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Fig. 1: By refining the text encoder through reinforcement learning, the proposed
TexForce with Stable Diffusion v1.4 can generate images that align better with human
quality preference. The compared images are generated with the same seed and prompts.
(a)(b): “Impressionist painting of a cat, high quality”; (c)(d): “A photo of a hand” &
“A complete face of a man”.

Abstract. Text-to-image diffusion models are typically trained to op-
timize the log-likelihood objective, which presents challenges in meet-
ing specific requirements for downstream tasks, such as image aesthetics
and image-text alignment. Recent research addresses this issue by re-
fining the diffusion U-Net using human rewards through reinforcement
learning or direct backpropagation. However, many of them overlook the
importance of the text encoder, which is typically pretrained and fixed
during training. In this paper, we demonstrate that by finetuning the
text encoder through reinforcement learning, we can enhance the text-
image alignment of the results, thereby improving the visual quality. Our
primary motivation comes from the observation that the current text en-
coder is suboptimal, often requiring careful prompt adjustment. While
fine-tuning the U-Net can partially improve performance, it remains suf-
fering from the suboptimal text encoder. Therefore, we propose to use
reinforcement learning with low-rank adaptation to finetune the text en-
coder based on task-specific rewards, referred as TexForce. We first
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show that finetuning the text encoder can improve the performance of
diffusion models. Then, we illustrate that TexForce can be simply com-
bined with existing U-Net finetuned models to get much better results
without additional training. Finally, we showcase the adaptability of our
method in diverse applications, including the generation of high-quality
face and hand images.

Keywords: Diffusion Models · Text Encoder · Reinforcement Learning

Generative models have witnessed notable advancements in recent years,
transitioning from earlier Generative Adversarial Networks (GAN) [3, 13, 20] to
the more recent diffusion models [9, 16, 43]. Text-to-image models like Stable
Diffusion [36], DALLE [34, 35], and Imagen [38], trained on extensive datasets,
have demonstrated impressive capabilities in producing high-quality images from
textual prompts. However, these diffusion models primarily optimize the log-
likelihood objective, which, although effective for generative tasks, may not con-
sistently fulfill specific requirements for downstream applications. Key challenges
include achieving desirable image aesthetics and aligning generated images with
text descriptions, both of which are critical for applications in areas such as
content generation and multimedia synthesis.

A dog A photo of an cute dog, fantasy, intricate, 
elegant, highly detailed, sharp focus

Text Encoder Text Encoder？

Image Distribution

Fig. 2: The qualities of outputs
from pretrained diffusion models
vary a lot with different prompts.
Through the reinforcement learn-
ing, we can finetune text encoder
to better align with images.

Although prompt engineering is helpful in
some cases, such as Fig. 2, these techniques
[15, 47, 48] have inherent limitations, includ-
ing a lack of precise control, limited gener-
alization across various models, and inade-
quacy in addressing complex demands. For in-
stance, current models encounter difficulties in
generating visual texts [27], and comprehend-
ing object counts [19, 23]. Therefore, recent
efforts draw inspiration from the success of
reinforcement learning from human feedback
(RLHF) employed in large language models
[30] and adopt similar strategies to enhance
the alignment capabilities of diffusion mod-
els [2, 11, 23, 32]. While these methods show
promise, they all finetune the U-Net condi-
tioned on the fixed suboptimal text encoder,
which constrains their efficacy.

In this paper, we introduce TexForce, an
innovative method that applies reinforcement
learning combined with low-rank adaptation
to enhance the text encoder using task-specific
rewards. We utilize the DDPO (denoising dif-
fusion policy optimization) [2] algorithm to update the text encoder, which is
based on PPO (proximal policy optimization [41]) in the iterative denoising
process. Unlike direct backpropagation, this RL algorithm does not require dif-
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ferentiable rewards, offering greater flexibility. By finetuning with LoRA [18],
TexForce can adapt to diverse tasks by simply switching the LoRA weights, and
also allows for the fusion of different LoRA weights to combine the capabilities
learned from different rewards. Most importantly, TexForce can be seamlessly
integrated with existing finetuned U-Net models from previous methods and
achieves much better performance without additional training.

As illustrated in Fig. 1, our approach significantly enhances the result qual-
ity of Stable Diffusion 1.4 (SDv1.4) [36] when finetuned to align with different
rewards. We validate our approach through extensive experiments on both single-
prompt and multi-prompt tasks across various reward functions. Moreover, we
showcase the adaptability of our method across various applications, including
the generation of high-quality face and hand images. Our contributions can be
summarized as follows:

– We observe that when optimizing reinforcement learning (RL) rewards, fine-
tuning the U-Net component of diffusion models carries the risk of com-
promising image appearance, whereas finetuning the text encoder mitigates
such concerns and preserves semantics better.

– We find that it is possible to directly combine the LoRA weights from text
encoder and U-Net without extra training. This straightforward fusion ad-
dresses the challenges associated with finetuned U-Net while upholding the
merits of finetuned text encoders.

1 Related Works

1.1 Text-to-Image Diffusion Models

Denoising diffusion models [16, 42, 44, 45] have become the de facto standard
for generative tasks, owing to their remarkable capabilities in generating di-
verse multimedia content, including images [9, 36], videos [14, 21, 51], 3D con-
tent [28,31], and more. Text-to-image models, particularly those creating images
based on textual prompts, have gained significant traction attributable to the
availability of powerful models such as StableDiffusion [36], DALLE [34,35] and
Imagen [38]. Several approaches have emerged to enhance control over texture
details in the generated outputs. Noteworthy methods like DreamBooth [37] and
Texture Inversion [12] offer tailored solutions for specific image requirements. To
improve the generalization capabilities, ControlNet [54], T2I-Adapter [29] and
W+-Adapter [25] introduce additional image encoders to control the structure
and details. Nonetheless, they still require a large number of paired images to
train, and may struggle to meet the diverse demands of various tasks. Prompt
engineering [15] is another popular approach aimed at enhancing the quality of
generated images. However, this method is constrained by the expressiveness of
text prompts and pretrained models and may not be straightforward when ad-
dressing complex tasks such as aesthetic quality and object composition [11,23].
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1.2 Learning from Feedback in Diffusion Models

Recent efforts have aimed to optimize diffusion models using human rewards
or task objectives, typically categorized into three main approaches: reward-
weighted regression (RWR), reinforcement learning (RL), and direct backprop-
agation. RWR methods like RAFT [10], Lee et al. [23], and Emu [8] start by
assessing image quality with human feedback and then re-weight or select high-
quality examples to enhance performance. RL methods, exemplified by DDPO [2]
and DPOK [11], treat the denoising process as a Markov decision process and
optimize the model using RL algorithms, such as PPO [41]. Direct backpropaga-
tion methods, including AlignProp [32], ReFL [53], and DRaFT [7], propagate
gradients directly from the reward function to the model. Because these models
only finetune U-Net conditioned on the suboptimal text encoder, their effective-
ness in aligning outputs with text prompts is often limited. A concurrent work,
TextCraftor [26], also explores fine-tuning the text encoder; however, it relies on
direct backpropagation and is incompatible with non-differentiable rewards.

1.3 Quality Metrics for Generative Models

With the increasing popularity of generative models, several benchmarks [22,
24, 49, 52, 53] have been developed to evaluate the quality of generated images.
Notably, ImageReward [53], PickScore [22], and HPS [52] are among the more
frequently employed benchmarks. Additionally, image aesthetic metrics, partic-
ularly the LAION Aesthetics Predictor [6], find widespread application in data
filtering [36] and results assessment.

2 Method

2.1 Preliminaries on Diffusion Models

Diffusion models [16, 36] belong to the class of generative models that leverage
noise-driven processes to progressively transform data distributions. This process
contains a controlled noise addition phase (forward diffusion) and a noise removal
phase (reverse diffusion). Given image samples x0 originating from the data
distribution q(x0), the forward diffusion process generates a sequence of images
{xt}Tt=1 by iteratively introducing noise via a Markov chain with a predefined
noise schedule. Then, the reverse diffusion process is to learn a denoising U-Net
ϵθ to estimate the cleaner xt−1 with the noisy xt:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (1)

where θ is the learnable parameter. For text-to-image diffusion models [36], this
process is conditioned on a text input s, encoded with a text encoder z = τϕ(s).
Then the network ϵθ is trained with the following objective:

L(θ) = Ext,s,t,ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t, z)∥22

]
, (2)

which aims to optimize the variational lower bound on the log-likelihood of the
data distribution q(x0). It is worth noting that the text encoder τϕ is usually a
pretrained model, such as CLIP [33], and is fixed during training.
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2.2 Reinforcement Learning with LoRA

According to the above formulation, diffusion models are learnt to optimize
the log-likelihood objective Eq. (2), which is not directly related to the task
requirements. To address this issue, we propose to finetune the text encoder τϕ
with reinforcement learning (RL). Details come as follows.
RL in Diffusion Models. In our setting, the RL framework optimizes the pol-
icy defined by the diffusion model conditioned on the text embeddings.

A photo of a cat.

U-NetU-NetU-Net D
ec

RewardPPO Loss 

... ...

�� �0 

Text Encoder LoRA

Fig. 3: Illustration of text encoder finetune
with PPO algorithm.

The text encoder τϕ acts as the pol-
icy network that maps text descrip-
tions to actions (text embeddings),
which then influences the generative
process of the diffusion model. Let R
be the reward function that evaluates
the quality of the generated images,
which could encapsulate various as-
pects, such as image-text alignment
and image quality, and adherence to
specific attributes desired in the out-
put. Then the objective of RL is to
maximize the expected reward:

J(ϕ) = E [R(x0, s)] . (3)

Since the denoising process can be formulated as a Markov decision process [2],
i.e., pθ(x0|z) = p(xT )

∏T
t=1 pθ(xt−1|xt, z), the policy gradient of Eq. (3) can be

computed as:

∇ϕJ = E

[
T∑

t=0

∇ϕ log pθ(xt−1|xt, τϕ(s))R(x0, s)

]
. (4)

Following the DDPO algorithm, we use the Proximal Policy Optimization (PPO)
[41] to keep stable learning dynamics. It applies importance sampling with
clipped probability ratio to Eq. (3) which becomes:

J = E [min(rt(ϕ)A, clip(rt(ϕ), 1− λ, 1 + λ)A)] , (5)

where the advantage value A is the normalized rewards R over a buffer set of
x0, and rt is the probability ratio between the new policy and the old policy
for the denoise step pθ(xt−1|xt, τϕ(s)). Since the policy is an isotropic Gaussian,
the probability can be easily calculated. Then, we can calculate the gradient
for Eq. (5) similar to Eq. (4) to update the policy network τϕ. More details are
provided in supplementary materials.
Low-Rank Adaptation (LoRA) [18] is a technique that allows for the mod-
ification of large pre-trained models without the need for extensive re-training.
It achieves this by inserting trainable low-rank matrices into the original feed-
forward layer as W ′ = W +α∆W , where ∆W is the learnable weights initialized
to zero and α is a scale factor. Such low-rank weight matrices are shown to be
helpful in preventing the model from overfitting to the training data [18].
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2.3 Discussion of Finetuning for Diffusion Model

In this part, we briefly discuss the advantages of finetuning the text encoder
with reinforcement learning to improve the performance of diffusion models.
Finetune of Diffusion Model. As discussed in Sec. 2.1, given the text s and
x0, the denoising network ϵθ is learned by maximizing the following lower bound:

Ez∼qϕ(z|s) [log(pθ(x0:T |z))]−DKL(qϕ(z|s)||p(z)). (6)

In the training stage of diffusion models, ϕ is usually fixed and pθ(x0|z) are
learned through classifier free guidance [17]. With an extremely large amount
of s in datasets such as LAION-400M [39, 40], it is reasonable to assume that
qϕ is a good estimation of p(z) even when ϕ is fixed. However, in the finetuning
stage, we expect to use a small amount of s to optimize Eq. (6) for specific tasks.
In such cases, the qϕ is likely to be a suboptimal estimation of p(z), and thus
largely increasing the second KL term. Therefore, we believe that it is necessary
to finetune the text encoder τϕ to minimize the second term when the finetune
dataset is limited.
RL v.s. Direct Backpropagation. Besides reinforcement learning, recent
approaches also directly backpropagate the gradients through the denoising
steps [7, 32, 53]: ∇θL =

∑n
m

∂R
∂xt

∂xt

∂θ , where m ≤ n ∈ [0, T ]. However, this ap-
proach is more likely to overfit the reward function and lead to mode collapse.
For instance, in DRaFT [7], the model may collapse to generate a single image to
achieve high aesthetic rewards. Besides, RL does not require differentiable qual-
ity rewards, and is much more flexible than direct backpropagation. For example,
current applications can collect human feedbacks and use them as rewards to
directly finetune the model.

3 Experiments

3.1 Implementation Details

Prompt Datasets. We follow previous works [2, 11, 32, 52, 53] and use three
types of prompt datasets with their corresponding experimental settings:

– Simple animal prompts [2]. A simple dataset with a curated list of 45
common animals for training.

– Single phrases. Four single phrases from DPOK [11] to test the model
capabilities under different scenarios.

– Complex long prompts. Subsets from ImageReward [53] and HPSv2 [52].
The former contains 20, 000 prompts for training and 100 for testing. The
latter contains 750 prompts for training, 50 for testing.

– Specific task prompts. Example task prompts for face and hand images.

Reward Functions. We conduct experiments with different kinds of reward
functions as below:
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Text U-Net Text + U-Net

Fig. 4: Comparison of training progress between finetuning text encoder and U-Net
with LoRA. The image size after JPEG compression is marked on the top-left corner
as “kb”.

– Text-to-Image Rewards. These rewards are trained on text-to-image datasets,
such as ImageReward [53] and HPSv2 [52].

– Specific task rewards. Following [2], we evaluate model performance for
the compression and incompression. Besides, we also design specific rewards
for face and hand.

Please refer to the supplementary materials for more training details and
hyper-parameter settings.

3.2 Finetuning Text Encoder v.s. U-Net

In this section, we will empirically analyze the difference between finetuning the
text encoder and U-Net, through the incompression task as introduced in DDPO
[2]. It aims to enhance the complexity of generated images through reinforcement
learning (RL). The reward for this task is assessed based on the image size after
JPEG compression with a quality factor of 95. Given its objective nature and
the ambiguity of possible solutions, this task is suitable for analyzing behaviors
of different models when optimized for the reward. We finetune both the text
encoder and the U-Net with LoRA using the simple animal prompts.

Figure 4 shows the results comparison between finetuning text encoder and
U-Net with LoRA. By comparing models with the same incompression score, we
can have the following observations:
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(a) Results on seen text prompts (b) Results on unseen text prompts

Fig. 5: Qualitative and quantitative comparisons with SDv1.4 and DPOK on individual
scenarios. Images for comparison are generated with the same random seed. The results
show that TexForce can generate more consistent images with better quality than
SDv1.4 and DPOK, and simple combination of DPOK and TexForce gives even better
performance without any additional training.

– U-Net tends to change the visual appearance to increase the reward, whereas
the text encoder introduces novel visual concepts to attain the same objec-
tive. As shown in Fig. 4, despite having comparable incompression scores,
the outcomes from the text encoder are more coherent than those from the
U-Net. However, this also makes the optimization of the text encoder more
challenging and time-consuming.

– We can directly combine the LoRA weights from TexForce and U-Net to
achieve even better results. As shown in Fig. 4, the results in the third
column achieve the highest incompression score and still maintain a similar
visual structure from the first column, successfully combining advantages
from the LoRA weights of both the text encoder and U-Net. It is worth
noting that this is achieved without additional training.

3.3 Comparison with Existing Works

Results on Different Individual Prompts. As demonstrated in [11,23], ex-
isting stable diffusion models exhibit misalignment with simple text prompts,
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Text Prompt SDv1.4 ReFL TexForce ReFL+TexForce

Portrait of an old
sea captain, male,
detailed face, fan-
tasy, highly de-
tailed, cinematic,
art painting by
greg rutkowski

Close up photo
of anthropomor-
phic fox animal
dressed in white
shirt and khaki
cargo pants, fox
animal, glasses

A coffee mug
made of card-
board

Fig. 6: Visual comparison with ReFL on ImageReward dataset using real user prompts.

such as color consistency (e.g ., A green colored dog.) and combination of objects
(e.g ., A cat and a dog). Therefore, we start with these simple individual scenarios
to highlight the advantages of our method. We follow the experimental settings
of DPOK [11], and conduct our experiments with four different capabilities: color
consistency, object composition, object count, and object location, as shown in
Fig. 5. Both DPOK and our TexForce are trained with the ImageReward feed-
back function and 20K samples. All models are evaluated with ImageReward
scores and averaged over 50 samples with the same random seeds.

Figure 5 presents a comprehensive overview of both quantitative and qualita-
tive results for seen and unseen prompts. The results show that our method can
generate more consistent images with better quality than the original SDv1.4
and DPOK. For instance, we can see that the results of TexForce are more con-
sistent with the prompts, such as the color of the rabbit and cat, the number of
birds, and the location of the dog. Besides, the results of TexForce are more re-
alistic than DPOK and SDv1.4. Quantitatively, TexForce attains better average
ImageReward scores for both seen and unseen prompts. This underscores the
overall superiority of TexForce over DPOK and SDv1.4 across multiple samples.
Moreover, the combination of TexForce and DPOK demonstrates the best per-
formance in terms of both ImageReward scores and visual quality. This demon-
strates the flexibility of our method, which can be seamlessly integrated with
existing methods to achieve best performance without additional training.
Results on Complex Long Prompts Next, we conduct experiments using
larger dataset with complex long prompts, i.e., the ImageReward dataset [53]
and HPS dataset [52]. We retrained with ReFL and AlignProb with official codes,
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Text Prompt SDv1.4 AlignProb TexForce AlignProb+TexForce

Bicycles with
back packs
parked in a public
place.

A large commer-
cial airliner sil-
hoetted in the sun

Fig. 7: Visual comparison with AlignProb on HPSv2 dataset using real user prompts.

Table 1: Quantitative results on ImageReward and HPSv2. Results are tested with
the same seed and prompts.

Method ImageReward
SDv1.4 0.2154
ReFL 0.4485

TexForce 0.4556
ReFL + TexForce 0.6553

Method HPSv2
SDv1.4 0.2752

AlignProb 0.2821
TexForce 0.2767

AlignProb + TexForce 0.2914

and the results are shown in Figs. 6 and 7. As we can observe, since ReFL is
trained with a single step backward to update the U-Net, it is less effective than
the proposed TexForce to align the input prompts with generated images, such
as the white shirt of the fox. The improvement of ReFL is mainly the appearance
of the generated images, such as the color of the man and the texture of the fox.
Meanwhile, the proposed TexForce is better at aligning the text prompts with
generated images, which makes TexForce better in Tab. 1. Furthermore, when
merging the strengths of TexForce and ReFL, we observe a notable improvement
in both quantitative results and visual appearance.

Similarly, we compared our method with AlignProb using the HPSv2 reward.
The results from AlignProb appeared overly optimized towards the rewards,
evident in the abundance of yellow spotlights and clouds, leading to disrupted
semantics. In contrast, our proposed TexForce primarily aims to improve the
text-image alignment. While our reward score was slightly lower than AlignProb
due to limited changes in color style, our results better match the textual prompts
in terms of semantics. Additionally, our combined results maintain the visual
styles preferred by the HPSv2 while preserving the meaning of the text prompts,
resulting in significant improvement over AlignProb.
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Table 2: Quantitative results with SDv1.5 and SDv2.1 on the ImageReward dataset.

Backbone Original ReFL TexForce ReFL+TexForce
SDv1.5 0.2140 0.5484 0.4086 0.6703
SDv2.1 0.3891 0.5223 0.5084 0.6158

3.4 Experiments with Different Backbones

To show the robustness of our method, we conduct experiments with more dif-
ferent backbones, including SDv1.53 and SDv2.14. We use the ImageReward
score and prompts dataset to train all the models, and the results are shown
in Fig. 8 and Tab. 2. Notably, our method consistently improves the text-image
alignment of the original models. For instance, the results generated by TexForce
exhibit enhanced visual appeal and better consistency with the prompts, such
as the victorian lady, old king, and atom model. It is also worth noting that
although SDv2.1 is already much better than SDv1.5, TexForce continues to
augment the performance. This demonstrates the adaptability and robustness of
our method when employed with different backbones. Although ReFL achieves
higher ImageReward scores, our observations indicate that it primarily enhances
color and fine details and is less effective than TexForce in aligning images with
text prompts. For both SDv1.5 and SDv2.1, the combined model yields the best
performance, which clearly affirms the effectiveness of TexForce.

3.5 GPT-4V Evaluation

As GPT-4V has recently shown to be comparable with human-level performance
in evaluating image quality [49, 50], we decide to rely on GPT-4V evaluations
instead of traditional user studies, which may be inconsistent and hard to re-
produce. Our approach involves using GPT-4V to rank image quality based on
aesthetic quality and coherence with text. In Fig. 9, we present the average scores
from three rounds of evaluations using the ImageReward test dataset. We can
see that our TexForce method does a better job at aligning text with images in
diffusion models, while ReFL improves the appearance of the images. Combining
both approaches successfully takes advantage of both of them and yields the best
results. Please refer to the supplementary material to reproduce the results.

3.6 Ablation Study about Joint Finetune

Given the efficacy of straightforward fusion, it prompts us to inquire whether a
joint finetuning approach yields good results. We conducted such experiments
using the SDv1.4 backbone, and the results are illustrated in Tab. 3 and Fig. 10.
It is evident that, although the quantitative performance of joint finetuning
3 https://huggingface.co/runwayml/stable-diffusion-v1-5runwayml/stable-
diffusion-v1-5

4 https://huggingface.co/stabilityai/stable-diffusion-2-1

https://huggingface.co/runwayml/stable-diffusion-v1-5runwayml/stable-diffusion-v1-5
https://huggingface.co/runwayml/stable-diffusion-v1-5runwayml/stable-diffusion-v1-5
https://huggingface.co/stabilityai/stable-diffusion-2-1
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Text Prompt SDv1.5 ReFL TexForce ReFL+TexForce

Victorian
lady, painting
by rossetti,
daniel gerhartz,
alphonse mucha,
bouguereau,
detailed art

medieval old king,
character, hearth-
stone, fantasy,
elegant, highly,
illustration, art
by artgerm and
greg rutkowski
and alphonse
much

Classic model of
atoms, made out
of glass marbles
and chrome steel
rods, studio

Text Prompt SDv2.1 ReFL TexForce ReFL+TexForce

Victorian
lady, painting
by rossetti,
daniel gerhartz,
alphonse mucha,
bouguereau,
detailed art

medieval old king,
character, hearth-
stone, fantasy,
elegant, highly,
illustration, art
by artgerm and
greg rutkowski
and alphonse
much

Classic model of
atoms, made out
of glass marbles
and chrome steel
rods, studio

Fig. 8: Results with SDv1.5 and SDv2.1 backbones on ImageReward test dataset.

surpasses that of ReFL and TexForce, it still falls short of the performance
achieved by their simple combination. We hypothesize that this disparity arises
because the fixed U-Net can serve as a prior for pixel generation during the
finetuning of the text encoder. Consequently, joint fine-tuning complicates the
optimization process for the text encoder, thereby leading to inferior results.
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0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Aesthetic Quality Rank Score

ReFL+TexForce
TexForce

ReFL
SDv1.4

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Text-Image Coherence Rank Score

Fig. 9: GPT4V evaluation for aesthetic quality and text-image coherence with Im-
ageReward testset and SDv1.4. Refer to supplementary for SDv1.5 and SDv2.1 results.

Table 3: Quantitative comparison between simple fusion and joint training.

Methods SDv1.4 ReFL TexForce ReFL + TexForce Joint
Score 0.2154 0.4485 0.4556 0.6553 0.5009

3.7 Applications

TexForce demonstrates remarkable adaptability to diverse tasks, as it does not
require differentiable rewards. In this section, we showcase its capabilities in
enhancing the quality of generated face and hand images.
Face reward. We employ the face quality evaluation metric from [4], which is
based on an image quality evaluation network [5] trained using the face quality
dataset [46].
Hand reward. Regarding the hand quality evaluation, we recognize the absence
of specific hand quality metrics. Instead, we employ a straightforward hand de-
tection confidence score as a reward function and observe its utility. The hand
detection model from [1] is used to calculate the confidence score.

Figure 11 illustrates the progressive improvement in the quality of generated
face and hand images over the course of training. These results illustrate the
capacity of TexForce to enhance image quality, utilizing either direct quality
metrics or a simple confidence score.

Moreover, by utilizing LoRA weights for fine-tuning the text encoder, we
find that it is feasible to blend specific LoRA weights to enhance the quality of
specific objects. Suppose the LoRA weight θi from i-th task, we can simply fuse
them via

∑
i αiθi. In Fig. 12, we demonstrate how the fusion of ImageReward

LoRA weights and face quality LoRA weights can produce high-quality face
images. This flexibility significantly broadens the range of potential applications
for TexForce.

4 Conclusion

In this paper, we introduce a new method called TexForce for enhancing the
text encoder of diffusion models using reinforcement learning. Our research
demonstrates that refining the text encoder can enhance the overall performance
of diffusion models, specifically in terms of aligning text and images as well as
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a beautiful cyborg mermaid with a long fish tail, the body has shimmering fish scales, submerged
underwater, dark ocean, light filtering through, the body is entwined in seaweed and coral, highly

detailed, hyper - realistic, futuristic

footage of an astronaut in a tropical beach

SDv1.4 ReFL TexForce ReFL+TexForce Joint

Fig. 10: Visual comparison between simple fusion and joint training.

Face Quality

Hand Detection Confidence

Fig. 11: Two example applications of
TexForce: high-quality face and hand
generation.
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Fig. 12: Fusion of ImageReward LoRA
weights and face quality LoRA weights.
Prompt: A realistic portrait photo.

improving visual quality. Furthermore, we illustrate that TexForce can be seam-
lessly integrated with existing U-Net models that have undergone fine-tuning,
without the need for extra training, resulting in significant performance im-
provements. Lastly, we showcase the versatility of our approach across various
applications, including the generation of high-quality images of faces and hands.
We also provide evidence that the finetuned LoRA weights with different tasks
can be combined to enhance the specific quality of image generation.
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