
Improving Agent Behaviors with RL Fine-tuning
for Autonomous Driving

Zhenghao Peng1*, Wenjie Luo2, Yiren Lu2, Tianyi Shen2, Cole Gulino2,
Ari Seff2, and Justin Fu2

1UCLA, 2Waymo

Abstract. A major challenge in autonomous vehicle research is model-
ing agent behaviors, which has critical applications including construct-
ing realistic and reliable simulations for off-board evaluation and forecast-
ing traffic agents motion for onboard planning. While supervised learn-
ing has shown success in modeling agents across various domains, these
models can suffer from distribution shift when deployed at test-time. In
this work, we improve the reliability of agent behaviors by closed-loop
fine-tuning of behavior models with reinforcement learning. Our method
demonstrates improved overall performance, as well as targeted metrics
such as collision rate, on the Waymo Open Sim Agents challenge. Ad-
ditionally, we present a novel policy evaluation benchmark to directly
assess the ability of simulated agents to measure quality of autonomous
vehicle planners and demonstrate the effectiveness of our approach on
this new benchmark.

Keywords: Autonomous Driving · Reinforcement Learning · Policy Eval-
uation · Behavior Prediction

1 Introduction

Motion Predictor

Open-loop Behavior Cloning

Motion Predictor
as RL Agent

Autoregressive
Rollout

Closed-loop RL Finetuning

Sim Agent

Pre-trained
Model

Fine-tuned
Model

Fig. 1: We propose to fine-tune a pre-trained
motion prediction model with closed-loop rein-
forcement learning.

Transformer-based architectures
have demonstrated state-of-the-
art performance in a variety of
tasks in language [24], vision [26],
and robotics [43]. The success
of these models is credited to a
widely adopted “pre-training and
fine-tuning” scheme [40]. In the
pre-training phase, the model ac-
quires knowledge from a very large amount of training data; during fine-tuning,
the model behaviors are rectified to align with human preferences and expec-
tations. While supervised learning can be used for fine-tuning, previous work
has shown superior performance with reinforcement learning (RL) fine-tuning
in language tasks [25] and text-to-image generation [3]. In autonomous driving

*Work done as an intern at Waymo.

2 Z. Peng et al.

BC Loss

Context

Pretraining and Finetuning Scheme

Motion PredictorEnvironment

Action

Observation, Reward

BC+RL Scheme

BC Loss

...

...

...

...

...

...

RL Loss

Motion Predictor

...

...

...

...

... ...

Agent

Context

Fig. 2: Left: The agent is trained from scratch using a combined Behavioral Cloning
(BC) and Reinforcement Learning (RL) approach. Without pre-training on large
datasets, the agent must simultaneously explore the environment and develop its capa-
bilities from scratch. Right: The agent undergoes a two-phase training scheme. Agent
acquires a foundational skill set from aligning its actions (green) with ground truth
data in pre-training (gray). The fine-tuning through RL refines the agent behaviors in
the autoregressive rollout.

(AD), given the abundance of human driving data, a natural question arises: Can
we leverage the popular “pre-training and RL fine-tuning” strategy to effectively
model agent behaviors?

In this paper, we investigate the viability of applying the “pre-training and RL
fine-tuning” paradigm to model the behaviors of traffic agents in AD scenarios.
Such models can be applied in critical AD tasks such as simulation agents (sim
agents) [20], enabling high-fidelity simulation systems for off-board evaluation,
and behavior prediction for surrounding traffic participants, facilitating onboard
planning.

Behavioral cloning (BC), or training an imitative model using supervised
learning on demonstrations [1], has been the predominant approach for learn-
ing driving agents [5, 34]. While BC provides supervision for modeling realistic
behavior, during closed-loop simulation, the agent behaviors can deviate from
the training distribution, known as the “covariate shift” issue [27]. Moreover, BC
lacks the ability to explicitly incorporate human preferences, expectations and
constraints. For example, safety-critical events, such as collisions, are only implic-
itly discouraged in the BC loss due to their rarity in human driving datasets. In
situations where a collision is likely to occur, the model may only have limitated
examples to learn from. RL fine-tuning can address these limitations. Firstly, RL
learns from closed-loop synthetic rollouts, addressing the covariate shift problem
as the reward function penalizes actions leading to future trajectories that di-
verge from ground-truth. Secondly, explicit objectives can be incorporated into
the reward function so the agents can learn to align with human preferences and
expectations.

Inspired by the success of fine-tuning large language models to align with
human preferences, we apply the “pre-training and RL fine-tuning” scheme to
training behavior models for sim agents. As demonstrated in Fig. 1, we can fine-
tune a pre-trained model via a simple on-policy RL approach with autoregressive

Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving 3

rollouts. We propose a simple reward function that not only enables the model
to satisfy human preferences on the agent behaviors, but also maintains human
likeness.

Our experiments on the Waymo Open Sim Agent Challenge (WOSAC) [20]
demonstrate that RL fine-tuning significantly improves the reliability of the
agent behaviors, especially in terms of collision avoidance. An important ap-
plication of the learned behaviors is in actuating the traffic agents in AD simula-
tion. We study the reliability of the learned models in a novel planner evaluation
benchmark. The intuition is that a simulator with more realistic sim agents
model should provide more reliable evaluation across ego AD planners. With
this insight, we use different sim agents model to control the traffic agents and
assess the performance of a predefined set of AD planners. By comparing the
planners’ estimated performance as evaluated by the sim agents model against
their known performance ranking, we find that our fine-tuned models provide
more accurate planner evaluations. This indicates that our approach is beneficial
for testing autonomous driving planners. The main contributions of this work
are:

1) We propose to apply the popular “pre-training and RL fine-tuning” paradigm
commonly used for large language models (LLMs) to the autonomous driving
behavior modeling problem, demonstrating the effectiveness of closed-loop fine-
tuning a Transformer-based architecture on the Waymo Open Motion Dataset
(WOMD) [15].

2) We demonstrate that an on-policy RL algorithm with a simple reward
function can successfully preserve the realism in the dataset while aligning human
preferences on safety and reliability.

3) To better evaluate the performance of sim agents models, we propose a
novel planner evaluation task and demonstrate that our method can significantly
improve the performance of the sim agents models in terms of its capability to
assess the AD planners.

2 Related Work

2.1 Pre-training and Fine-tuning of Transformer-based Models

Transformer-based models have been applied to various domains such as text
generation [4], image generation [26], robotics [43], drug discovery [18], disease
diagnose [42], and generalist medical AI [22]. Many large Transformer-based
models are trained in the “pre-training then fine-tuning” manner, where su-
pervised fine-tuning [40] or reinforcement learning with human feedback [25]
holds the promise to align the model behaviors to human preferences. In the
autonomous driving domain, similar Transformer-based architectures have been
applied to various tasks, ranging from perception [19], motion prediction [23],
self-driving policies [10] and simulation [31,38,39]. In this work, we focus on the
motion prediction problem, where predictors forecast the future trajectories of
the target agents by observing history information [23, 29, 30]. Unlike founda-
tional models in other domains such as large language models [24] and vision

4 Z. Peng et al.

language models [16], motion prediction models are most commonly trained via
supervised learning and rarely fine-tuned to better boost alignment with human
preferences.

2.2 Behavior Modeling for Autonomous Driving

Modeling the behavior of traffic participants is a critical task in many au-
tonomous driving systems, particularly for constructing realistic simulation to
test the AD planners. Most existing simulators [6, 12, 41] rely on hand-crafted
rules for traffics and maps generation. However, the data distributions for the
map structure, traffic flow, the interaction between traffic participants and other
elements do not realistically represent the real world. Modern data-driven simula-
tors [9,13,14,33] address this by replaying the behaviors of the traffic participants
from real-world scenarios recorded by an autonomous vehicle (log-replay). Yet,
the downside of log-replay is that re-simulation may become unrealistic when
the planner behavior diverges from the original logged behavior. For example, if
an AD planner is more cautious than the human driver and brakes earlier, the
trailing vehicle might collide into it, leading to a false positive collision.

In this work, we mainly focus on the simulation agents task and evaluate our
solutions on the Waymo Open Sim Agent Challenge (WOSAC) [20]. Many exist-
ing WOSAC submissions apply the marginal motion prediction models [2,7,29],
which typically take initial states and predict the positions of traffic participants
at all future steps in a single inference (one-shot). Those marginal models do not
explicitly model interactions between agents during the prediction horizon. The
autoregressive (AR) models naturally fit to the driving behavior modeling, es-
pecially in the context of closed-loop simulation [11,28,31,38]. AR decoding [28]
allows the interactions between agents to be modeled via a self-attention mech-
anism at each step of the decoding process. However, closed-loop training of the
AR behavior prediction models remains an understudied area. We propose to
improve a pre-trained AR model with closed-loop fine-tuning and evaluate the
performance on the WOSAC benchmark.

In contrast to prior research on combining behavior cloning and reinforce-
ment learning [17,36,37], our approach eliminates the need for an external sim-
ulator and a dynamics model. Since our model predicts actions for all agents,
it functions as a simplified simulation environment itself. From an algorithmic
perspective, we avoid back-propagation through time (BPTT) used in existing
works [11,36]. Instead, we propose that RL can be conducted with a minimalistic
policy gradient algorithm [35]. This allows us to use non-differentiable rewards
(such as a boolean collision indicator) and non-differentiable models with dis-
crete outputs which would not be possible with BPTT.

3 Preliminaries

Motion Prediction. A driving scenario includes static information such as the
map topology and dynamic information such as the states of traffic participants

Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving 5

and traffic lights. At each time step, the state of a traffic participant is repre-
sented by a feature vector containing the position, velocity, and heading angle
in global frame, and the object type (vehicle, cyclist, pedestrian). For traffic
lights, the feature vector contains their position and state (green, yellow, red
or unknown). Given the history states of N traffic participants with indices
I = [1...N], the goal of motion prediction is to predict future trajectories, i.e.
the positions in future steps, of these agents.

Behavior Modeling as a Multi-Agent RL Problem. We consider driving behavior
modeling as a Multi-agent Markov Decision Process (Multi-agent MDP). The
Multi-agent MDP is defined by the tuple ⟨I, S, {Ai}, T , {Ri}, Ω, {Oi}, γ⟩,
where S is the joint state space, A = ×iAi is the joint action space, the transi-
tion function is T : S×A → S, the reward functions are Ri(st, at,i, st+1),∀i ∈ I,
the observation space is Ω = ×iΩi, the observation functions Oi , and the dis-
count factor is γ. In this Multi-agent MDP, the goal is to learn action poli-
cies πi : Ai × Ωi → [0, 1] for each agent. Each agent aims to maximize its
expected cumulative return: πi = argmaxπ Eτ∼Pπj,∀j∈I [

∑Tfuture
t=1 γtrt,i], where

τ = (s0,a0, ..., sT , aT) is the joint future rollout obtained by executing the
learned policy model conditioned on the initial state. Here, at = {at,i}i∈I is
the joint actions.

Actions
at

Actions
at

Actions
at

Fig. 3: The causal mask in the
decoder.

Autoregressive Encoder-Decoder Architecture. We
use MotionLM [28], an encoder-decoder transformer-
based autoregressive motion prediction model.
The model’s encoder takes a set of tokens repre-
senting the initial states of the scenarios as input
and generates a scene embedding. These initial
states include the traffic lights states, map topol-
ogy, and the history information of all traffic par-
ticipants. During inference, we run the decoder for
Tpred prediction steps to autoregressively generate
the prediction of all agents. At each prediction
step, the decoder takes a set of motion tokens as
well as the scene embedding as input and gener-
ates a distribution of N output tokens. The decoder consists of multiple layers,
each applying self-attention among input tokens and cross-attention to the scene
embedding. All N motion tokens at step t can attend to each other and all pre-
vious tokens as shown in Fig. 3, where each row represents a query token and
each column a key token and green blocks indicate key tokens that the query
can attend. After running Tpred prediction steps, the Tpred × N output motion
tokens form complete trajectories for N agents. This autoregressive approach en-
sures that each agent’s action is based on a temporally causal relationship with
the previous actions of all traffic participants, leading to improved modeling of
interaction between agents within the prediction horizon.

We modify the original MotionLM model by adopting a scene-centric input
format and predicting the motion of all agents, rather than using a pre-selected

6 Z. Peng et al.

subset. The scene-centric representation and the encoder-decoder architecture
enable more computationally efficient encoding of the scene context and predic-
tion of all agents’ motion.

4 Method

As shown in Algorithm 1, our method has two stages. In the pre-training stage,
we reconstruct the ground truth actions from the data and use the maximum
likelihood objective to match the joint action distribution of observed behaviors
in the dataset:

max
πθ

E
D

Tpred∑
t=1

∑
i∈I

log πθ(a
GT
t,i |ot,i). (1)

The second stage of our learning process fine-tunes the model using reinforce-
ment learning (RL). We formalize the problem as a Multi-agent Markov Decision
Process (MDP) for our behavior modeling task as follows:
Action. The action space A = ×iAi: The action space for each agent Ai is a
Verlet-wrapped delta action space [28], where each action represents the X, Y
acceleration in scene coordinates. To reconstruct the ground truth action targets,
we first infer the accelerations by differentiating the observed positions in the
data. These accelerations are then discretized into a 13x13 uniformly spaced grid,
where outliers are clipped to the minimum and maximum values of 6 m/s2.
State. The state space S contains map features, the joint state of all objects
and traffic lights.
Transition Dynamics. Agents transit to new positions computed by adding
previous positions with an offset: post+1,i = (at,i∆ + velt,i)∆ + post,i wherein
the velocity velt,i and the position post,i are in st and ∆ is the time interval
between steps.
Observation. We define observations to consist of a historic context c, previous
actions of all objects and the agent identity: ot,i = (c,a1, ...,at−1, i). Here, the
context c = ({mi}M , sTprev , ..., s0) is a set containing M map features and the
object and traffic light states for history steps t = Tprev, ..., 0.

4.1 RL Fine-tuning

We propose to fine-tune a pre-trained autoregressive motion predictor with RL.
The reward function for each agent at each step is defined as:

rt,i = −||Post,i −GTt,i||2 − λCollt,i, (2)

where Post,i is the position of agent i in step t and GTt,i is the corresponding
position in the logged trajectory. Collt,i is a Boolean indicator and will be 1 if
the bounding box of agent i intersects with others’ bounding boxes. This reward
function, while simple, captures the key objectives of preserving the behavioral
realism as well as satisfying the safety constraint of collision avoidance.

Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving 7

Algorithm 1: Pre-train and fine-tune an autoregressive motion predic-
tor.

input : Large-scale driving dataset D.
output: A Sim Agent policy πθ.

1 Initialize model parameters θ and model πθ.
2 for pre-training iterations j = 1, ... do
3 Retrieve shistory, sGT from D.
4 Construct target actions aGT = {aGT

t,i , ∀t, i} and construct the observation
ot,i with GT actions.

5 Run the model with the observation and get the predicted actions
{at,i,∀t, i}.

6 Update πθ via Eq. 1.
7 for fine-tuning iterations j = 1, ... do
8 Retrieve shistory from D; Set a0 ← .
9 for t = 1, ..., Tpred do ▷ Autoregressive Rollout.

10 ot ← (shistory,a0, ...,at−1, I). ▷ Get obs.
11 at ← πθ(·|ot). ▷ Decode next actions.
12 Reconstruct predicted states spred = {ŝt,i, ∀t, i} by translating actions

at,i, ∀t, i.
13 Compute per-agent per-step rt,i via Eq. 2
14 Compute normalized return via Eq. 4 and update πθ via Eq. 5

During fine-tuning, we run the model for Tpred prediction steps. The encoder
first encodes the scene context c as a shared scene embedding, before the autore-
gressive decoding. At each prediction step t, the fixed scene embedding and the
t × N tokens are fed to the autoregressive decoder and sample N new actions.
Specifically, at prediction step t = 1, we project the agents’ current positions
through a MLP and get the agent embeddings: idi = MLP(Pos0,i), i = 1, ..., N .
The agent and scene embeddings serve as the input tokens to the decoder. After
several layers of self-attention and cross-attention, N actions are sampled from
the categorical distributions constructed from the output of the decoder. The
embeddings of those sampled actions will be added with corresponding idi and
concatenated with the tokens in previous steps to form the input tokens for the
next step. Compared to the decoding process of a language model, we output
N tokens concurrently at each prediction step instead of one token. Our model
autoregressively rolls out the actions in Tpred time steps. After collecting the
rollout trajectories, we translate the actions to sequences of 2D positions for
computing the rewards following Eq. 2. The return (i.e. the “reward-to-go”), for
step t and each agent i is:

Rt,i =

Tpred∑
t′=t

γt′−trt′,i. (3)

We normalize the return across the whole training batch, here Mean and Std
are the average and the standard deviation computed across all time steps in all

8 Z. Peng et al.

scenarios for all agents in the training batch:

R̃t,i = (Rt,i −Mean(R))/Std(R). (4)

We then apply the REINFORCE [35] method to compute a policy gradient for
optimizing the model by differentiating the following surrogate objective:

max
πθ

E
D

Tpred∑
t=1

∑
i∈I

log πθ(at,i|ot,i)R̃t,i. (5)

4.2 Policy Evaluation for Sim Agents

A key limitation of common “imitative” metrics (such as ADE), which compare
model rollouts to ground truth trajectories, is the weak connection between the
metric and the actual goal of assessing the AD planner performance. A low ADE
metric does not guarantee good driving behaviors. Log-replay, for example, has a
perfect ADE of zero but would be a poor choice for sim agents because it is non-
reactive. To create an evaluation that has a direct connection to measuring the
performance of the AD planners, we propose a new policy evaluation framework
for sim agents, inspired by the RL policy evaluation literature [32].

Our policy evaluation framework involves ranking and scoring the perfor-
mance of a predetermined collection of AD planner policies. This is analogous
to a real-world use case where one must decide which planner to deploy from
a collection of candidate software releases. A better sim-agent model will give
a more accurate signal on which policy would be best when deployed in the
real world. As shown in Fig. 4, we first prepare a batch of AD planner policies
with known performance ranking. Then, we evaluate the performance of these
AD planners when the traffic agents in the scenario are controlled by a sim
agent model. Therefore, we will generate the estimated performance for those
AD planners for the specific sim agent. We then measure the discrepancy be-
tween the estimated performance and the ground truth performance of those
planners. This discrepancy becomes the measurement of the sim agents model’s
ability to assess the performance of the planners. Policy evaluation covers two
important use cases for the sim agent models in the deployment of autonomous
vehicles: evaluation, where we wish to estimate the performance of agents in
the simulation, and selection, where we wish to determine a ranking or order
between different deployment candidates.

Choice of policies. In order to perform policy evaluation, we must have a fixed set
of policies on hand to rank or evaluate. To generate a large variety of planning
policies with both good and bad performance, we propose to use a random
shooting search-based policy family, parameterized by the number (J) and depth
(D) of trajectories sampled. We compute a “ground truth” score for each policy
by evaluating it with log playback agents. Note that the choice of ground truth
is an important design decision. Any sim agent could serve as a ground truth,

Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving 9

Planner #3
Performance

AD
Planner

SimAgent

AD Planner
Performance

Policy
Evaluation

Planner #2
PerformancePlanner #1

Performance

Planner #3
 Planner #2

 Planner #1
GT PerformanceRank Correlation

Absolute Error

The performance of the sim agent

Fig. 4: We evaluate the sim agent by its ability to correctly assess the AD planner.

but we need to pick one that is the most fair to all models and we believe log
playback to be the most neutral.

Our random shooting policy operates in a model-predictive control (MPC)
fashion: at each time step, our random shooting policy samples from a fixed
library of J trajectories, which are generated by maintaining a single steering
wheel angle and acceleration for D steps. Note that this action specification
is different from the action space of the MotionLM architecture we described
in Sec. 4. We found this simple strategy to work much better than randomly
selected actions. The trajectories are then scored by a reward function and the
first step of the best scoring trajectory is executed. This process repeats for the
entirety of the rollout. We used 16 different settings of J , ranging between 9 to
81, and we used 4 values of depth D ∈ [6, 8, 12, 16]. We then used the product
of these two sets, for a total of 64 different policies evaluated.

Reward Function. The reward function used for selecting actions from a set of
candidate trajectories is a linear combination of collisions, as well as off-road
and route-following infractions. We use a modified reward function from Eq. 2
by replacing the L2 norm from the ground truth (which is not available to the
planner at execution time) with additional terms for following a reasonable path.
We instead give the planner a high-level route in the form of waypoints, and we
use a weighted sum of −10C − O − R + 10−4P , where C ∈ {0, 1} denotes the
collision indicator and is 1 when a collision between AV and another object
happens, O ∈ {0, 1} denotes the offroad indicator and is 1 when the AV is too
close to the road edge, R ∈ {0, 1} denotes the off-route indicator which is 1 when
the AV’s lateral distance to the GT trajectory exceeds a threshold, and P is the
projection of the AV’s displacement between two time steps when projected
onto the logged trajectory and measures the route-following behavior. We use
Waymax [9]’s utility function to compute those metrics.

5 Experiments

We now describe our method’s experimental results on the Waymo Open Sim
Agents Challenge (WOSAC) [20] and on the Policy Evaluation task introduced
in Sec. 4.2. Our experiments are designed to answer the following questions:

10 Z. Peng et al.

Lin. Speed
↑

Lin. Acc.
↑

Ang. Speed
↑

Ang. Acc.
↑

Dist. to
Obj. ↑

Collision
↑

TTC
↑

Dist. to
Road Edge ↑

Offroad
↑

Composite
↑

ADE
↓

MinADE
↓

Random 0.002 0.044 0.074 0.120 0.000 0.000 0.734 0.178 0.287 0.155 50.739 50.706
Constant Velocity 0.074 0.058 0.019 0.035 0.208 0.345 0.737 0.454 0.455 0.287 7.923 7.923

Wayformer 0.331 0.098 0.413 0.406 0.297 0.870 0.782 0.592 0.866 0.575 2.498 2.498
MVTE 0.445 0.222 0.535 0.481 0.383 0.893 0.832 0.664 0.908 0.645 3.859 1.674

Logged Oracle 0.561 0.330 0.563 0.489 0.485 1.000 0.881 0.713 1.000 0.722 0.000 0.000
Pre-trained (1M) 0.390 0.235 0.504 0.447 0.348 0.544 0.803 0.582 0.525 0.490 6.332 3.177

RL-only (1M) 0.257 0.115 0.487 0.429 0.244 0.239 0.759 0.456 0.164 0.320 7.785 6.918
Fine-tuned (1M) 0.412 0.219 0.451 0.420 0.348 0.863 0.814 0.637 0.804 0.597 2.436 1.867

Pre-trained (10M) 0.439 0.241 0.502 0.454 0.371 0.673 0.811 0.625 0.655 0.549 4.508 2.274
Fine-tuned (10M) 0.433 0.220 0.455 0.423 0.361 0.877 0.819 0.647 0.825 0.608 2.428 1.706

Table 1: Results on the Waymo Open Sim Agents Challenge (WOSAC) benchmark.
Metrics marked with (↑) are better if higher, while metrics marked with (↓) are better if
lower. Fine-tuned agents score better than pre-trained agents on safety-critical metrics
such as collision and offroad, which results in a significantly higher composite metric
score. We bold the best results for the baseline agents and best results from the model
we trained for this work.

1. Does RL fine-tuning improve the overall sim agents behavior?
2. Can fine-tuning be used to improve targeted metrics through reward engi-

neering?
3. Does the fine-tuned sim agents model provide better evaluation of AD plan-

ner performance?

Dataset. We train our method and baselines on the Waymo Open Motion
Dataset (WOMD) [15] and evaluate on the Waymo Open Sim Agents Chal-
lenge (WOSAC) benchmark [20]. WOMD contains scenarios recorded at 10Hz
including one second of history (11 discrete time steps), and 8 seconds of future
states (80 time steps) to predict. In total, there are 486k training scenarios, 44k
validation scenarios, and 45k test scenarios. Up to 128 agents are simulated in
each scenario.

Model. We use a pre-trained autoregressive motion prediction model MotionLM [28].
For the MotionLM model with 10M parameters, we use 4 encoder and 4 decoder
layers. The hidden size is 256. The number of attention heads is 4. The activation
is ReLU. The feed-forward network intermediate size is 1024.

Training. We pre-train a MotionLM model on the WOMD training set with
the objective in Eq. 1. The model is then used for RL fine-tuning. The encoder
and the decoder of the model are fine-tuned jointly. 1M steps of updates are
conducted both in pre-training and fine-tuning. At each training step, 128 sce-
narios are sampled from the dataset to form a batch. During RL fine-tuning, the
learning rate is set to 5e-6 and the discount factor is set to 0.95.

5.1 Waymo Open Sim Agents Challenge

Baselines. We include several notable baselines reported by [20] on WOSAC.
The “random” and “constant velocity” agents are included to provide a reasonable
performance lower bound. The “logged oracle” represents the ground truth future

Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving 11

behavior that is not visible to other baselines and represents an upper-bound on
performance. Wayformer [23] is a recent transformer-based model which shares
the same encoder structure as our model. MVTE [34] is another transformer-
based architecture which is the current state-of-the-art on the benchmark. Both
Wayformer and MVTE adopt the agent-centric input representation. We also
report the performance of our pre-trained 1M parameter and 10M parameter
models, which are based on the MotionLM [28] architecture.

Evaluation Metrics. The Waymo Open Sim Agents challenge evaluates agents on
a wide range of likelihood -based metrics. These metrics are designed to measure
realistic simulation in aggregate over the entire dataset, while allowing agents
to have enough flexibility to deviate from the exact logged ground truth in each
scenario. Each benchmarked method samples 32 rollouts for each WOMD test
scenario. Metrics (such as velocity and heading angle) are then measured on
these samples, but binned into discrete histograms, and the log-likelihood of the
ground-truth data is measured under these histograms. The individual scores
are then weighted and averaged to produce a final composite metric. In addi-
tion, following WOSAC [21] we also report the mean average displacement error
(ADE) over 32 rollouts and the minimum average displacement error (minADE)
over 32 rollouts.

Results. We report our results on WOSAC in Table 1. The results provide strong
evidence that closed-loop fine-tuning from a pre-trained model can significantly
improve performance of the model as a sim agent. We see that both the “Fine-
tuned 1M” and “Finedtuned 10M” models perform better than “Pre-trained 1M”
and “Pre-trained 10M”, respectively. When we look at the breakdown of the
constituent metrics, we see that most of the gains come from improved safety-
critical metrics such as collision and offroad. As a concrete example, Fig. 5
illustrates a single scenario comparing a rollout from a pre-trained 1M parameter
model with a fine-tuned model. The pre-trained model is prone to slowly drifting
away from the ground truth trajectory, a distribution shift problem commonly
impacting pure imitative and teacher forcing [27] methods. By training the model
in closed-loop, we can mitigate this distribution shift issue.

The composite performance of “Fine-tuned 10M” is still lower than the state-
of-the-art MVTE [34] model. We believe this can be mostly attributed to the
choice of our pre-trained baseline model, which was our re-implemented ver-
sion of the MotionLM [28] architecture with the encoder architecture of Way-
former [23]. We leave the fine-tuning of MVTE using the same methodology
described in this work as future work, which we hypothesize would lead to a
sizeable performance gain.

To measure the effect of reward engineering and the ability to target specific
metrics with fine-tuning, we ran an ablation study varying the relative weight
λ of the collision metric in Eq. 2, with results reported in Table 2. We fine-
tuned the 1M parameter model with 4 different collision weights, and reported
the collision score versus the ADE of the predictions. We can clearly see that
adding some amount of collision penalty improves the collision metric at the cost

12 Z. Peng et al.

Pre-trained Model Fine-tuned Model

Fig. 5: Visualization of scenario rollouts using a pre-trained and a fine-tuned model.
The start locations of vehicles are marked with a red star, the ground truth futures
are marked with a solid black line, and the sampled trajectory is marked with circles
of different colors. Left: The pre-trained model suffers from drifting due to distribu-
tional shift between training (with teacher forcing) and testing (with an autoregressive
rollout). Right: The fine-tuned model is able to follow the ground truth much more
precisely, which is quantitatively demonstrated by the better ADE metric.

Collision Weight Collision TTC Composite ADE MinADE
↑ ↑ ↑ ↓ ↓

0 0.834 0.810 0.590 2.405 1.871
2 0.863 0.814 0.597 2.436 1.867
5 0.844 0.817 0.595 2.838 1.980
10 0.831 0.817 0.594 3.058 2.023

Table 2: WOSAC benchmark scores for different values of the collision fine-tuning
weight λ with the 1M parameter model. Increasing the collision weight improves the
collision score at the cost of decreasing imitative behavior metrics such as ADE. We
find a good balance at an intermediate value.

of degrading the ADE metric. This generally makes sense, as the optimization
must trade-off the collision penalty versus the displacement error terms in the
reward function. However, we also see that at very high values of the collision

Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving 13

weight, all metrics tend to degrade, and the best result is with an intermediate
cost weight. We hypothesize this is the case because displacement error is a very
dense and rich reward signal, whereas collision is a more sparse and noisy signal.

5.2 Policy Evaluation

As described in Sec. 4.2, we also propose to evaluate sim agents through the lens
of policy evaluation. In particular, we follow the methodology proposed by [8]
and report two metrics used in their benchmark: Spearman’s rank correlation
and absolute error. Rank correlation is a metric for “selection” and measures
the ability for the simulation to discern between good and bad policies (AD
planners). This is useful for the problem setting where one must select the best
policy to deploy from a set of candidates. On the other hand, absolute error is
a metric for “evaluation” and measures how closely a simulation comes close to
estimating the true cost or reward accrued by the policy. This is useful if one
is interested in concrete performance numbers such as estimating the rate of a
particular event of interest. The sim agent causing less absolute error and higher
rank correlation is better for evaluating different planners.

Given a set of planners with known performance ranking, we assess sim agents
by measuring how well they estimate the value function of each planner. We
generate a Monte-Carlo estimate of each planner’s value by running it on each
scenario, where all traffic participants are controlled by the sim agent, and com-
puting the empirical returns of the planner. The returns are then averaged across
all scenarios in the WOMD test set to form the estimate of the planner. The
value estimates are then compared to a “ground-truth value”, and we show two
quantities, rank correlation and absolute error in Table 3 and Table 4, respec-
tively. Each row in these tables represents the policy evaluation results of a sim
agent. A sim agent will generate K = 64 estimated returns of K policies (AD
planners). Due to the absence of real-world simulation, there is no a universal
ground truth sim agent that can fully replicate the realistic behaviors. We can
not know the ground truth returns when running these K policies in the real
world. In this work, we picked the log-playback sim agent as the “ground truth
sim agent” and considered the average returns of these K policies when running
with the log-playback sim agent as the ground truth value. These form the Log
column in Table 3 and Table 4. We also show rank correlation and absolute error
relative to each other sim agent we considered for completeness.

Results. Our results are reported in Table 3 and Table 4. We report results on a
total of 64 candidate policies created by varying the depth (D) and the number
of sampled trajectories (J). According to the Log column, we see that with fine-
tuned models, a higher rank correlation and lower absolute error relative to the
log-playback sim agent can be achieved, indicating that the fine-tuned models
are more accurate at measuring a planner’s performance and deciding whether
the planner is better than another.

14 Z. Peng et al.

Sim Agent Log Pre. 1M Fine. 1M Pre. 10M Fine. 10M
Pre-trained 1M 0.859 - 0.954 0.953 0.911
Fine-tuned 1M 0.865 0.954 - 0.959 0.925

Pre-trained 10M 0.845 0.953 0.959 - 0.932
Fine-tuned 10M 0.866 0.911 0.925 0.932 -

Table 3: Policy evaluation rank correlation results for pre-trained and fine-tuned
models (higher is better). Each cell corresponds to a ranking correlation of estimated
returns of a set of predefined AD planners between two sim agent models. For example,
the highlighted Fine-tuned 10M - Log means the ranking correlation of predefined AD
planners when using the Fine-tuned 10M and the log-playback sim agents.

Sim Agent Log Pre. 1M Fine. 1M Pre. 10M Fine. 10M
Pre-trained 1M 10.518 - 0.557 0.551 1.013
Fine-tuned 1M 10.101 0.557 - 0.426 0.729

Pre-trained 10M 10.014 0.551 0.426 - 0.602
Fine-tuned 10M 9.509 1.013 0.729 0.602 -

Table 4: Policy evaluation rank absolute error results for pre-trained and fine-tuned
models (lower is better).

6 Conclusion

We studied the viability of applying the popular “pre-training and fine-tuning”
scheme to modeling traffic agents for AD simulation. We drew the connection be-
tween a multi-agent driving behavior model and a simulation environment – the
multi-agent behavior model itself can be used to perform rollouts for closed-loop
training. By using an on-policy RL algorithm with a simple reward, we are able to
fine-tune a pre-trained large multi-agent behavior model to effectively align the
traffic agent behaviors with human expectations, such as collision avoidance. The
experimental results show that our method can significantly improve the per-
formance of the pre-trained model on the Waymo Open Sim Agent Challenge
(WOSAC) [20]. We also proposed a novel policy evaluation task and demon-
strated that the model fine-tuned by our method can achieve more reliable AD
testing result.
Limitations. There are several limitations to the approach we have discussed
in this paper. We use a simple transition and action model (based on predicting
accelerations and integrating them to estimate positions) as the environment
dynamics model, which could produce kinematically unrealistic behaviors dur-
ing a rollout. A more realistic solution would be to embed a low-level controller
into simulation that attempts to reach the positions predicted by the model. In
addition, we studied a reward function (Eq. 2) that encourages collision avoid-
ance and minimizes divergence in closed-loop simulation. The reward function
can be extended to induce various driving behaviors, such as encouraging adver-
sarial behavior (e.g. using the negative of the ego vehicle’s reward) to stress-test
challenging scenarios.

Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving 15

References

1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robotics and autonomous systems 57(5), 469–483 (2009)

2. Bergamini, L., Ye, Y., Scheel, O., Chen, L., Hu, C., Del Pero, L., Osiński, B.,
Grimmett, H., Ondruska, P.: Simnet: Learning reactive self-driving simulations
from real-world observations. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). pp. 5119–5125. IEEE (2021)

3. Black, K., Janner, M., Du, Y., Kostrikov, I., Levine, S.: Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301 (2023)

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

5. Codevilla, F., Müller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driv-
ing via conditional imitation learning. In: 2018 IEEE international conference on
robotics and automation (ICRA). pp. 4693–4700. IEEE (2018)

6. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning. pp. 1–16 (2017)

7. Feng, L., Li, Q., Peng, Z., Tan, S., Zhou, B.: Trafficgen: Learning to generate
diverse and realistic traffic scenarios. In: 2023 IEEE International Conference on
Robotics and Automation (ICRA). pp. 3567–3575. IEEE (2023)

8. Fu, J., Norouzi, M., Nachum, O., Tucker, G., Novikov, A., Yang, M., Zhang, M.R.,
Chen, Y., Kumar, A., Paduraru, C., et al.: Benchmarks for deep off-policy evalu-
ation. In: International Conference on Learning Representations (2020)

9. Gulino, C., Fu, J., Luo, W., Tucker, G., Bronstein, E., Lu, Y., Harb, J., Pan, X.,
Wang, Y., Chen, X., et al.: Waymax: An accelerated, data-driven simulator for
large-scale autonomous driving research. arXiv preprint arXiv:2310.08710 (2023)

10. Hu, Y., Yang, J., Chen, L., Li, K., Sima, C., Zhu, X., Chai, S., Du, S., Lin, T.,
Wang, W., et al.: Planning-oriented autonomous driving. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 17853–
17862 (2023)

11. Kamenev, A., Wang, L., Bohan, O.B., Kulkarni, I., Kartal, B., Molchanov, A.,
Birchfield, S., Nistér, D., Smolyanskiy, N.: Predictionnet: Real-time joint prob-
abilistic traffic prediction for planning, control, and simulation. In: 2022 Inter-
national Conference on Robotics and Automation (ICRA). pp. 8936–8942. IEEE
(2022)

12. Leurent, E.: An environment for autonomous driving decision-making. https://
github.com/eleurent/highway-env (2018)

13. Li, Q., Peng, Z., Feng, L., Liu, Z., Duan, C., Mo, W., Zhou, B.: Scenarionet: Open-
source platform for large-scale traffic scenario simulation and modeling. Advances
in Neural Information Processing Systems (2023)

14. Li, Q., Peng, Z., Feng, L., Zhang, Q., Xue, Z., Zhou, B.: Metadrive: Composing di-
verse driving scenarios for generalizable reinforcement learning. IEEE transactions
on pattern analysis and machine intelligence (2022)

15. LLC, W.: Waymo open dataset: An autonomous driving dataset (2019)
16. Lu, J., Batra, D., Parikh, D., Lee, S.: Vilbert: Pretraining task-agnostic visiolinguis-

tic representations for vision-and-language tasks. Advances in neural information
processing systems 32 (2019)

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

16 Z. Peng et al.

17. Lu, Y., Fu, J., Tucker, G., Pan, X., Bronstein, E., Roelofs, R., Sapp, B., White,
B., Faust, A., Whiteson, S., et al.: Imitation is not enough: Robustifying imitation
with reinforcement learning for challenging driving scenarios. In: 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). pp. 7553–
7560. IEEE (2023)

18. Mendez-Lucio, O., Nicolaou, C.A., Earnshaw, B.: Mole: a molecular foundation
model for drug discovery. In: NeurIPS 2022 Workshop on Learning Meaningful
Representations of Life (2022)

19. Min, C., Zhao, D., Xiao, L., Nie, Y., Dai, B.: Uniworld: Autonomous driving pre-
training via world models. arXiv preprint arXiv:2308.07234 (2023)

20. Montali, N., Lambert, J., Mougin, P., Kuefler, A., Rhinehart, N., Li, M., Gulino, C.,
Emrich, T., Yang, Z., Whiteson, S., et al.: The waymo open sim agents challenge.
arXiv preprint arXiv:2305.12032 (2023)

21. Montali, N., Lambert, J., Mougin, P., Kuefler, A., Rhinehart, N., Li, M., Gulino, C.,
Emrich, T., Yang, Z., Whiteson, S., et al.: The waymo open sim agents challenge.
arXiv preprint arXiv:2305.12032 (2023)

22. Moor, M., Banerjee, O., Abad, Z.S.H., Krumholz, H.M., Leskovec, J., Topol, E.J.,
Rajpurkar, P.: Foundation models for generalist medical artificial intelligence. Na-
ture 616(7956), 259–265 (2023)

23. Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K.S., Sapp, B.: Wayformer:
Motion forecasting via simple & efficient attention networks. In: 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA). pp. 2980–2987. IEEE
(2023)

24. OpenAI: Gpt-4 technical report (2023)
25. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,

Agarwal, S., Slama, K., Ray, A., et al.: Training language models to follow instruc-
tions with human feedback. Advances in Neural Information Processing Systems
35, 27730–27744 (2022)

26. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125
1(2), 3 (2022)

27. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In: Proceedings of the fourteenth in-
ternational conference on artificial intelligence and statistics. pp. 627–635. JMLR
Workshop and Conference Proceedings (2011)

28. Seff, A., Cera, B., Chen, D., Ng, M., Zhou, A., Nayakanti, N., Refaat, K.S., Al-Rfou,
R., Sapp, B.: Motionlm: Multi-agent motion forecasting as language modeling. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
8579–8590 (2023)

29. Shi, S., Jiang, L., Dai, D., Schiele, B.: Motion transformer with global intention
localization and local movement refinement. Advances in Neural Information Pro-
cessing Systems 35, 6531–6543 (2022)

30. Shi, S., Jiang, L., Dai, D., Schiele, B.: Mtr++: Multi-agent motion prediction
with symmetric scene modeling and guided intention querying. arXiv preprint
arXiv:2306.17770 (2023)

31. Suo, S., Regalado, S., Casas, S., Urtasun, R.: Trafficsim: Learning to simulate
realistic multi-agent behaviors. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 10400–10409 (2021)

32. Uehara, M., Shi, C., Kallus, N.: A review of off-policy evaluation in reinforcement
learning. arXiv preprint arXiv:2212.06355 (2022)

Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving 17

33. Vinitsky, E., Lichtlé, N., Yang, X., Amos, B., Foerster, J.: Nocturne: a scalable
driving benchmark for bringing multi-agent learning one step closer to the real
world. Advances in Neural Information Processing Systems 35, 3962–3974 (2022)

34. Wang, Y., Zhao, T., Yi, F.: Multiverse transformer: 1st place solution for waymo
open sim agents challenge 2023. arXiv preprint arXiv:2306.11868 (2023)

35. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning 8, 229–256 (1992)

36. Zhang, C., Tu, J., Zhang, L., Wong, K., Suo, S., Urtasun, R.: Learning realistic
traffic agents in closed-loop. In: 7th Annual Conference on Robot Learning (2023)

37. Zhang, Q., Gao, Y., Zhang, Y., Guo, Y., Ding, D., Wang, Y., Sun, P., Zhao, D.:
Trajgen: Generating realistic and diverse trajectories with reactive and feasible
agent behaviors for autonomous driving. IEEE Transactions on Intelligent Trans-
portation Systems 23(12), 24474–24487 (2022)

38. Zhang, Z., Liniger, A., Dai, D., Yu, F., Van Gool, L.: Trafficbots: Towards world
models for autonomous driving simulation and motion prediction. arXiv preprint
arXiv:2303.04116 (2023)

39. Zhong, Z., Rempe, D., Xu, D., Chen, Y., Veer, S., Che, T., Ray, B., Pavone,
M.: Guided conditional diffusion for controllable traffic simulation. In: 2023 IEEE
International Conference on Robotics and Automation (ICRA). pp. 3560–3566.
IEEE (2023)

40. Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Zhang, K., Ji, C., Yan, Q.,
He, L., et al.: A comprehensive survey on pretrained foundation models: A history
from bert to chatgpt. arXiv preprint arXiv:2302.09419 (2023)

41. Zhou, M., Luo, J., Villella, J., Yang, Y., Rusu, D., Miao, J., Zhang, W., Alban,
M., Fadakar, I., Chen, Z., Huang, A.C., Wen, Y., Hassanzadeh, K., Graves, D.,
Chen, D., Zhu, Z., Nguyen, N., Elsayed, M., Shao, K., Ahilan, S., Zhang, B., Wu,
J., Fu, Z., Rezaee, K., Yadmellat, P., Rohani, M., Nieves, N.P., Ni, Y., Banijamali,
S., Rivers, A.C., Tian, Z., Palenicek, D., bou Ammar, H., Zhang, H., Liu, W., Hao,
J., Wang, J.: Smarts: Scalable multi-agent reinforcement learning training school
for autonomous driving (2020)

42. Zhou, Y., Chia, M.A., Wagner, S.K., Ayhan, M.S., Williamson, D.J., Struyven,
R.R., Liu, T., Xu, M., Lozano, M.G., Woodward-Court, P., et al.: A foundation
model for generalizable disease detection from retinal images. Nature pp. 1–8 (2023)

43. Zitkovich, B., Yu, T., Xu, S., Xu, P., Xiao, T., Xia, F., Wu, J., Wohlhart, P., Welker,
S., Wahid, A., et al.: Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In: 7th Annual Conference on Robot Learning (2023)

	 Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving

