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A Overviews

In the supplementary materials, we delve deeper into our research, offering
a comprehensive exploration of several aspects mentioned in the main text. We
unpack the details of the Omni6D dataset, exploring its structure and statis-
tics. We provide the construction details of the latest datasets, Omni6D-xl and
Omni6D-Real . We provide a meticulous examination of the experimental pro-
cedures and analysis integral to our study. Additionally, we provided detailed
insights into the questionnaire setting and result details regarding the visual
realism of our Omni6D dataset. These supplemental details are invaluable in
facilitating a better understanding of our research methods and discoveries.

B Dataset Details

B.1 Omni6D overview

Dataset structure. Our dataset is stored in folder-based structure. As illus-
trated in Fig. S1, it comprises symmetry annotations, point clouds sampled from
3D scanned objects with adjusted canonical poses, and rendered views. We also
provide a Blender-based simulation framework to facilitate users.

Specifically for depth images, we applied a mapping transformation as men-
tioned in the main text. Original depth maps, saved as EXR files, have float32
precision with an accuracy of approximately 1e−7 and a size of 32 bits per pixel.
Converting these depth maps to RGB format with a scaling factor of 10000
maintains a precision of about 1e−4, reducing storage size by 25% with 24 bits
per pixel. Due to PNG compression, actual storage can be reduced to 5%-10%
of the original size. Also, our depth map compression method enables direct
visualization in PNG format.
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Omni6D
    ├── info
    │   ├── sym_info.csv 
    │   │       // rotational invariance of each mesh
    │   ├── <train/val/test/test_unseen>_list.txt
    │   │       // valid data list of each split
    ├── shape_data               
    │   ├── camera_<train/val/test/test_unseen>.pkl
    │   │       // sampled 1024 points from each mesh, 
    │   │       // normalized to NOCS
    │   ├── ShapeNetCore_<2048/4096>.h5
    │   ├── ShapeNetCore_unseen_<2048/4096>.h5
    │   │       // sampled 2048/4096 points from each mesh

    
    ├── CAMERA         
    │   ├── <train/val/test/test_unseen>
    │   │   ├── <scene_id>
    │   │   │   ├── <render_id>_color.png
    │   │   │   │       // RGB image
    │   │   │   ├── <render_id>_depth.png
    │   │   │   │       // depth map
    │   │   │   ├── <render_id>_coord.png
    │   │   │   │       // NOCS mapping
    │   │   │   ├── <render_id>_mask.png
    │   │   │   │       // instance mask
    │   │   │   ├── <render_id>_label.pkl
    │   │   │   │       // ground truth annotations

Fig. S1: Dataset structure.

Table R1: Detailed statistical overview of Omni6D dataset. The table provides
information about the number of categories, instances, and images in Omni6Dtrain,
Omni6Dval, Omni6Dtest and Omni6Dout.

Datasets # Categories # Instances # Images

Train 166 3,294 812,602
Val 166 919 28,661
Test 166 475 14,267
Out 17 52 4,762

Omni6D splits. Tab. R1 provides information about the number of categories,
instances, and images in Omni6Dtrain, Omni6Dval, Omni6Dtest and Omni6Dout.
The categories are shared amongst the training, validation, and testing datasets,
with a distribution ratio of 7:2:1 for instances. On the other hand, Omni6Dout

stands distinct, comprising an added set of 17 categories. Each split’s images are
exclusively derived from its corresponding instances, yet all splits share rendering
parameters and backgrounds uniformly. To enable comprehensive model train-
ing, we have augmented the training set with an extensive volume of rendered
images, reaching a total of 0.8M.

Coordinate system. We formulate a unified 3D coordinate system for all pose
labels, positioning the camera center as the origin. In relation to the image
captured, we set +x to face outward, +y to point upwards, and +z towards
the left. The pose of an object is recorded relative to what we term a canonical
pose object. As illustrated in Fig. S2, an instance adjusted to the canonical pose
has its bottom-face normal aligned with -y and its front-face aimed at +x(akin
to being upright and facing forward). The camera’s intrinsic parameters are
established as [577.5, 577.5, 319.5, 239.5], with the image size defined as 640 x
480 pixels. All data attributes, including details concerning the object’s position
and dimensions, are denoted in metric units.



Omni6D 3

Fig. S2: An example instance adjusted to the canonical pose. The canonical
plane has its bottom-face normal aligned with -y and its front-face aimed at +x(akin
to being upright and facing forward).

Diversity of scenes. Each room is allocated a cube-shaped region, where ob-
jects are randomly positioned and fall free within room boundaries. Additionally,
a lighting intensity range with a width of 2000 is established for each room model.

B.2 Omni6D Statistics

We first provide a category inventory and corresponding instance counts for
each category within Omni6D in Fig. S9a. Most categories have [10, 50] objects.

In Section 4.1 of the main text, we mention clsn. Detailed categories from
cls3 to cls48 are listed in Fig. S3. While subdividing the categories, we first se-
lect three categories that coincide with NOCS dataset [11], particularly those
included in cls3: bottle, bowl, and cup. Then, for cls6, we opt for three cate-
gories similar in shape to those in cls3, namely medicine_bottle, shampoo, and
red_wine_glass. This selection aids in effectively finetuning the model across
different categories. Following that, we generally select the remaining 42 cate-
gories based on the number of instances in each category, choosing from those
with more instances to those with fewer.

B.3 Omni6Dout Statistics

In Section 4.3 of the main text, we undertake 6D object pose estimation
studies on Omni6Dout. This process begins by loading the pre-trained Word2Vec
model GoogleNews-vectors-negative300.bin. From the 166 categories available in
Omni6D, we select the category that exhibits the highest cosine similarity with
the unseen category for matching. As illustrated in Fig. S4, the text to the
right of the bar graph clarifies which categories are ultimately matched with
the unseen category displayed on the left. For each unseen category, our model
presumes its category as the one that is matched and proceeds with pose estima-
tion accordingly. This visual representation provides an intuitive understanding
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cls48
cls24 cls12 cls6 cls3

Fig. S3: Category inventory of clsn within Omni6D. The angle of each sector in
the chart reflects the relative size of the instance count within that category.

of how our model leverages this matching information to predict the pose for
each unseen category. Likewise, when evaluating the unseen categories, we also
annotated the symmetrical information and implemented the metric processing
as outlined in Section 4.2.

C Omni6D-xl

Omni6D-xl extends Omni6D dataset by adding more categories and instance
object models. Unlike normalizing all objects to the same scale, we retain the
original scale of the objects and restore them to their actual size during render-
ing, adjusting other parameters accordingly. Moreover, we split our background
rooms into training, validation, and test sets in a 2:1:1 ratio to avoid over-fitting
on those scenes.
Dataset Collection. As shown in Tab. R2, Omni6D-xl comprises 13,161 in-
stances across an impressive span of 339 categories. Each instance is a high-
resolution textured mesh, obtained using Shining 3D scanner1 and Artec Eva
3D scanner2, collected from OmniObject3D [12]. We normalize object models to
fit within a (−1, 1)3(m3) three-dimensional space, and align objects within each
category to a consistent canonical pose. Additionally, we store the scale of the
object models.
1 https://www.einscan.com/
2 https://www.artec3d.cn/
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Fig. S4: Matching unseen categories from Omni6Dout to Omni6D. The un-
seen categories from Omni6Dout are listed on the left side of the bar graph, while the
matched known categories from Omni6D are displayed on the right, clearly illustrating
the optimal correspondence between unseen and known categories based on cosine sim-
ilarity. The horizontal axis displays the instance count for each corresponding category.
Bars of the same color underscore the same match.

Rendering. We employ stratified sampling to split instances within each cate-
gory, subsequently dividing them into training, validation, and test sets in a 8:1:1
ratio. In constructing our dataset, we utilize 8 room models from the Replica
dataset as backdrops, splitting them into training, validation, and test sets in a
2:1:1 ratio. For each scenery setup, we randomly select a room model to act as
the background, along with 4-6 object instance models. Each room is allocated
a cube-shaped region where objects are randomly positioned and allowed to fall
freely within room boundaries, resulting in random scattering in a specific sec-
tion of the room. Additionally, a lighting intensity range with a width of 2000 is
established for each room model. Each object model is scaled by the pre-stored
scale factor divided by 50. Considering the attention center of the combined
instance models as the origin point, the camera randomly selects ten positions
within an elevation angle range between 30 − 90◦. The camera then performs
rendering at these selected positions while facing towards the attention center.
Setting. We utilize BlenderProc 2.5.0 [4] to implement the aforementioned ren-
dering process. The intrinsic parameters of the camera are set to [577.5, 577.5,
319.5, 239.5], with an image size specified as 640 × 480. Our approach ensures
the diversity and breadth of the dataset, making it suitable for rigorous testing
and yielding accurate results.

D Omni6D-Real

To further validate the sim2real capability of models trained with Omni6D
and reduce the gap between our dataset and real-world data, we constructed
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Table R2: Comparisons between Omni6D, Omni6D-xl, Omni6D-Real and
existing datasets. Our datasets significantly extend the range of everyday object
categories and instances.

Datasets Mode Realism # Categories # Instances # Images

ShapeNet-SRN Cars [9] RGB Synthetic 1 3514 -
Sim2Real Cars [9] RGB Real 1 10 -

CAMERA [11] RGBD Synthetic 6 1085 0.3M
REAL [11] RGBD Real 6 42 8k
Wild6D [13] RGBD Real 5 1722 1M

Omni6D-Real RGBD Real 39 73 1k
Omni6D RGBD Real-Scanned 166 4,688 0.8M
Omni6D-xl RGBD Real-Scanned 339 13,161 1.1M

Take RGBD images Anotation Evaluation

Azure Kinect DK SAM & ICP Model Output

Examples

Fig. S5: Constructing Omni6D-Real: pipeline & examples.

a real-world dataset, Omni6D-Real . As shown in Tab. R2, it comprises 30
scenes, 39 categories, 73 instances, and 1k images.
Dataset Construction. As shown in Fig. S5, we captured RGBD images with
the Azure Kinect DK3 and preprocessed them using SAM [6] for object masks
and ICP [2] for point cloud registration. The intrinsic parameters of the camera
are set to [605.81, 605.63, 641.72, 363.23], with an image size specified as 1280×
720. For each scene, we manually annotated 3D bounding boxes for the first frame
and derived bboxes for the next frame based on registered poses. Addressing
the inherent limitations of ICP, particularly its accumulating errors, we further
refined the derived bboxes through manual adjustments. This iterative process,
where ICP serves as an aid to manual annotation, ensures the accuracy of 3D
bboxes across all frames.
Evaluation. We evaluated the performance of DualPoseNet [7] on our processed
real-world dataset. Despite being trained solely on simulated data, the model
exhibited excellent performance on real-world tasks. This demonstrates to a
certain extent that our real-scanned 3D models can minimize the gap between
synthetic and real images.

3 https://learn.microsoft.com/azure/kinect-dk/
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Table R3: Detailed parameters. Experimental settings on different baselines.

Model Learning_rate Batch_size # GPUs

SPD [10] 1e-4 128 4
SGPA [3] 1e-4 128 4
DualPoseNet [7] 1e-4 128 1
RBP-Pose [14] 1e-4 256 4
GPV-Pose [5] 1e-4 256 4
HS-Pose [15] 1e-4 256 4

Table R4: Performance of top-20 categories on Omni6D. Models are trained
on Omni6Dtrain and tested on Omni6Dtest. The table demonstrates the average per-
formance of each algorithm across the top 20 categories, as measured by the 5◦2cm
metric. Bold and underlined results indicate the best and second-best performers.

Methods Network IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦ 10◦ 2cm 5cm

SPD [10] implicit 68.65 45.27 24.19 26.78 37.18 42.15 27.60 43.34 60.49 84.03
SGPA [3] implicit 70.40 48.23 20.17 21.79 37.30 40.78 22.26 41.87 63.39 86.14
DualPoseNet [7] hybrid 74.09 41.50 15.56 17.11 30.25 32.78 17.14 32.84 83.48 98.46
RBP-Pose [14] hybrid 42.03 10.74 2.84 4.54 3.41 5.21 4.68 5.37 44.77 88.43
GPV-Pose [5] explicit 19.53 0.78 0.74 3.17 0.81 3.58 7.06 7.85 7.03 39.86
HS-Pose [15] explicit 72.36 37.81 11.94 13.26 22.08 23.93 13.37 24.07 86.11 98.31

E Additional Experimental Details

E.1 Experimental Settings

All experiments are conducted on a server equipped with 96 Intel(R) Xeon(R)
Gold 6248R CPUs @ 3.00GHz and 8 NVIDIA A100-SXM4-80GB GPUs. We
ensure consistency in all parameters and strategies throughout training, thereby
maintaining uniformity in our experimental environment. For our baseline model,
we adhere to the same parameters as provided by the original authors, with
modifications only made to learning_rate, batch_size, and the corresponding
number of GPUs used. Detailed parameters are displayed in Tab. R3.

We encountered some challenges during model training. Due to the larger
batch size we selected compared to the original model, the training speed of the
GPV-Pose model became excessively slow. The main reason for this issue is that
GPV-Pose [5] model uses “for loop” for batch processing during training, which
is inefficient when dealing with large-scale data. We optimized the model by
replacing “for loop” with batch computations carried out at the Tensor level. This
modification significantly accelerated our training speed, effectively ensuring the
efficient functioning of the model.

E.2 Performance on Omni6D

In this section, we provide the results of the 5◦ and 2 cm metrics for categories
in Omni6D. Fig. S6 showcases the 5◦(R5) and 2 cm(T2) metrics for various
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Fig. S6: Metrics 5◦ and 2 cm results on Omni6D categories. It showcases the
5◦ (R5) and 2 cm (T2) metrics for various models across different categories on the
Omni6D test set. Each color represents a model, with each point indicating a category
result. Dashed lines outline the range of each model’s 5◦ (R5) and 2 cm (T2) metrics,
while arrows depict their means.

models across different categories on the Omni6D test set. The results show that
SPD and SGPA excel particularly in predicting rotations, potentially due to their
implicit networks’ tendency to generate more accurate rotational predictions. On
the other hand, DualPoseNet, HS-Pose and RBP-Pose offer superior estimates
for translations, likely related to the capabilities of explicit network models to
deliver better translation and size estimations. These findings further affirm the
speculations made in Section 4.3.

Tab. R4 demonstrates the average performance of each algorithm across the
top 20 categories, as measured by the 5◦2 cm metric. As shown in the table,
it’s evident that all algorithms show improved performance across various met-
rics compared to the full set of 166 categories, which is foreseeable. While all
algorithms see similar improvements, SPD and SGPA stand out with notable
progress. Considering their bad performance on unseen categories, as outlined in
the main text, it’s clear that they exhibit considerable variability in predictive
accuracy across different categories. This suggests that SPD and SGPA employ
a nuanced approach, finetuning their strategies for each category by leverag-
ing their implicit network methodologies. These methodologies sync well with
specific features and challenges of certain categories, enabling more accurate pre-
dictions. Conversely, their effectiveness lessens when applied to categories that
mismatch their methodologies.

We also report the non-symmetry-aware metric results in Tab. R5, showing
a notable performance drop compared to the symmetry-aware metric presented
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Table R5: Non-symmetry-aware metric results on Omni6D. Models are trained
on Omni6Dtrain and tested on Omni6Dtest, while not using our symmetry-aware met-
ric.

Methods IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦ 10◦ 2cm 5cm

SPD [10] 30.82 13.09 3.36 3.62 8.10 9.06 3.65 9.19 38.32 71.43
SGPA [3] 26.43 10.06 2.34 2.57 6.25 7.40 2.59 7.62 26.11 60.67
DualPoseNet [7] 35.78 12.32 2.06 2.11 6.47 6.74 2.11 6.75 74.13 96.42
RBP-Pose [14] 14.77 0.63 0.00 0.00 0.00 0.01 0.00 0.01 34.33 73.54
GPV-Pose [5] 5.50 0.02 0.00 0.01 0.01 0.04 0.02 0.07 5.37 33.31
HS-Pose [15] 39.18 9.68 0.36 0.37 2.30 2.43 0.37 2.44 80.65 97.64

Table R6: Individual category performance on unseen categories. Models are
trained on Omni6Dtrain and tested on Omni6Dout, using the optimal DualPoseNet [7]
model. The table distinctly presents results for each category, with the 1st column rep-
resenting the category name and the 2nd column indicating the corresponding known
matched category. The table is sorted in descending order based on the metric 5◦2cm.

Category Match IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦ 10◦ 2cm 5cm

passion_fruit mango 58.79 25.08 8.44 8.77 18.51 18.99 8.77 19.48 85.23 99.19
facial_cream hand_cream 53.43 28.61 7.58 7.82 16.38 17.60 7.82 17.60 84.11 96.82
taro pineapple 58.70 26.48 5.50 5.65 16.49 16.79 5.65 16.79 89.47 99.39
fig pear 60.64 24.79 3.52 3.63 15.69 15.90 3.95 16.33 84.85 99.68
garlic broccoli 32.85 4.78 3.18 3.18 6.16 6.58 3.18 6.79 81.95 99.79
earplug helmet 35.04 14.14 2.69 3.08 9.23 9.87 3.08 9.87 88.72 98.72
passiflora_edulis pear 37.76 15.22 1.82 1.82 7.29 7.75 1.82 7.75 77.51 99.24
bagel donut 38.71 13.92 1.75 2.25 9.64 10.26 2.25 10.26 83.35 99.12
artichoke tomato 48.20 13.77 0.78 0.90 3.70 4.26 1.01 4.48 79.28 99.22
pagoda_dish tomato 32.66 4.45 0.78 0.91 2.22 2.61 0.91 3.00 82.40 98.31
ginger cucumber 30.33 1.54 0.78 0.78 2.08 2.86 0.78 2.86 59.48 98.70
almond pear 23.43 1.88 0.76 0.89 1.78 2.28 1.02 2.41 80.58 99.11
garage_kit teddy_bear 26.66 5.44 0.59 0.73 2.42 2.87 0.83 3.08 71.59 97.09
glasses_case suitcase 37.99 5.24 0.44 0.44 0.88 1.32 0.44 1.32 90.79 96.93
chestnut loquat 22.73 1.97 0.27 0.40 0.93 1.19 0.40 1.19 57.43 97.75
pistachio pear 23.56 2.03 0.17 0.17 0.34 0.52 0.17 0.69 80.72 99.66
apricot pear 11.48 0.26 0.00 0.00 0.00 0.00 0.00 0.00 80.32 100.00

in Tab. 2. As discussed in Fig. 2, the prevalence of rotational invariance in 3D
models makes the consideration of symmetry indispensable.

E.3 Generalization Performance

Tab. R6 distinctly presents the results for each category, derived from tests
using the optimal DualPoseNet [7] model. In this table, the first column lists
the category name while the second column indicates the corresponding known
matched category. It can be observed that prediction for translation is almost
category-independent, while rotation is closely related to the category.
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Table R7: Performance of SPD on Omni6D dataset trained from scratch. It
presents the performance of the SPD model when trained from scratch separately on
various subsets of the Omni6D dataset, specifically cls3, cls6, cls12, cls24, and cls48,
each of which contains a different number of categories.

Train Test IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦ 10◦ 2cm 5cm

train-from-scratch(cls3) cls3 44.27 20.50 9.52 10.56 14.45 17.13 10.85 17.98 41.98 65.42
train-from-scratch(cls6) cls6 54.94 28.37 14.96 16.86 20.75 24.91 17.26 25.62 51.13 74.89
train-from-scratch(cls12) cls12 55.30 29.47 12.92 15.01 21.90 26.31 15.59 27.58 49.99 77.51
train-from-scratch(cls24) cls24 57.37 31.08 11.90 13.44 22.67 26.36 14.02 27.62 52.98 79.73
train-from-scratch(cls48) cls48 48.22 24.54 9.07 11.07 17.53 22.15 11.89 23.63 41.60 73.28

Table R8: Performance of SPD on Omni6D dataset with finetuning strat-
egy. It presents the performance of the SPD model initially pretrained on CAMERA
dataset [11] and then incrementally finetuned using various subsets of the Omni6D
dataset, specifically cls3, cls6, cls12, cls24, and cls48.

Train Test IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦ 10◦ 2cm 5cm

pretrain (CAMERA) cls3 16.63 0.79 0.05 0.59 0.09 0.93 2.55 3.60 2.29 23.53
finetune (CAMERA+cls3) cls3 46.19 21.42 10.20 11.49 16.71 19.59 11.79 20.18 53.39 79.83
finetune (CAMERA+cls6) cls6 60.85 32.57 15.09 17.84 23.63 28.54 18.02 28.82 62.89 86.03
finetune (CAMERA+cls12) cls12 56.67 29.71 13.18 15.08 22.54 26.34 15.50 26.92 58.31 83.68
finetune (CAMERA+cls24) cls24 55.82 28.81 12.06 13.58 22.24 26.02 14.03 26.95 57.92 84.36
finetune (CAMERA+cls48) cls48 45.06 22.76 9.22 11.22 17.10 21.36 11.96 22.67 44.80 74.66

E.4 Category-wise Analysis

In the corresponding subsection under Section 4.3, we introduce the concept
of diversity. Assume that Ci is the set of all instances within category i, cij
and cik are two instances within this set, and Chamfer(cij , cik) is the Chamfer
distance [1] between instances cij and cik. Then, the diversity Di within category
i can be calculated as:

Di =
1

|Ci|2

|Ci|∑
j=1

|Ci|∑
k=1

Chamfer(cij , cik). (1)

Essentially, this formula calculates the average Chamfer distance among all
possible pairs of instances within a category, serving as a measure of diversity
for that category. A larger result indicates higher intra-class diversity among
instances within that category. Fig. S9b depicts the intra-class diversity across
various categories in Omni6D.

E.5 Finetune from Limited Categories

As elaborated in the corresponding subsection under Section 4.3 in the main
text, Tabs. R7 to R12 respectively present the specific numerical results of the



Omni6D 11

Table R9: Performance of DualPoseNet on Omni6D trained from scratch.
It presents the performance of the DualPoseNet model when trained from scratch
separately on various subsets of Omni6D.

Train Test IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦ 10◦ 2cm 5cm

train-from-scratch(cls3) cls3 66.53 39.60 17.03 17.24 29.20 29.68 17.24 29.68 90.29 96.60
train-from-scratch(cls6) cls6 76.27 44.62 20.59 21.12 32.59 33.84 21.16 33.90 87.75 96.81
train-from-scratch(cls12) cls12 68.21 37.83 17.06 18.02 27.86 29.70 18.08 29.79 81.73 96.52
train-from-scratch(cls24) cls24 70.14 43.01 19.99 20.92 33.03 34.83 21.03 34.94 82.58 96.90
train-from-scratch(cls48) cls48 65.00 33.47 10.18 11.07 23.43 25.50 11.12 25.63 76.38 96.48

Table R10: Performance of DualPoseNet on Omni6D with finetuning strat-
egy. It presents the performance of the DualPoseNet model initially pretrained on
CAMERA dataset [11] and then incrementally finetuned using various subsets of
Omni6D.

Train Test IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦ 10◦ 2cm 5cm

pretrain (CAMERA) cls3 29.04 5.45 3.42 3.91 3.92 4.48 4.05 4.62 67.28 89.58
finetune (CAMERA+cls3) cls3 75.25 44.57 17.72 17.72 32.95 33.70 17.72 33.70 91.52 96.51
finetune (CAMERA+cls6) cls6 77.34 46.32 23.17 23.66 34.00 35.27 23.73 35.37 89.96 97.32
finetune (CAMERA+cls12) cls12 68.61 37.58 17.17 17.88 28.15 29.45 17.94 29.58 83.22 96.83
finetune (CAMERA+cls24) cls24 70.68 43.00 22.55 22.96 33.82 35.61 22.96 35.61 89.62 96.83
finetune (CAMERA+cls48) cls48 64.60 34.52 13.57 14.36 25.34 27.01 14.45 27.20 77.68 96.08

training from scratch and finetuning experiments conducted by SPD, Dual-
PoseNet, and HS-Pose.

For the training from scratch experiments, it is observed that an increase in
the number of categories during the training and testing phases generally leads
to a decline in most performance indicators. Contrastingly, in the finetuning ex-
periments, as the number of categories used for finetuning and testing increases,
most performance indicators do show a decline. However, certain metrics like
5 cm remain relatively stable, and the decrease in other metrics isn’t as severe
as when training from scratch. This observation points to the robustness of the
pretraining and incremental finetuning approach across a different number of
categories, emphasizing its effectiveness.

E.6 Qualitative Comparisons

For category-level 6D pose and size estimation, we visualize more qualitative
results of different methods on Omni6Dtest and Omni6Dout in Fig. S10 and
Fig. S11. These figures illustrate the models’ ability to generalize within known
categories (intra-class generalization) as well as across unseen categories (inter-
class generalization).
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Table R11: Performance of HS-Pose on Omni6D trained from scratch. It
presents the performance of the HS-Pose model when trained from scratch separately
on various subsets of Omni6D.

Train Test IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦ 10◦ 2cm 5cm

train-from-scratch(cls3) cls3 94.46 86.57 47.65 48.28 81.81 83.70 48.54 83.96 90.33 97.21
train-from-scratch(cls6) cls6 93.61 82.65 48.79 49.93 74.03 76.24 49.93 76.33 90.71 97.68
train-from-scratch(cls12) cls12 81.40 57.79 21.78 22.13 42.79 43.93 22.13 43.94 87.48 98.45
train-from-scratch(cls24) cls24 79.75 52.25 16.92 17.58 37.17 38.93 17.59 38.95 87.66 98.38
train-from-scratch(cls48) cls48 73.30 39.62 8.79 9.16 23.97 25.41 9.18 25.49 83.69 98.42

Table R12: Performance of HS-Pose on Omni6D with finetuning strategy.
It presents the performance of the HS-Pose model initially pretrained on CAMERA
dataset [11] and then incrementally finetuned using various subsets of Omni6D.

Train Test IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦ 10◦ 2cm 5cm

pretrain (CAMERA) cls3 31.67 7.14 4.13 5.12 6.38 7.91 5.19 8.25 70.56 92.27
finetune (CAMERA+cls3) cls3 94.04 88.29 62.52 63.92 84.51 87.41 63.92 87.41 90.87 97.60
finetune (CAMERA+cls6) cls6 94.47 86.19 56.20 58.06 79.82 82.76 58.10 82.89 90.76 97.87
finetune (CAMERA+cls12) cls12 83.85 61.37 28.37 29.03 48.73 50.37 29.03 50.43 87.48 97.98
finetune (CAMERA+cls24) cls24 81.35 56.59 23.27 24.04 43.22 45.16 24.05 45.22 87.68 98.43
finetune (CAMERA+cls48) cls48 75.18 45.11 14.42 15.02 30.45 32.24 15.02 32.31 83.34 98.45

F Visual Realism

F.1 Questionnaire settings

We evaluated the visual realism of Omni6D in comparison to other datasets
through a survey involving 70 human subjects. We randomly selected 10 images
from Omni6D, CAMERA [11], REAL [11], and Wild6D datasets [13]. To intro-
duce noise, we blended in 2 images from COCO [8], which includes captured
photos, and 3 images from SKETCH4, which comprises rendered images. We
randomly shuffled the order of the aforementioned 45 images and asked sub-
jects to rate them anonymously, i.e., participants were unaware of the dataset
to which each image belonged. Subjects were asked to rate the realism of sam-
pled images on a scale from 1 (least realistic) to 5 (most realistic). Here is the
specific instruction for this survey: In this subsection, participants are required to
rate the fidelity of the images, i.e., how closely they resemble images seen by the
human eye. Ratings range from 1 to 5, with 1 representing a complete absence
of fidelity and 5 denoting full congruence with perceptual images.

F.2 Questionnaire results

We reported the average ratings and standard deviations for all datasets in
Fig. S7, along with a sampled image from the questionnaire. Fig. S8 illustrates
4 https://sketchfab.com/
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Omni6D
2.69 ± 0.39

CAMERA
1.55 ± 0.08

REAL
3.53 ± 0.28

WILD6D
4.38 ± 0.23

SKETCH
2.42 ± 0.23

COCO
3.48 ± 0.64

Fig. S7: Comparison of Visual Realism. Complete results, including ratings for
all datasets in the survey.

Fig. S8: Fidelity ratings for each image. It displays the average ratings of all
images in the questionnaire across 70 surveys, while the bar chart shows a gradual
decrease in ratings from left to right, with each color representing a different dataset.

the average rating for each image. It can be observed that despite Omni6D
having lower fidelity compared to captured photos, its ratings are significantly
higher than those of CAMERA, which are also synthetic images. Furthermore,
there is a noticeable gap between the ratings of Omni6D and CAMERA, with
some images from Omni6D closely resembling captured photos.



14 M. Zhang et al.

References

1. Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspon-
dence and chamfer matching: Two new techniques for image matching. In: IJCAI.
pp. 659–663. William Kaufmann (1977)

2. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans.
Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

3. Chen, K., Dou, Q.: SGPA: structure-guided prior adaptation for category-level 6d
object pose estimation. In: ICCV. pp. 2753–2762 (2021)

4. Denninger, M., Winkelbauer, D., Sundermeyer, M., Boerdijk, W., Knauer, M.,
Strobl, K.H., Humt, M., Triebel, R.: Blenderproc2: A procedural pipeline for pho-
torealistic rendering. J. Open Source Softw. 8(83), 4901 (2023)

5. Di, Y., Zhang, R., Lou, Z., Manhardt, F., Ji, X., Navab, N., Tombari, F.: Gpv-pose:
Category-level object pose estimation via geometry-guided point-wise voting. In:
CVPR. pp. 6771–6781 (2022)

6. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., Dollár, P., Girshick, R.: Segment anything.
arXiv:2304.02643 (2023)

7. Lin, J., Wei, Z., Li, Z., Xu, S., Jia, K., Li, Y.: Dualposenet: Category-level 6d
object pose and size estimation using dual pose network with refined learning of
pose consistency. In: ICCV. pp. 3540–3549 (2021)

8. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13. pp. 740–755 (2014)

9. Lin, Y., Florence, P., Barron, J.T., Rodriguez, A., Isola, P., Lin, T.: inerf: Inverting
neural radiance fields for pose estimation. In: IROS. pp. 1323–1330 (2021)

10. Tian, M., Ang, M.H., Lee, G.H.: Shape prior deformation for categorical 6d object
pose and size estimation. In: ECCV (21). pp. 530–546 (2020)

11. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized
object coordinate space for category-level 6d object pose and size estimation. In:
CVPR. pp. 2642–2651 (2019)

12. Wu, T., Zhang, J., Fu, X., Wang, Y., Ren, J., Pan, L., Wu, W., Yang, L., Wang, J.,
Qian, C., Lin, D., Liu, Z.: Omniobject3d: Large-vocabulary 3d object dataset for
realistic perception, reconstruction and generation. In: CVPR. pp. 803–814 (2023)

13. Ze, Y., Wang, X.: Category-level 6d object pose estimation in the wild: A semi-
supervised learning approach and A new dataset. In: NeurIPS (2022)

14. Zhang, R., Di, Y., Lou, Z., Manhardt, F., Tombari, F., Ji, X.: Rbp-pose: Residual
bounding box projection for category-level pose estimation. In: ECCV (1). pp.
655–672 (2022)

15. Zheng, L., Wang, C., Sun, Y., Dasgupta, E., Chen, H., Leonardis, A., Zhang, W.,
Chang, H.J.: Hs-pose: Hybrid scope feature extraction for category-level object
pose estimation. In: CVPR. pp. 17163–17173 (2023)



Omni6D 15

(a) Instance count of category (b) Intra-class diversity of category

Fig. S9: Omni6D Statistics. (a) Category inventory and instance counts within
Omni6D. Bars are sorted in descending order based on the instance counts of each
category in the entire Omni6D dataset (train/val/test). (b) Intra-class diversity within
categories in Omni6D. We measure the diversity of instances within a category using
the mean Chamfer distance of all pairwise pairs within that category. Bars are sorted
in descending order based on the intra-class diversity of each category in Omni6Dtrain.
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Fig. S10: Qualitative 6D pose and size estimation on Omni6D. From top
to bottom, figures correspond to results of ground truth, SPD [10], SGPA [3], Dual-
PoseNet [7], RBP-Pose [14], GPV-Pose [5], HS-Pose [15] on Omni6Dtest.

Fig. S11: Qualitative 6D pose and size estimation on unseen categories. From
top to bottom, figures correspond to results of ground truth, DualPoseNet [7] and HS-
Pose [15] on Omni6Dout. We only showcase results from two models, DualPoseNet and
HS-Pose, both of which exhibit inter-class generalization abilities.
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