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1 Overview

The content of the supplementary material includes:

– Analysis of why the mask strategy can achieve self-supervised denoising are
provided in Sec. 1.1.

– Details about constructing mask index matrix set with different number
k of denoising branches, and strategies of training and inference when the
mask ratio of each denoising branches is approximate to 75% are provided
in Sec. 1.2.

– Details about training, fine-tuning, and inference of our denoising models
are provided in Sec. 1.3.

– Visualization of different strategies to eliminate the checkerboard effect is
provided in Sec. 1.4.

– Analysis of the Eq.5 in Sec. 1.5.
– Analysis of the computational complexity of our method is provided in

Sec. 1.6.
– Generalization of our approach in Sec. 1.7.
– Details about the denoiser in AP-BSN, and visual results of AP-BSN and

AMSNet when the receptive filed of denoiser is not limited are provided in
Sec. 1.8.

– The limitations of our method are discussed in Sec. 1.9.
– More visual denoising results are provided in Sec. 1.10.

1.1 Remove Noise by Mask Strategies

Mask Autoencoders (MAE) [2] discover that if parts of an image are masked,
the remaining areas can be used to reconstruct the masked parts, as shown in
Fig. 1a and Fig. 1b, which demonstrates the interrelation between the masked
parts and such unmasked parts can be approximated using deep models. Now,
⋆ Corresponding author.
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let’s consider a noise-free original image I ∈ Rc×h×w, where c is the channels of
the image and h,w represents the height and width of the image. If we add a
noise signal N ∈ Rc×h×w where each signal is independent and has a zero mean,
we obtain a synthetic noisy image denoted as IN = I +N . For our single mask
training scheme, if we mask some areas of IN with a mask index matrix M , we
can guide our denoiser DE to reconstruct the content in the masked area of IN
by optimizing the proposed mask loss:

argmin
θ

∥ M̃ ⊙ (DE(IN ⊙M, θ)− IN ) ∥1 (1)

where M̃ is the complement of M , and θ is the parameter of DE . Since the
noise N is mutually independent, it is impossible to reconstruct the masked noise
M⊙N from the unmasked noise M̃⊙N , leading to the clean estimation. For more
details, please refer to [3]. Then, for real noise that does not meet the assumption
of being uncorrelated, we use pixel downsampling (PD) to disrupt the correlation
between noise signals, making them independent [4,13]. Therefore, the real noise
can be well removed by the previous mask strategy.

(a) (b)

Fig. 1: The left column shows the parts where a large area has been masked, the middle
column is the image restored by the neural network from the left column, and the right
column is the original image that has not been masked. Through the neural network,
the masked parts are restored using the unmasked areas.



AMSNet 3

1.2 Mask Matrix Construction

As the Fig. 2 illustrated, it shows how to construct our mask matrix. To ensure
that all mask index matrix can ultimately cover all the noisy pixels, we distribute
all pixels as evenly and randomly as possible into different index matrix. This
ensures that each of the final k denoising branches is responsible for processing
a proportion of noisy pixels that is around 1

k .

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 𝑠𝑠𝑖𝑖𝑚𝑚

𝑠𝑠 = 4

Fig. 2: Construction of mask index matrix set for a single image with k = 4.

When the mask ratio of each denoising branch is set to be larger than 50%,
we propose a different strategy. Take the mask ratio of 75% as an expmale. We
implement an excessive masking strategy to balance the masking areas across
4 denoising branches. To satisfy the assumption of noise independent, we apply
a PD operation Ps on noisy image IN to obtain noise-independent sub-samples
Is. Then, four mask index matrix are constructed for each sample, like Fig. 2.
These mask matrices are organized into four mask matrix sets according to the
corresponding sub-sample and denoising branches, denoted as M1

s , . . . ,M
4
s , and∑4

i=1 M
i
s = 3. Their complementary matrix sets, M̃1

s , . . . , M̃
4
s and

∑4
i=1 M̃

i
s = 1.

Then , we aggregate the outputs of those denoising branches and compute the
average frequency of pixel masking to derive the final denoising result. The
formula for the final denoised image is as follows:

IDN = P−1
s

(∑4
i=1 Di(M̃

i
s, Is, θ)∑4

i=1 M
i
s

)
(2)

1.3 Details of Training and Inference

During the training phase, 160× 160 pixel image blocks are extracted from the
SIDD MEDIUM [1] dataset for input. The optimization process is driven by the
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AdamW [10] optimizer with a learning rate set to 1e−4 and betas configured as
[0.9, 0.999]. To dynamically control the learning rate throughout training, the
Cosine Annealing Warm Restarts scheduler is employed. The loss function used
in this stage is Lm. After training, the obtained model is denoted as AMSNet-
B, and we transition to a fine-tuning phase. Here, the cropped image blocks
are 320 × 320, and the base learning rate is adjusted to 1e−5. Fine-tuning is
performed using the loss function Lt and the model is denoted as AMSNet-
P. This two-phase training approach enables the model to first learn essential
features and then refine its performance for improved denoising results. During
training, we use P5 operation and we set k = 2.

The strategy during inference is different from that during training. In the
inference phase, we follow [4], and use the P2 operation. For the SIDD and DND
benchmarks, we obtain metrics by submitting our results to their respective
online evaluation servers. For the SIDD vlidation and the PolyU, the metrics are
computed locally.

Ground − Truth

𝐼𝐼𝑁𝑁

CheckBoard

Fig. 3: Checkerboard effect and the ground-truth. The ground-truth appears smoother,
while the checkerboard seems staggered.

1.4 Checkerboard Effect and Solutions

The denoising results obtained based on the baseline AMSNet-B have a strong
checkerboard effect like Fig. 3. By introducing a priori smoothing loss for fine-
tuning, the resulting AMSNet-P greatly weakens the checkerboard effect like
Fig. 4c. However, the checkerboard effect still remains. The random refinement
enhancement strategy [4] is used on the basis of AMSNet-P to basically elim-
inate the checkerboard effect, which is recorded as AMSNet-P-E like Fig. 4d.

The introduction of prior smoothing loss leads to a certain degree of over-
smoothing, which is a common issue in self-supervised denoising tasks [9]. We
will strive to improve this issue in our subsequent work.

1.5 Details of Eq.5

In Eq.5, each binary matrix M̃ i
s has P% of its elements as 1, and each binary

matrix M i
s has (100 − P )% of its elements as 1, where P = 100/k and M̃ i

s =
I − M i

s. Since the positions to one elements in each matrix M̃ i
s do not overlap
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(a) Noisy

30.72dB
(b) AMSNet-B

31.86dB
(c) AMSNet-P

32.88dB
(d) AMSNet-P-E

Fig. 4: Visualization of different strategies to eliminate the checkerboard effect.

with each other, the sum of all matrices satisfies
∑k

i=1 M̃
i
s = I, which cover all

pixels. Additionally, because
∑k

i=1(M̃
i
s +M i

s) = kI, so
∑k

i=1 M
i
s = (k − 1)I.

1.6 Computational Complexity

Our AMSNet applies an asymmetric strategy during training and inference, mak-
ing it plug-and-play for various denoising methods. Depending on the specific
requirements, different complexities of denoisers can be selected. To address vari-
ous computational demands, we selected several representative denoisers to meet
different requirements for real-time performance and restoration capabilities.

Tab. 1 displays the theoretical FLOPS and parameter counts of two typi-
cal BSN methods and our method (with five denoisers) when the input image
size is 160× 160 pixels. Compared with representative BSN methods, AMSNet
incurs a similar denoiser’s FLOPs(G) cost but achieves significantly improved
performance about 1.2dB to APBSN when using Restormer.

Fig. 5 presents the corresponding denoising results on the SIDD Validation
set and the average processing time per image (256× 256 pixels). All tests were
conducted on the same NVIDIA RTX 3090 GPU. AP-BSN (36.74dB) needs 0.26
seconds per image, while AMSNet (DNCNN as denoiser, 36.93dB) only needs
0.038 seconds, AMSNet (Restormer as denoiser, 37.93dB) needs 1.802 seconds
with SOTA performance. LG-BPN even takes about 8 seconds per image by its
official code.

Table 1: Computational complexity of different denoisers.

Scheme/Denoiser Parameters (M) FLOPs (G)

AP-BSN [4] 3.656 100.642
LG-BPN [11] 3.656 100.642

AMSNet(Restormer) 26.112 110.345
AMSNet(DeamNet) 2.228 114.21
AMSNet(NAFNet) 29.056 12.810

AMSNet(Unet) 7.936 69.873
AMSNet(DnCNN) 5.898 0.115
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Fig. 5: PSNR on SIDD Validation and the runtime cost. the (a) to (g) represents
the (a) AP-BSN, (b) LG-BPN, (c) AMSNet(Restormer), (d) AMSNet(DeamNet), (e)
AMSNet(NAFNet), (f) AMSNet(Unet), (g) AMSNet(DnCNNN), respectively.
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1.7 Generalization

Our approach AMSNet exhibits good generalization, only requires training on
noisy dataset (e.g., SIDD-MEDIUM) but achieves SOTA performance on other
datasets (e.g., DND, PolyU) and other self-captured real noisy images.

We ues the model AMSNet-B (Restormer is used as denoiser and it is trained
on the widely used SIDD Medium) with P1 during inference phase and achieve
good denoising results on widely used dataset CBSD68 [7] with AWGN (σ ∈
[10, 25, 50]), as shown in the Tab. 2. Without targeted training, our method still
demonstrates good denoising performance as the Fig. 6.

Table 2: Performance of AMSNet-B on CBSD68 with AWGN.

σ 10 25 50

PSNR (dB)/ SSIM 29.89/0.857 27.57/0.812 25.82/0.717

(a) noisy image from CBSD68
with AWGN (σ = 10).

(b) denoising result. (c) ground-truth.

Fig. 6: Denoising results on CBSD68_0042 with AWGN (σ = 10). the PSNR is 35.39
dB.

1.8 Identity Mapping Removal

In our experiments, the denoiser DA of AP-BSN is used, and its specific struc-
ture is shown in the Fig. 10. In our ablation experiments, we replace the dilated
convolution with an equivalent regular convolution in all MDC module and re-
move the restriction on the receptive field to verify the versatility of our method
in removing identity mapping.

Fig. 7, Fig. 8, and Fig. 9 shows the performances of AMSNet and AP-BSN
when using a denoiser with an unrestricted receptive field. In the AP-BSN frame-
work, when the receptive field of the denoiser is unrestricted, an identity mapping
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(a) GT (b) Noisy

16.74dB

(c) AP-BSN [4]

30.42dB

(d) AMSNet

Fig. 7: Denoising effects under different frameworks. When the receptive field of the
denoiser is unconstrained, AMSNet successfully removes noise, but AP-BSN suffers
from identity mapping from noise to noise.

(a) GT (b) Noisy

21.97dB

(c) AP-BSN [4]

35.65dB

(d) AMSNet

Fig. 8: Denoising effects under different frameworks. When the receptive field of the
denoiser is unconstrained, AMSNet successfully removes noise, but AP-BSN suffers
from identity mapping from noise to noise.

from noise to noise occurs, whereas our framework maintains good denoising ef-
fects.

1.9 Limitations

Although our method has achieved state-of-the-art results in the field of self-
supervised denoising, there are still some limitations as follows:

– During the inference phase, we use all branches (k branches and k ≥ 2)
directly to generate the final denoised image, the denoiser DE is called k
times. Although this brings considerable performance improvement, achiev-
ing complete denoising of the entire image, it results in a manifold increase
in computational cost. We will continue to address this issue in subsequent
work.

– Due to the introduction of the the widely used random refinement enhance-
ment strategy in self-supervised denoising tasks [4,9,11], additional compu-
tational overhead has emerged. We have noticed this issue and are actively
exploring more efficient augmentation methods.

– To eliminate the influence of the checkerboard effect, we introduce prior
smoothness loss. This measure significantly reduces the checkerboard effect
and enhances the final denoising quality, but it also results in smooth effect
to some extent, which is a common issue in self-supervised denoising [9]. We
will actively explore further enhancement solutions.
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(a) GT (b) Noisy

16.11dB
(c) AP-BSN [4]

33.66dB
(d) AMSNet-P-E

Fig. 9: Denoising effects under different frameworks. When the receptive field of the
denoiser is unconstrained, AMSNet successfully removes noise, but AP-BSN suffers
from identity mapping from noise to noise.

Fig. 10: Denoiser in AP-BSN [4]. The network is designed by D-BSN [12].

– Since the restored pixels are reconstructed from surrounding relevant noisy
pixels with strong noisy interfence, there may be minor color shifting. As a
common problem in selfsupervision, we still achieved better results. Possible
solutions include adding a color correction module at the end of the network
or incorporating local color consistency loss.

– Due to the introduction of the PD strategy, there might be a decrease in per-
formance when handling sporadic texture regions. For example, the restora-
tion effect may exhibit over-smoothing in areas with dense textures, which
affects the final restoration quality.

1.10 More Visual Results

Fig. 11 and Fig. 12 show the denoising reusults on SIDD validation. Fig. 13 and
Fig. 14 show the denoising reusults on PolyU Validation. Figs. 15 to 22 show the
results of denoising real noisy images with different methods. We capture noisy
images under two conditions: using a Redmi K30 Plus with an ISO setting of
6400 and using a Canon EOS M5 camera at ISO 25600 with an exposure time
of 1/1250s. Our method achieves the best visual effects on real noisy images.
Due to the substantial computational expense and resource occupation of LG-
BPN, which is almost ten times that of conventional methods, we do not employ
it in the denoising phase of the real self-captured noisy images. Fig. 23 shows
the denoising results test at higher ISO and resolution (Nikon Z5, ISO 51200,
6040×4032), which demonstrates the effectiveness of our approach and we will
add it in the future version.
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(a) Ground-Truth (b) Noisy

31.05dB

(c) AP-BSN [4]

28.51dB

(d) CVF-SID [8]

31.61dB

(e) LGBPN [11]

32.30dB

(f) BNN-LAN [5]

31.35dB

(g) SCPGabN [6]

33.10dB

(h) AMSNet-P-E

Fig. 11: Visual comparison of our method against other denoising methods on the
SIDD validation dataset.
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(a) Ground-Truth (b) Noisy

32.30dB
(c) AP-BSN [4]

27.30dB
(d) CVF-SID [8]

33.21dB
(e) LG-BPN [11]

33.21dB
(f) BNN-LAN [5]

32.57dB
(g) SCPGabN [6]

33.78dB
(h) AMSNet-P-E

Fig. 12: Visual comparison of our method against other denoising methods on the
SIDD validation dataset.
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(a) Ground-Truth (b) Noisy

32.08dB
(c) AP-BSN [4]

28.43dB
(d) CVF-SID [8]

24.03dB
(e) LG-BPN [11]

27.92dB
(f) BNN-LAN [5]

26.61dB
(g) SCPGabN [6]

32.33dB
(h) AMSNet-P-E

Fig. 13: Visual comparison of our method against other denoising methods on the
PolyU validation dataset.

(a) Ground-Truth (b) Noisy

35.13dB

(c) AP-BSN [4]

27.4dB

(d) CVF-SID [8]

29.42dB

(e) LG-BPN [11]

32.38dB

(f) BNN-LAN [5]

31.14dB

(g) SCPGabN [6]

36.05dB

(h) AMSNet-P-E

Fig. 14: Visual comparison of our method against other denoising methods on the
PolyU validation dataset.
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(a) Noisy (b) AP-BSN [4] (c) CVF-SID [8]

(d) BNN-LAN [5] (e) SCPGabN [6] (f) AMSNet-P-E

Fig. 15: The denoising results of noisy images taken with Redmi K30.

(a) Noisy (b) AP-BSN [4] (c) CVF-SID [8]

(d) BNN-LAN [5] (e) SCPGabN [6] (f) AMSNet-P-E

Fig. 16: The denoising results of noisy images taken with Redmi K30.
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(a) Noisy (b) AP-BSN [4] (c) CVF-SID [8]

(d) BNN-LAN [5] (e) SCPGabN [6] (f) AMSNet-P-E

Fig. 17: The denoising results of noisy images taken with Redmi K30.

(a) Noisy (b) AP-BSN [4] (c) CVF-SID [8]

(d) BNN-LAN [5] (e) SCPGabNet [6] (f) AMSNet-P-E

Fig. 18: The denoising results of noisy images taken with Canon EOS M5 camera.
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(a) Noisy (b) AP-BSN [4] (c) CVF-SID [8]

(d) BNN-LAN [5] (e) SCPGabNet [6] (f) AMSNet-P-E

Fig. 19: The denoising results of noisy images taken with Canon EOS M5 camera.

(a) Noisy (b) AP-BSN [4] (c) CVF-SID [8]

(d) BNN-LAN [5] (e) SCPGabNet [6] (f) AMSNet-P-E

Fig. 20: The denoising results of noisy images taken with Canon EOS M5 camera.
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(a) Noisy (b) AP-BSN [4] (c) CVF-SID [8]

(d) BNN-LAN [5] (e) SCPGabNet [6] (f) AMSNet-P-E

Fig. 21: The denoising results of noisy images taken with Canon EOS M5 camera.

(a) Noisy (b) AP-BSN [4] (c) CVF-SID [8]

(d) BNN-LAN [5] (e) SCPGabNet [6] (f) AMSNet-P-E

Fig. 22: The denoising results of noisy images taken with Canon EOS M5 camera.
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Fig. 23: The denoising results of noisy images taken with Nikon Z5 (ISO 51200,
6040×4032).
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