natural language process-
ing but are yet to fully embrace the realm of 3D understanding. This
paper introduces PointLLM, a preliminary effort to fill this gap, empow-
ering LLMs to understand point clouds and offering a new avenue be-
yond 2D data. PointLLM understands colored object point clouds with
human instructions and generates contextually appropriate responses,
illustrating its grasp of point clouds and common sense. Specifically,
it leverages a point cloud encoder with a powerful LLM to effectively
fuse geometric, appearance, and linguistic information. To overcome the
scarcity of point-text instruction following data, we developed an auto-
mated data generation pipeline, collecting a large-scale dataset of more
than 730K samples with 660K different objects, which facilitates the
adoption of the two-stage training strategy prevalent in MLLM develop-
ment. Additionally, we address the absence of appropriate benchmarks
and the limitations of current evaluation metrics by proposing two novel
benchmarks: Generative 3D Object Classification and 3D Object Cap-
tioning, which are supported by new, comprehensive evaluation met-
rics derived from human and GPT analyses. Through exploring vari-
ous training strategies, we develop PointLLM, significantly surpassing
2D and 3D baselines, with a notable achievement in human-evaluated
object captioning tasks where it surpasses human annotators in over
50% of the samples. Codes, datasets, and benchmarks are available at
https://github.com/OpenRobotLab/PointLLM.
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1 Introduction

Recent developments in large language models (LLMs) [4, 6, 34–36, 42, 47, 48]
have showcased their remarkable capabilities in natural language processing,
† Corresponding authors: {wangtai, pangjiangmiao}@pjlab.org.cn
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Why do people need 
this thing?

This is a shoe designed 
for athletic activities. It 
is designed to provide 
support, comfort, and 
improve performance 
during sports or exercise 
routines.

What color is the inside? 
Is this shoe meant for the 
right foot or the left foot?

The inside of the shoe is 
orange. It’s meant for 
the right foot.

How many people can this 
type of car generally seat?

This type of car can 
generally seat four people.

Does this model have 
an engine?

No, this model does not 
have an engine.

Who invented the first 
car in the world?

The first car in the world 
was invented by a man 
named Karl Benz.

What do you know about 
this object?

This is a 3D object model 
of a cute, casual purple 
toy pony.

Can you give me more 
details?

The pony is 
predominantly purple 
with white eyes and a 
small horn which hint 
at its magical theme.

What animals also 
have horns?

Animals like goats and 
antelopes also have horns.

What is this object?

This is a 3D model of a 
dinosaur toy.

What is it doing?

It’s standing upright on its 
two legs with its mouth 
wide open.

What is the main 
difference in body shape 
between this dinosaur and 
a Tyrannosaurus Rex?

This carton dinosaur has a 
comparatively small tail.

Fig. 1: We introduce PointLLM, a multi-modal large language model capable of un-
derstanding colored point clouds of objects. It perceives object types, geometric, and
appearance without concerns for ambiguous depth, occlusion, or viewpoint dependency.

acting as generalized interfaces [18] for a broad range of tasks [4, 42]. Beyond
text, the exploration of multi-modal LLMs (MLLMs) now extends to processing
audio [22], images [1, 23,28,31,35,59,61], and more.

The next step in this evolution lies in understanding 3D structures, and
particularly point clouds. Suppose we want to embed LLMs in 3D design software
for interactive 3D content creation/editing via text commands (i.e. 3D copilot),
this requires LLMs to understand 3D content states, which can be represented
as point clouds. In robotics, LLMs as control centers need to understand the
environments for perception and planning, where point clouds captured through
depth sensors or LiDAR are important observations.

While existing efforts to integrate LLMs with 2D images [8, 10, 31, 61] also
provide 3D comprehension, they face difficulties like depth ambiguity, occlusion,
and viewpoint dependency. In contrast, point clouds, as an efficient and universal
3D representation, offer direct geometric and appearance information. Despite
these benefits, the integration of point clouds with LLMs is still underexplored.

Recently, connecting pre-trained encoders with LLMs using projection layers
and employing a two-stage training of alignment and instruction tuning has been
proven effective for developing MLLMs across various domains [8,10,23,25,31,61].
We pose a question: Can this established framework be successfully adapted to
the realm of point clouds? In this work, we affirmatively answer this question
by introducing PointLLM (Fig. 1), our preliminary effort to empower LLMs to
understand point clouds, with a focus on 3D objects.

The first difficulty to be address is the lack of training data, the point-text
instruction following datasets essential for teaching models to interpret point
clouds and follow user commands. While manual compilation is costly and labor-
intensive, we devised an automated data collection pipeline using GPT-4 to gen-
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erate diverse instructions from Objaverse’s [9] captions. This produced a large-
scale dataset comprising 660K brief-description for different objects and 70K
complex instructions, enabling the model’s two-stage training for this domain.

Evaluating model performance with appropriate tasks and metrics presents
another challenge. We aim to assess point cloud comprehension in MLLMs and
existing discriminative-based 3D perception benchmarks fall short for this pur-
pose due to the generative nature of MLLMs. We introduce two novel bench-
marks: Generative 3D Object Classification and 3D Object Captioning, based
on a hypothesis that LLMs’ understanding of point clouds is reflected by their
ability to identify the object’s category and the accuracy and details of captions,
which elaborate the information they perceive. We also observe the limitations
of some widely used NLP metrics like BLEU-1 [37], ROUGE-L [30], and ME-
TEOR [3] for their short caption bias and inability to reflect linguistic diversity.
To counter these shortcomings, we devise new evaluation metrics that combine
human and GPT-4/ChatGPT evaluation with data-driven approaches, estab-
lishing a comprehensive evaluation framework. To our knowledge, we are the
first to introduce generative object classification in this field.

In our study, we evaluated various training recipes and observed that an op-
timal number of projection layers enhances feature clustering, aligning point and
text features effectively. We also found that employing max pooling to aggregate
point tokens reduces the token number and greatly enhances training speed,
albeit with a slight performance trade-off. Further analysis of data variability
revealed that the model performance peaks with about 600K samples for align-
ment and diverse instruction data notably enhances fine-tuning, emphasizing the
value of data quantity and diversity. These insights led to the development of
PointLLM, which markedly surpasses 2D and 3D baselines, impressively scoring
higher than human annotators in over 50% of the object captioning samples.

2 Related Work

Multi-modal large language models. Multi-modal Large Language Models
(MLLMs) are designed to comprehend and interpret a wide range of informa-
tion that extends beyond mere text-based data [56], including but not limited
to images [14,23,31,51,61], audio [22], motion [25], etc. Broadly, the models can
be classified into two categories. The first category includes models that employ
a large language model to interface with individual, modality-specific models or
APIs [16, 22, 38, 46, 52]. This approach circumvents the need for model training
but is heavily dependent on the availability and capabilities of pre-existing mod-
els or APIs. The second category pertains to models that employ an end-to-end
training strategy. There are two prominent paradigms within this category. The
first involves training the model from scratch, similar to text-only LLMs, us-
ing large-scale multi-modal corpora and datasets [23, 39]. The second paradigm
builds on pre-trained LLMs and unimodal encoders. [1, 2, 8, 10, 11, 14, 27, 28, 31,
44,59–61]. This strategy typically involves a two-stage process: alignment of the
unimodal encoder with the LLM’s feature space, followed by instruction-based



4 R. Xu et al.

fine-tuning. In our work, we adhere to the alignment and tuning strategy to
construct an MLLM capable of understanding 3D object point clouds.
Object point cloud understanding with language. Inspired by models
like CLIP [41], which bridges visual and textual modalities, similar advance-
ments have emerged in the 3D object domain [19,24,32,50,54,55,58,62]. Point-
CLIP [58], PointCLIPv2 [62], and CLIP2Point [24] utilize depth image projec-
tions of point clouds for 3D recognition with 2D CLIP models. Others, such as
ULIP [54], JM3D [50], OpenShape [32], and CG3D [19], train point cloud en-
coders to align with CLIP representations using triplets of point clouds, images,
and texts. ULIP-2 [55] and OpenShape [32] have expanded this by employ-
ing image-captioning models for automatic data generation, enhancing train-
ing triplet scalability. Cap3D [33] and UniG3D [45] adopt similar approaches
for point-text dataset generation. In our work, we leverage Cap3D’s captions
on Objaverse for automatic instruction-data generation in training PointLLM.
The recently introduced 3D-LLM [21] also seeks to enable LLMs to comprehend
3D, by rendering objects into multi-view images, using 2D foundational mod-
els like CLIP [41] and SAM [26] for feature extraction, and 2D MLLMs such
as BLIP [28] for output generation. Concurrently, Point-Bind LLM [15] aligns
point cloud features with ImageBind [13] and uses 2D MLLMs like Imagebind-
LLM [17] for generation. Though simple, it faces challenges like hallucination
due to its retrieval nature. Distinctively, PointLLM directly aligns point clouds
with LLM by end-to-end training, avoiding complicated data pre-processing and
enabling accurate, open-ended, and free-form interactions.

3 Methodology

This section elucidates our strategy for the automatic generation of point-text
instruction-following data. We then delve into the architecture of PointLLM,
which takes as input an object point cloud and user instruction and outputs
responses. Lastly, we detail our loss function and two-stage training strategy.

3.1 Point-Text Instruction Following Data

The daunting challenge in the development of an end-to-end multi-modal LLM
is procuring large-scale multi-modal instruction-following data, vital for repre-
sentation learning, aligning latent spaces, and orienting the model to adhere to
human intentions [1,8,29,31,61]. However, manual labeling of such data is cost-
prohibitive and labor-intensive. To overcome this, we follow [31] and propose an
automated data generation technique utilizing the large-scale point cloud cap-
tioning dataset, Cap3D [33], with the assistance of GPT-4 [35]. The generated
dataset adheres to a uniform instruction following template, shown in Tab. 1,
and consists of brief-description instructions and complex instructions, which
aid in latent space alignment and instruction tuning, respectively.
Brief-description instructions. The Cap3D [33] dataset provides two varia-
tions of captions for the 3D objects in Objaverse [9]: those generated by image-
captioning models and those annotated by humans. While there are 660K objects
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Table 1: Instruction following template. {System Prompt} is the system prompt
used by the pre-trained LLM, {p_tokens} are point tokens, and {Instruction} and
{Response} denote user instructions and model responses. Losses are computed only
for model responses and the end-of-sentence token </s>.

{System Prompt}

USER: <p_start>{p_tokens}<p_end>{Instruction 1}
ASSISTANT: {Response 1}</s>

USER: {Instruction 2}
ASSISTANT: {Response 2}</s>

USER: {Instruction 3}
ASSISTANT: {Response 3}</s>

accompanied by generated captions, only 40K samples have human-annotated
captions. For brief-description instruction, we utilize the model-generated split
due to the need for a larger data volume for aligning the latent spaces of point
cloud and text modalities [31]. We created a list of 30 instructions to instruct
the model to provide a succinct description of a given 3D object point cloud. A
random instruction from this list is chosen as the user instruction, and the cap-
tion from Cap3D is used directly as the model response, forming a single-round
instruction following sample. This results in 660K brief-description instruction
data, each corresponding to a unique object point cloud.

Complex instructions. Beyond brief descriptions, it’s crucial that the model
learns to understand objects from a variety of angles, responding accurately
to diverse human instructions. To facilitate this, we employ GPT-4 to produce
complex instruction-following data. Specifically, a caption from Cap3D is used
to stimulate GPT-4 to craft a more comprehensive description that identifies the
object’s type, appearance, functionalities, and any other inferable information.
Similar to the process for generating brief-description instructions, we also curate
a set of 30 distinct prompts, each pushing the model to describe the 3D object
in depth. One of these prompts is randomly coupled with the newly crafted
description, forming a training sample. GPT-4 is further used to generate con-
versations (i.e., Q&A pairs) that delve into diverse aspects of the object based
on the captions, such as the object’s functionality or materials, and the corre-
sponding answers should be informative and comprehensive. For each object,
GPT-4 generates 3 single-round conversations and 1 multi-round conversation
with 3 Q&A pairs, all ensuring logical relevance.

With a focus on data quality, we selected 15K captions from the Cap3D
human-annotated split for data generation, each comprising more than five
words. After filtering incorrect GPT-4 outputs, we collected 70K complex in-
structions, including 15K detailed descriptions, 40K single-round conversations,
and 15K multi-round conversations. The instruction lists, GPT-4 prompts, data
examples, and distribution analysis can be found in the supplementary material.
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Point Encoder

Projector

USER: <p_start> <p_end> What color is the interior? ASSISTANT: It’s orange. </s>

Tokenizer Tokenizer

Large Language Model

It’s orange. </s>Ignored Token
Point Token
Text Token

Point Cloud

Fig. 2: An overview of PointLLM. The point encoder extracts features from the
input point cloud and the projector projects them to the latent space of the LLM back-
bone. The LLM backbone processes sequences of point and text tokens and generates
the predicted tokens as the output.

3.2 Model Architecture

As shown in Fig. 2, our PointLLM is a generative model that aims to complete
multi-modal sentences containing both point clouds and texts. The model con-
sists of three main components: a pre-trained point cloud encoder fpe, a projector
fproj , and a pre-trained large language model (LLM) backbone fllm.

The point cloud encoder fpe takes as input a point cloud P ∈ Rn×d, where n
is the number of points and d is the feature dimension of each point. The output
of the encoder is a sequence of point features X = (x1, x2, . . . , xm) ∈ Rm×c,
where m is the number of point features and c is the feature dimension. The
projector fproj is a MLP that maps the point features X to point tokens Y =

(y1, y2, ..., ym) ∈ Rm×c′ , where c′ is the dimension of the point tokens, which is
the same as the text tokens.

The LLM backbone fllm is a decoder-only Transformers [49], which accepts a
sequence of tokens, composed of both text and point tokens. This mixed sequence
of tokens is denoted as Z = (z1, z2, ..., zk) ∈ Rk×c′ , where k is the total number
of tokens. Utilizing a self-attention mechanism, the LLM backbone is capable
of understanding the contextual relationships between different types of tokens,
enabling it to generate responses based on both text and point cloud inputs.
Formally, the output of the LLM backbone fllm is a sequence of predicted tokens
Ẑ = (ẑ1, ẑ2, ..., ẑk) ∈ Rk×c′ . The prediction of the i-th token, ẑi, is conditioned
on all previous tokens, Z<i = (z1, ..., zi−1), expressed mathematically as

ẑi = fllm(Z<i). (1)

Each ẑi is passed through a final linear layer followed by a softmax operation,
mapping the hidden states into a probability distribution over the vocabulary.
This additional layer is denoted as fvocab : Rc′ → RV , where V is the size of
the vocabulary. The final prediction z̃i for the i-th token is the word in the
vocabulary with the highest probability:

z̃i = arg max
w∈vocab

fvocab(ẑi)[w]. (2)
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3.3 Training

Loss function. We train PointLLM by minimizing the negative log-likelihood
of the text token at each position. Our loss function is only computed on text
tokens that constitute the model’s responses, including the end-of-sentence token
</s>. We exclude the tokens from human instructions, ensuring that the model
focuses on learning to generate accurate and coherent responses. The end-to-end
nature of this training approach enables PointLLM to effectively integrate point
cloud and text modalities.
Two-stage training. Our training procedure comprises two stages, each focus-
ing on different aspects of the model.

During the first stage, termed the feature alignment stage, we freeze the
parameters of the point cloud encoder and the LLM, and train only the MLP
projector. At this stage, the training process uses brief-description instructions,
aiming to align point features with the text token space effectively. This stage
also includes the adjustment of token embeddings for the two newly added special
tokens <p_start> and <p_end>.

In the second stage, referred to as the instruction tuning stage, we freeze
the point cloud encoder while jointly training the projector and the LLM. This
second stage uses complex instructions and helps the model build its ability to
understand and respond to complex instructions including point cloud data.

4 Benchmarks and Evaluation

Evaluating multi-modal LLMs presents a challenge due to the lack of a unified
metric for their diverse outputs. Current 3D point cloud benchmarks primarily
focus on discriminative tasks, such as classification or retrieval, missing the gen-
erative and open-vocabulary aspects of LLMs. To address this, we introduce two
novel benchmarks: Generative 3D Object Classification and 3D Object Caption-
ing, designed to assess model generalization and understanding of point clouds.
Our underlying hypothesis is that models’ comprehension of point clouds, at
the very least, manifests in the accurate classification of objects. Furthermore,
this comprehension is proportional to the accuracy and details of the captions,
which elaborate the information they perceive. To support these benchmarks,
we’ve developed a novel and comprehensive evaluation framework that incor-
porates human, GPT-4/ChatGPT, and traditional metrics. The supplementary
material provides the prompts and the human verification of the GPT evaluation.

4.1 Generative 3D Object Classification

The task of generative 3D object classification involves prompting the model
to freely answer the object type from its point cloud, distinguishing it from
discriminative models that classify objects based on probability comparisons.
We consider two settings: close-set zero-shot and open-vocabulary setting.
Close-set zero-shot classification. In this scenario, the object type belongs
to a fixed set of categories, and the model never sees any samples of this dataset
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during training. This tests the model’s ability to generalize to unseen domains.
We use the test split of the ModelNet40 [53] dataset as our source of data,
which contains point clouds of 40 different object categories. We use ChatGPT
as a post-processor to select one of the ModelNet40 categories based on the
model’s answer. If ChatGPT selects the correct option, then we consider the
model’s classification correct; otherwise, we consider it incorrect. Please refer to
the supplementary material for more discussions about this task’s setting.
Open-vocabulary classification. In this scenario, the object type is not lim-
ited to a predefined set of categories, but can be any word or phrase that identifies
the object. This reflects the real-world setting where new objects can appear at
any time, and the model needs to be able to recognize them without retraining.
We randomly select 200 objects from the Objaverse [9] dataset, incorporating
human-annotated captions from Cap3D [33] as ground truth labels for the task.
We employ GPT-4 to verify if the model’s response matches the intended object
type as described in the human caption, allowing for varied expressions that cor-
rectly identify the object. For instance, responses like "a cup" or "a coffee mug"
are considered correct classification for a human caption of "a blue mug." GPT-
4 is preferred in this setting for its precision in recognizing synonymous object
descriptions, in contrast to ChatGPT, which is more prone to false negatives
by not acknowledging similar terms for the same object. ChatGPT, however, is
used in the close-set setting as it performs accurately but at 95% less cost.

4.2 3D Object Captioning

3D object captioning evaluates the model’s detailed understanding of point
clouds. We utilize the same 200 objects as for the open-vocabulary classification
and prompt our model to caption them in detail. Human-annotated captions
serve as reference ground truths for automatic evaluation.

For a comprehensive and robust evaluation, we employ three distinct methods
to assess performance in this task:

1. Human evaluation. Human evaluators conduct a binary classification and
counting task, reviewing randomly shuffled captions from various models and
human-annotated captions for the objects, without knowing their sources.
Using the official Objaverse [9] explorer, evaluators visually inspect each
object and systematically assess each object attribute (such as type, color,
material, etc.) mentioned in the model’s response, assigning one correct or
hallucination point for each attribute based on its accuracy. The aggregate
of these points forms the correctness and hallucination scores. Precision, the
ratio of accurate information in the model’s response, is then calculated. For
detailed scoring criteria, please refer to the supplementary material.

2. GPT-4 evaluation. Given a model-generated caption and its corresponding
human reference, GPT-4 identifies the attributes mentioned in the human
caption and calculates the percentage of these attributes that are either
correctly or partially matched in the model’s caption, scoring from 0 to 100
with an explanation. As one of the most advanced language models, GPT-4 is
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well-equipped to perform such tasks. Our method of calculating the correct
percentage and assigning scores offers an advantage over approaches like
those in [31], which directly generate an overall score without transparency.

3. Traditional metric evaluation. We report traditional metrics results in-
cluding BLEU-1 [37], ROUGE-L [30], and METEOR [3] following [21]. Though
widely used, these metrics have limitations as detailed in Sec. 5.3. There-
fore, we incorporate and rely more on two additional data-driven metrics,
Sentence-BERT [43] and SimCSE [12] similarity, which compute the similar-
ity of sentence embeddings between model-generated and human captions.

5 Experimental Results

5.1 Experimental Settings

Implementation details. We use the LLaMA model [48] as our LLM backbone,
with the 7B and 13B Vicuna [5] checkpoint. Point-BERT [57], pre-trained with
ULIP-2 [55] on the Objaverse [9] dataset, serves as our point encoder. The 200
objects from Objaverse utilized for our benchmarks are not seen during any
stage of the training. We utilize n = 8192 points and d = 6 dimensions for each
point cloud. We assign a black color to point clouds from ModelNet40, as they
lack color information. The point encoder outputs m = 513 point features, each
with c = 384 dimensions. The projector contains three linear layers with the
GeLU [20] activation, which maps point features to tokens with c′ = 5120 (7B
model) or c′ = 5120 (13B model) dimensions. As we add two additional special
tokens, the vocabulary size of PointLLM is V = 32003. All experiments are
conducted on 8 × 80G A100 GPUs. GPT-4 and ChatGPT in this paper all refer
to OpenAI’s "gpt-4-0613" and "gpt-3.5-turbo-0613" models respectively. More
implementation and training details are provided in the supplementary material.
Baselines. Our analysis includes comparisons with baselines capable of per-
forming the same generative classification and captioning tasks. We focus on
3D-LLM [21] and Point-Bind LLM [15]; 3D-LLM is assessed solely on the Obja-
verse dataset due to its current lack of support for pure point clouds, while Point-
Bind LLM, not supporting colored point clouds, is excluded from captioning. We
also compare with two popular 2D MLLMs, InstructBLIP [8] and LLaVA [31],
to explore the performance gap between image-based and point-based MLLMs
and to highlight the advantages of point clouds over single-view images.

5.2 Generative 3D Object Classification

Tab. 2 shows the classification accuracy of various models on our proposed tasks.
For 2D MLLMs’ image inputs, we randomly sample rendered images of Model-
Net40 point clouds and Objaverse objects. We prompt all the models with the
same prompts of two types: the Instruction-typed (I) prompt "What is this?"
and the Completion-type (C) prompt "This is an object of ".

Experimental results demonstrate PointLLM’s superiority over both 2D and
3D MLLMs on ModelNet40 and Objaverse datasets for various prompt types.
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Table 2: Generative 3D object classification results on the ModelNet40
(M40.) test split and Objaverse (Obj.). The results show the classification accu-
racy under the Instruction-typed (I) prompt "What is this?" and the Completion-typed
(C) prompt "This is an object of " as well as the average accuracy.

Model Input M40.(I) M40.(C) Obj.(I) Obj.(C) Avg.

InstructBLIP-7B [8] Single-V. Img. 19.53 31.48 45.00 42.00 34.50
InstructBLIP-13B [8] Single-V. Img. 25.97 31.40 37.00 31.50 31.47
LLaVA-7B [31] Single-V. Img. 39.75 39.67 49.50 50.50 44.86
LLaVA-13B [31] Single-V. Img. 37.12 36.06 53.00 50.50 44.17

3D-LLM [21] 3D Obj. + Mul.-V. Img. - - 49.00 41.50 45.25
Point-Bind LLM [15] 3D Point Cloud 51.90 39.71 6.00 4.50 25.53
PointLLM-7B 3D Point Cloud 53.44 51.82 55.00 51.00 52.82
PointLLM-13B 3D Point Cloud 53.00 52.55 56.50 51.50 53.39

Compared with 2D models, PointLLM offers direct point cloud engagement,
showcasing enhanced 3D object comprehension over single-view images. This
method effectively addresses challenges like occlusion and viewpoint variation,
leveraging rich 3D geometry and appearance data from colored point clouds.
PointLLM shows more consistent classification accuracy across different prompts
than other 3D models, underlining its prompt robustness. Utilizing a pre-trained
point encoder and an LLM backbone, PointLLM efficiently translates point cloud
data into descriptive natural language, capturing the object’s identity.

The zero-shot performance on ModelNet40 further illustrates our model’s ap-
titude for generalization. Even though ModelNet40 comprises point clouds un-
seen during training, PointLLM recognizes them using its pre-existing knowledge
and perception abilities honed during our two-stage training. This adaptability
to unseen domains and novel objects, without necessitating retraining, is crucial
for real-world deployment as a foundation model.

5.3 3D Object Captioning

Tab. 3 displays the results of the captioning benchmark, averaged across objects.
Each model was prompted with "Caption this 3D model in detail."

In Tab. 3 our models significantly outperform all baselines in key evaluation
metrics for 3D object captioning, especially in human correctness score and GPT-
4 evaluations. These scores reflect a model’s ability to capture and articulate the
intricate details of objects. Notably, PointLLM achieves the highest correctness
scores, producing more accurate and detailed captions than other models, even
rivaling human annotations. In addressing hallucination, a common challenge,
our PointLLM exhibits the lowest hallucination scores and highest precision
scores, indicating its effectiveness in generating detailed, accurate captions with
less false information. The Sentence-BERT and SimCSE results further confirm
our model’s capability in producing captions more semantically aligned with the
ground truth. Interestingly, all 13B models, regardless of being 2D or 3D MLLMs,
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Table 3: 3D object captioning results on Objaverse. Evaluation encompasses
human (correctness, hallucination, precision) and GPT-4 assessments, supplemented
by Sentence-BERT, SimCSE, BLEU-1, ROUGE-L, and METEOR metrics. A primary
focus is placed on human and GPT-4 evaluation, along with data-driven metrics. "*"
indicates PointLLM was prompted for shorter captions with no more than 20 words.

Model Corr. Hallu.↓ Prec. GPT-4 S.-BERT SimCSE B-1. R-L. MET.

InstructBLIP-7B [8] 2.56 0.77 76.99 45.34 47.41 48.48 4.27 8.28 12.99
InstructBLIP-13B [8] 2.58 1.13 69.56 44.97 45.90 48.86 4.65 8.85 13.23
LLaVA-7B [31] 2.76 0.86 76.30 46.71 45.61 47.10 3.64 7.70 12.14
LLaVA-13B [31] 2.43 0.86 73.97 38.28 46.37 45.90 4.02 8.15 12.58

3D-LLM [21] 1.77 1.16 60.39 33.42 44.48 43.68 16.91 19.48 19.73
PointLLM-7B 3.04 0.66 82.14 44.85 47.47 48.55 3.87 7.30 11.92
PointLLM-13B 3.10 0.84 78.75 48.15 47.91 49.12 3.83 7.23 12.26
PointLLM-13B* 2.12 0.39 84.39 44.27 50.15 50.83 17.09 20.99 16.45

Human 2.67 0.22 92.46 100.00 100.00 100.00 100.00 100.00 100.00
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PointLLM
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Fig. 3: Win rate comparison.

have higher hallucination scores
than their 7B counterparts. This
suggests larger MLLMs may be
more challenging to fine-tune for
precision. The investigation of this
trend and its causes is an intrigu-
ing research direction.

We analyzed the human evalu-
ation data to compare our models
with baselines and human annota-
tions. Win rates, calculated based
on the correctness score for the 13B variants, are presented in Fig. 3. PointLLM
demonstrates notable performance, outperforming counterparts in over half of
the test samples, including against human annotations (55% vs. 35%). This un-
derscores PointLLM’s ability to effectively capture and convey 3D object details,
hinting at its potential for scalable, human-like captioning of 3D objects. More
win rate comparisons are detailed in the supplementary material.
Limitations of traditional metrics. Our evaluation also highlights the lim-
itations of conventional NLP metrics like BLEU-1, ROUGE-L, and METEOR.
These metrics are biased toward shorter captions. For instance, 3D-LLM achieves
higher scores on these metrics by producing shorter captions (averaging 20 words
compared to others’ 69+) that do not necessarily indicate superior quality, as
confirmed by human evaluation. To further verify this, we prompt PointLLM-
13B to generate captions with no more than 20 words, which improved these
metric scores significantly, as shown in Tab. 3. However, this preference for short
captions contradicts our benchmark, which necessitates that models produce de-
tailed captions to demonstrate a comprehensive understanding of point clouds.
Also, these metrics often fail to capture the semantic similarity or diversity of



12 R. Xu et al.

Table 4: Biased Traditional metrics for different captions. The biased scores
demonstrate the limitations of these metrics.

Caption B-1. R-L. MET.

Private jet 100.00 100.00 100.00
there is a black jet engine in a dark background 10.00 18.18 17.86
This is a 3D model of a cartoon-style commercial airplane. 0.00 0.00 0.00

Point Tokens Before Projection
Point Tokens After Projection
Text Tokens

Fig. 4: T-SNE visualization of tokens.
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Fig. 5: Ablation on data for alignment.

the captions as they primarily measure the overlap of n-grams or their varieties.
An example in Tab. 4 highlights this: inaccurately describing a "Private jet" as a
"jet engine" scores higher compared to accurately identifying it as an "airplane".
It’s worth noting that these metrics are proposed for machine translation, not
captioning. Therefore, we prioritize more comprehensive and reliable measures
like human and GPT-4 evaluation along with Sentence-BERT and SimCSE.

5.4 Ablation Studies

In this section, we explore various model design choices. Additionally, we examine
the impact of different data variations on the training process. The average
accuracy of PointLLM on our generative classification benchmark is reported.
Projection layers. While the alignment of tokens from different modalities
to the text space using projection layers is effective and widely used in various
domains [31,61], the optimal number of layers required remains an open question.
Our experiments, ranging from 1 to 4 projection layers with different hidden
dimensions, are detailed in Tab. 5. Results from both the 7B and 13B models
indicate that 3 projection layers yield the best performance. This suggests that
both an insufficient and an excessive number of layers can detrimentally affect
performance. A balance in the number of layers is thus crucial for optimal model
functionality. We also investigate the projection layers’ impact by visualizing
point tokens’ features pre- and post-projection, and text tokens using T-SNE as
shown in Fig. 4. Post-projection, point tokens cluster more and align closer with
text tokens, verifying the effect of aligning feature spaces. The non-complete
overlap may result from the generative, not contrastive, alignment.
Max pooling. Unlike sequential or grid-based text and image tokens, point
cloud tokens are permutation invariant. Concatenating these tokens with text
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Table 5: Projection layers.

Hidden Dims. 7B-Acc. 13B-Acc.

N.A. 50.63 52.62
1024 51.05 49.00

1024, 2048 52.82 53.39
1024, 2048, 4096 52.15 51.40

Table 6: Max pooling.

Pooling Acc. A100 GPU-Hours

7B w/ 48.72 34
7B w/o 52.82 126
13B w/ 51.10 56
13B w/o 53.39 213

Table 7: Fine-tuning data.

Single Multi. Detailed Accuracy

✓ 40.14
✓ ✓ 45.79
✓ ✓ ✓ 52.82

introduces unnecessary causal dependence and may not be optimal for feature
fusion. Inspired by max pooling’s symmetric properties [40], we experimented
with aggregating point token information through max pooling before the pro-
jection layer. While this method didn’t enhance performance as shown in Tab. 6,
it greatly improved efficiency. Training time measured by 80G-A100 GPU-Hour
reduced by about 75%. This underscores the necessity in developing efficient
point cloud fusion mechanisms for MLLMs.
Training data. To determine the optimal quantity of data for feature alignment,
we experimented with varying data volumes on our 7B PointLLM, maintaining
constant iteration times by duplicating training epochs. Results in Fig. 5 suggest
that increasing the data volume improves downstream performance, plateauing
at around 600K samples. Further, as shown in Tab. 7, incorporating more types
of data during fine-tuning consistently yields performance improvements, under-
scoring the importance of our diverse instruction-following dataset.

5.5 Qualitative Results

Fig. 1 demonstrates PointLLM’s ability to accurately perceive interior details of
shoes and cars, overcoming occlusion and viewpoint challenges. More qualita-
tive comparisons of different 13B models are shown in Tab. 8. Sample 1 from
ModelNet40 shows a typical 2D MLLM failure: mistaking a laptop for letters
due to depth perception issues inherent in single-view images. While multiple
views could potentially alleviate this, they pose challenges in terms of optimal
view selection and increased model complexity. Point clouds, however, directly
provide object geometry, avoiding issues with depth, occlusion, or viewpoint.
Sample 2 highlights PointLLM’s capability to generate detailed, accurate cap-
tions, outperforming other models and even human annotations, while avoiding
severe hallucinations. Notably, despite being trained exclusively on Objaverse,
PointLLM can handle scene-level point clouds from the unseen ScanNet [7] with
reasonable outputs, indicating its potential for broader applications. Effectively
handling scene-level point clouds necessitates more high-quality data, a resource
currently unavailable. We leave it as future work. Additional qualitative results
in the supplementary material further illustrate the advantages of using point
clouds for 3D understanding and PointLLM’s superiority.

6 Conclusions and Future Directions

In this study, we present PointLLM, a novel and powerful MLLM designed for
understanding 3D object point clouds, alongside an automated data genera-
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Table 8: Qualitative comparisons. We show the qualitative results of models on
ModelNet40 [53], Objaverse [9], and ScanNet [7]. Our PointLLM produces more accu-
rate and detailed results than baselines and even human-annotated ground truths.

Samples 1, 2

Ground Truth Laptop A cartoon black monster like a
dragon

Prompt What is this? Briefly caption this 3D model.
InstructBLIP [8] symbol letter l a black lizard with a sharp tooth

in a dark room
LLaVA [31] A small, grainy, black and

white letter j.
A 3D model of a dark, menacing
dragon.

3D-LLM [21] - A black and white tiger with long
legs, standing on its hind leg.

Point-Bind LLM [15] This is a laptop computer. The 3D model features a large, or-
nate gargoyle with a horned hel-
met, sitting on top of a building.

PointLLM The 3D model repre-
sents a notebook com-
puter, typically a lap-
top.

The 3D model depicts a men-
acing black dragon, with its
mouth opened wide revealing
a row of sharp teeth.

PointLLM (The outputs for ScanNet-Scene0611_00 are shown below.)

This is a 3D model of an interior space in a building,
featuring a table and chairs. The room is designed in
a minimalistic style, with light-colored walls and dark-
colored chairs. The table, presumably made of wood, is
the focal point of the room, providing a space for various
activities such as dining, study or work. The chairs, look-
ing comfortable and sturdy, suggest a space designed for
prolonged sitting.

tion pipeline and a large-scale dataset. We unveil two innovative benchmarks
equipped with a comprehensive evaluation framework, also highlighting the cur-
rent benchmarks and metrics’ limitations. All resources will be open-source.
Looking ahead, we aim to refine PointLLM’s comprehension of scene-level point
clouds and extend its capabilities to include point cloud generation for interac-
tive 3D content creation. Another exciting direction is leveraging PointLLM to
generate high-quality 3D object captions at scale, benefiting text-to-3D applica-
tions, for which we provide preliminary results in the supplementary material.

Acknowledgements. We would like to acknowledge Xiangyu Yue for provid-
ing feedback about this paper, and thank Lihe Ding, Shaocong Dong, and Ji-
aming Han for their assistance with the experiments. This research was partially
supported by the Centre for Perceptual and Interactive Intelligence (CPII) Ltd.
under the Innovation and Technology Commission (ITC)’s InnoHK and Shang-
hai Artificial Intelligence Laboratory.



Title Suppressed Due to Excessive Length 15

References

1. Alayrac, J.B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K.,
Mensch, A., Millican, K., Reynolds, M., et al.: Flamingo: a visual language model
for few-shot learning (2022)

2. Awadalla, A., Gao, I., Gardner, J., Hessel, J., Hanafy, Y., Zhu, W., Marathe, K.,
Bitton, Y., Gadre, S., Sagawa, S., et al.: Openflamingo: An open-source framework
for training large autoregressive vision-language models. arXiv:2308.01390 (2023)

3. Banerjee, S., Lavie, A.: METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In: ACL Workshop (2005)

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners (2020)

5. Chiang, W.L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S.,
Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality (2023), https://lmsys.org/blog/
2023-03-30-vicuna/

6. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A.,
Barham, P., Chung, H.W., Sutton, C., Gehrmann, S., et al.: Palm: Scaling lan-
guage modeling with pathways. arXiv:2204.02311 (2022)

7. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: CVPR (2017)

8. Dai, W., Li, J., Li, D., Tiong, A.M.H., Zhao, J., Wang, W., Li, B., Fung, P.N., Hoi,
S.: Instructblip: Towards general-purpose vision-language models with instruction
tuning. NeurIPS (20243)

9. Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel, O., VanderBilt, E.,
Schmidt, L., Ehsani, K., Kembhavi, A., Farhadi, A.: Objaverse: A universe of
annotated 3d objects. In: CVPR (2023)

10. Driess, D., Xia, F., Sajjadi, M.S., Lynch, C., Chowdhery, A., Ichter, B., Wahid, A.,
Tompson, J., Vuong, Q., Yu, T., et al.: Palm-e: An embodied multimodal language
model. arXiv preprint arXiv:2303.03378 (2023)

11. Gao, P., Han, J., Zhang, R., Lin, Z., Geng, S., Zhou, A., Zhang, W., Lu, P., He, C.,
Yue, X., Li, H., Qiao, Y.: Llama-adapter v2: Parameter-efficient visual instruction
model. arXiv:2304.15010 (2023)

12. Gao, T., Yao, X., Chen, D.: Simcse: Simple contrastive learning of sentence em-
beddings. arXiv:2104.08821 (2021)

13. Girdhar, R., El-Nouby, A., Liu, Z., Singh, M., Alwala, K.V., Joulin, A., Misra, I.:
Imagebind: One embedding space to bind them all. In: CVPR (2023)

14. Gong, T., Lyu, C., Zhang, S., Wang, Y., Zheng, M., Zhao, Q., Liu, K., Zhang, W.,
Luo, P., Chen, K.: Multimodal-gpt: A vision and language model for dialogue with
humans. arXiv:2305.04790 (2023)

15. Guo, Z., Zhang, R., Zhu, X., Tang, Y., Ma, X., Han, J., Chen, K., Gao,
P., Li, X., Li, H., et al.: Point-bind & point-llm: Aligning point cloud with
multi-modality for 3d understanding, generation, and instruction following. arXiv
preprint arXiv:2309.00615 (2023)

16. Gupta, T., Kembhavi, A.: Visual programming: Compositional visual reasoning
without training. In: CVPR (2023)

17. Han, J., Zhang, R., Shao, W., Gao, P., Xu, P., Xiao, H., Zhang, K., Liu,
C., Wen, S., Guo, Z., et al.: Imagebind-llm: Multi-modality instruction tuning.
arXiv:2309.03905 (2023)

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


16 R. Xu et al.

18. Hao, Y., Song, H., Dong, L., Huang, S., Chi, Z., Wang, W., Ma, S., Wei, F.:
Language models are general-purpose interfaces. arXiv:2206.06336 (2022)

19. Hegde, D., Valanarasu, J.M.J., Patel, V.: Clip goes 3d: Leveraging prompt tuning
for language grounded 3d recognition. In: ICCV (2023)

20. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv:1606.08415
(2016)

21. Hong, Y., Zhen, H., Chen, P., Zheng, S., Du, Y., Chen, Z., Gan, C.: 3d-llm: Injecting
the 3d world into large language models (2023)

22. Huang, R., Li, M., Yang, D., Shi, J., Chang, X., Ye, Z., Wu, Y., Hong, Z., Huang,
J., Liu, J., et al.: Audiogpt: Understanding and generating speech, music, sound,
and talking head. arXiv:2304.12995 (2023)

23. Huang, S., Dong, L., Wang, W., Hao, Y., Singhal, S., Ma, S., Lv, T., Cui, L.,
Mohammed, O.K., Liu, Q., et al.: Language is not all you need: Aligning perception
with language models. arXiv:2302.14045 (2023)

24. Huang, T., Dong, B., Yang, Y., Huang, X., Lau, R.W., Ouyang, W., Zuo, W.:
Clip2point: Transfer clip to point cloud classification with image-depth pre-
training. In: ICCV (2023)

25. Jiang, B., Chen, X., Liu, W., Yu, J., Yu, G., Chen, T.: Motiongpt: Human motion
as a foreign language. arXiv:2306.14795 (2023)

26. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. ICCV (2023)

27. Li, B., Zhang, Y., Chen, L., Wang, J., Pu, F., Yang, J., Li, C., Liu, Z.: Mimic-it:
Multi-modal in-context instruction tuning. arXiv:2306.05425 (2023)

28. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. In: ICML (2023)

29. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. In: ICML (2022)

30. Lin, C.Y.: ROUGE: A package for automatic evaluation of summaries. In: Text
Summarization Branches Out (2004)

31. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: NeurIPS (2023)
32. Liu, M., Shi, R., Kuang, K., Zhu, Y., Li, X., Han, S., Cai, H., Porikli, F., Su, H.:

Openshape: Scaling up 3d shape representation towards open-world understanding.
arXiv preprint arXiv:2305.10764 (2023)

33. Luo, T., Rockwell, C., Lee, H., Johnson, J.: Scalable 3d captioning with pretrained
models. arXiv:2306.07279 (2023)

34. OpenAI: Chatgpt. https://openai.com/blog/chatgpt (2022)
35. OpenAI: Gpt-4 technical report. arXiv:2303.08774 (2023)
36. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang,

C., Agarwal, S., Slama, K., Ray, A., et al.: Training language models to follow
instructions with human feedback (2022)

37. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: ACL (2002)

38. Patil, S.G., Zhang, T., Wang, X., Gonzalez, J.E.: Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334 (2023)

39. Peng, Z., Wang, W., Dong, L., Hao, Y., Huang, S., Ma, S., Wei, F.: Kosmos-
2: Grounding multimodal large language models to the world. arXiv:2306.14824
(2023)

40. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: CVPR (2017)

https://openai.com/blog/chatgpt


Title Suppressed Due to Excessive Length 17

41. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021)

42. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. In: JMLR (2020)

43. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv:1908.10084 (2019)

44. Su, Y., Lan, T., Li, H., Xu, J., Wang, Y., Cai, D.: Pandagpt: One model to
instruction-follow them all. arXiv:2305.16355 (2023)

45. Sun, Q., Li, Y., Liu, Z., Huang, X., Liu, F., Liu, X., Ouyang, W., Shao, J.: Unig3d:
A unified 3d object generation dataset. arXiv:2306.10730 (2023)

46. Surís, D., Menon, S., Vondrick, C.: Vipergpt: Visual inference via python execution
for reasoning. arXiv:2303.08128 (2023)

47. Team, I.: Internlm: A multilingual language model with progressively enhanced
capabilities. https://github.com/InternLM/InternLM (2023)

48. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient
foundation language models. arXiv:2302.13971 (2023)

49. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need (2017)

50. Wang, H., Tang, J., Ji, J., Sun, X., Zhang, R., Ma, Y., Zhao, M., Li, L., Zhao,
Z., Lv, T., et al.: Beyond first impressions: Integrating joint multi-modal cues for
comprehensive 3d representation. In: ACM MM (2023)

51. Wang, W., Chen, Z., Chen, X., Wu, J., Zhu, X., Zeng, G., Luo, P., Lu, T., Zhou,
J., Qiao, Y., et al.: Visionllm: Large language model is also an open-ended decoder
for vision-centric tasks. arXiv:2305.11175 (2023)

52. Wu, C., Yin, S., Qi, W., Wang, X., Tang, Z., Duan, N.: Visual chatgpt: Talking,
drawing and editing with visual foundation models. arXiv:2303.04671 (2023)

53. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: CVPR (2015)

54. Xue, L., Gao, M., Xing, C., Martín-Martín, R., Wu, J., Xiong, C., Xu, R., Niebles,
J.C., Savarese, S.: Ulip: Learning a unified representation of language, images, and
point clouds for 3d understanding. In: CVPR (2023)

55. Xue, L., Yu, N., Zhang, S., Li, J., Martín-Martín, R., Wu, J., Xiong, C., Xu, R.,
Niebles, J.C., Savarese, S.: Ulip-2: Towards scalable multimodal pre-training for
3d understanding. arXiv:2305.08275 (2023)

56. Yin, S., Fu, C., Zhao, S., Li, K., Sun, X., Xu, T., Chen, E.: A survey on multimodal
large language models. arXiv:2306.13549 (2023)

57. Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., Lu, J.: Point-bert: Pre-training 3d
point cloud transformers with masked point modeling. In: CVPR (2022)

58. Zhang, R., Guo, Z., Zhang, W., Li, K., Miao, X., Cui, B., Qiao, Y., Gao, P., Li,
H.: Pointclip: Point cloud understanding by clip. In: CVPR (2022)

59. Zhang, R., Han, J., Liu, C., Gao, P., Zhou, A., Hu, X., Yan, S., Lu, P., Li, H.,
Qiao, Y.: Llama-adapter: Efficient fine-tuning of language models with zero-init
attention. arXiv:2303.16199 (2023)

60. Zhang, S., Sun, P., Chen, S., Xiao, M., Shao, W., Zhang, W., Chen, K.,
Luo, P.: Gpt4roi: Instruction tuning large language model on region-of-interest.
arXiv:2307.03601 (2023)

https://github.com/InternLM/InternLM


18 R. Xu et al.

61. Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: Minigpt-4: Enhancing vision-
language understanding with advanced large language models. arXiv:2304.10592
(2023)

62. Zhu, X., Zhang, R., He, B., Guo, Z., Zeng, Z., Qin, Z., Zhang, S., Gao, P.: Pointclip
v2: Prompting clip and gpt for powerful 3d open-world learning. In: ICCV (2023)


	PointLLM: Empowering Large Language Models to Understand Point Clouds

