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Fig.1: Omni6D is a dataset for 6D object pose and size estimation with
large vocabulary categories and rich annotations. (a) showcases ground truth
of RGB image, depth map and NOCS map. (b) presents shape priors derived from a
variational autoencoder [5] with adjusted canonical poses. (c¢) provides examples of the
rotational symmetry of objects we have annotated, indicating the multiples of angles
by which the shape remains unchanged when rotated around the xyz axes.

Abstract. 6D object pose estimation aims at determining an object’s
translation, rotation, and scale, typically from a single RGBD image.
Recent advancements have expanded this estimation from instance-level
to category-level, allowing models to generalize across unseen instances
within the same category. However, this generalization is limited by the
narrow range of categories covered by existing datasets, such as NOCS,
which also tend to overlook common real-world challenges like occlu-
sion. To tackle these challenges, we introduce Omni6D, a comprehen-
sive RGBD dataset featuring a wide range of categories and varied back-
grounds, elevating the task to a more realistic context. 1) The dataset
comprises an extensive spectrum of 166 categories, 4688 instances ad-
justed to the canonical pose, and over 0.8 million captures, significantly
broadening the scope for evaluation. 2) We introduce a symmetry-aware
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metric and conduct systematic benchmarks of existing algorithms on
Omni6D, offering a thorough exploration of new challenges and insights.
3) Additionally, we propose an effective fine-tuning approach that adapts
models from previous datasets to our extensive vocabulary setting. We
believe this initiative will pave the way for new insights and substantial
progress in both the industrial and academic fields, pushing forward the
boundaries of general 6D pose estimation.

Keywords: 6DoF Pose Estimation - Large Vocabulary Dataset - Met-
rics and Benchmarks

1 Introduction

6D pose estimation aims at predicting the position, orientation, and size
of objects in a 3D space using RGB (D) images, enabling various applications
such as augmented /virtual reality |26}33|, robot manipulation [11}/35], and scene
understanding [151[28].

Early instance-level pose estimation approaches [32}38,(39]/42} 43| typically
involve providing instance CAD models and predicting poses of instances that
were seen during training, restricting the generalization to unseen objects. In
contrast, recent research has shifted towards category-level 6D object pose esti-
mation |6H8L{10L/16}17,/20,244(25L29}|34}37,/40,44H47], which learns category prior
from a large number of instances within a category, allowing for pose estimation
of new instances within the same category without the need for CAD models.
By learning on a diverse range of categories, category-level approaches could be
a more versatile solution for 6D pose estimation in real-world scenarios.

However, most existing datasets [22,[40/44] are limited to a small number
of object categories, typically less than 10, as shown in Tab. |1} hindering their
practical applicability to complex scenes.

To overcome the limitations in previous category-level 6D pose estimation
datasets, such as limited category numbers, lack of instance diversity within cat-
egories, and overly simplistic scenes, this paper presents a novel category-level
dataset dubbed Omni6D for 6D pose estimation. Omni6D significantly ex-
tends the number of object categories to 166, and includes 4,688 real-scanned
and well-annotated instance objects with a diverse range of shapes, sizes, and
textures. The constructed benchmark includes 0.8M images featuring com-
plex scenes with various occlusions, changing lighting conditions, complex back-
grounds, and varying viewpoints. For each scene, we provide the rendered image,
depth map, NOCS map, and instance mask. Also, considering the widespread
rotational symmetry in objects, we examine three types of rotational invari-
ance where an object maintains its original shape under following rotations:
any degrees (Sym-1), multiples of 90 degrees (Sym-2) and 180 degrees (Sym-3).
Additionally, we introduce a symmetry-aware metric to specifically address ro-
tational invariance. Every object in Omni6D is adjusted to the canonical pose
and annotated with rotational symmetry around three axes.
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Table 1: Comparisons between Omni6D and existing datasets. Omni6D sig-
nificantly extends the range of everyday object categories and instances.

Datasets ‘ Mode Realism ‘# Categories # Instances # Images
ShapeNet-SRN Cars [22|| RGB  Synthetic 1 3514 -
Sim2Real Cars [22] RGB Real 1 10 -
CAMERA [40] RGBD  Synthetic 6 1085 0.3M
REAL [40] RGBD Real 6 42 8k
Wild6D 44| RGBD Real 5 1722 1M
Omni6éD RGBD Real-Scanned 166 4,688 0.8M

Including a broader range of categories, our dataset offers a more compre-
hensive and challenging evaluation benchmark for category-level 6D object pose
estimation. Utilizing Omni6D, we train and analyze existing algorithms, initi-
ating a profound exploration of the challenges and vital elements involved in
category-level estimation within large-vocabulary categories. Additionally, we
assess these algorithms’ capability to generalize across categories, and carry out
a category-wise analysis. Experiments show that our dataset presents a more
challenging benchmark for 6D pose estimation, highlighting the need for more
robust and generalized pose estimation approaches. As an initial attempt, we
present a finetuning strategy that assists in broadening the scope of existing ap-
proaches from a limited range of categories to a broader vocabulary. Moreover,
we conduct an analysis of the domain gap between our dataset and real-world
dataset, emphasizing the benefits of their combined use.

Our dataset will be publicly available to the research community, which will
foster future research on more practical and robust 6D pose estimation algo-
rithms and pave the way for broader applications.

2 Related Work

Existing work on category-level 6D object pose estimation can be generally
divided into two types. After extracting features from images or point clouds,
they compute Rotation, Translation, and Size (RTS) either through implicit
point correspondence or explicit regression.

Existing Datasets. The most commonly used dataset for category-level 6D
object pose estimation is NOCS [40], comprising both the synthetic CAMERA
dataset and the real-world REAL dataset. CAMERA includes 300k RGBD im-
ages of 31 indoor scenes with 1,085 object instances across 6 categories, while
REAL mirrors the categories in CAMERA and includes 8k RGBD images cap-
turing 42 instances in 18 real scenes. Wild6D [44] consists of 5,166 videos with
1.1 million images over 1,722 object instances in 5 categories. ShapeNet-SRN
Cars dataset and Sim2Real Cars dataset proposed in iNerf [22] both exclusively
include a single car category. The former includes 3,514 instances derived from
ShapeNet cars, while the latter is extracted from videos capturing 10 distinct un-
seen car models. These datasets are limited by their narrow range of categories,
hindering their ability to generalize broadly. Additionally, most training images
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are synthetic and lack realism, and their scenes are overly simplified, failing to
account for common real-world challenges like occlusions.

Implicit Methods. Implicit methods are based on point correspondence [6]
20,[24,(3411371140,44,|46] . NOCS [40], one of the pioneering works in this area,
introduced the concept of Normalized Object Coordinate Space (NOCS). The
final pose and size of the object are obtained by matching the predicted NOCS
map with the observed depth input using the Umeyama algorithm [36] and
RANSAC algorithm [12].

Subsequent algorithms such as DualPoseNet, RBP-Net and RePoNet [20,/44,

46| have continued to develop along the vein of NOCS, implicitly solving for
pose after predicting the NOCS map. SPD [34] proposed a category-level shape
prior, subsequently deforming this shape prior (i.e., average shape) to fit ob-
served point cloud. SGPA, RePoNet, and CATRE |[6}24,44] continue to develop
along SPD’s category-level shape prior approach. Algorithms like 6-PACK and
SGPA [6137] extract low-rank structure points, i.e., keypoints, from dense ob-
served point clouds. 6-PACK [37] predicts interframe motion of target instances
through keypoint matching, while SGPA [6] employs keypoints for more effective
incorporation of sparse structural information during prior adaptation. These
methods rely heavily on the RANSAC process to eliminate outliers, making
them non-differentiable and time-consuming.
Explicit Methods. Explicit methods are based on direct pose regression |7
10120}/24,/46,|47]. DualPoseNet and RBP-Net [20,46] conduct both explicit and
implicit training, where one parallel pose decoder explicitly regresses the pose.
CATRE |[24], recognizes the inherent difference between estimations of rota-
tion and translation/size, explicitly regressing their residuals and carrying out
an iterative pose estimation process. FS-Net |7] designs an autoencoder with
3D Graphic Convolution for latent feature extraction and separates the pre-
dictions for rotation and translation/size into two distinct networks: one esti-
mates translation/size through two residuals, while the other handles rotation
prediction by estimating deflections on two orthogonal axes. GPV-Pose and HS-
Pose [10,/47] utilize the same foundational mechanism introduced by FS-Net |7].
GPV-Pose |10] proposes a decoupled confidence-driven rotation representation
that facilitates geometrically-aware recovery of correlated rotation matrices and
introduces a new geometry-guided point-by-point voting paradigm for robust
retrieval of 3D object bounding boxes. Meanwhile, HS-Pose |47] extends 3D-GC
to extract mixed-range latent features from point cloud data through a simple
network structure known as the HS layer.

3 Omni6éD Dataset

3.1 Construction

Dataset Collection. As shown in Tab. [I, Omni6D comprises 4,688 instances
across an impressive span of 166 categories. Fach instance is a high-resolution
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textured mesh, obtained using Shining 3D scannerﬂ and Artec Eva 3D scannerEl,
collected from OmniObject3D [41]. We normalize object models to fit within a
(—1,1)3(m?) three-dimensional space, and align objects within each category to
a consistent canonical pose. In the latest dataset, Omni6D-x1 builds upon and
extends Omni6D, comprising 13,161 instances across an impressive span of 339
categories. For more details, please refer to Appendix Section C.

Rendering. We employ stratified sampling to split instances within each cat-
egory, subsequently dividing them into training, validation, and test sets in a
7:2:1 ratio. In the construction of our dataset, we utilize 9 room models from
the Replica dataset as backdrops. For each scenery setup, we randomly select a
room model to act as the background, along with 6 — 8 object instance models,
which are allowed to perform free-fall motion within the room model, resulting in
random scattering in a specific section of the room. Each object model is scaled
by a random factor ranging from 0.8 to 1.2 as part of our data augmentation
strategy. Considering the attention center of the combined instance models as
the origin point, the camera randomly selects ten positions within a radius of
8—9 m and an elevation angle range between 30—90°. The camera then performs
rendering at these selected positions while facing towards the attention center.
Setting. We utilize BlenderProc 2.5.0 [9] to implement the aforementioned ren-
dering process. The intrinsic parameters of the camera are set to [577.5, 577.5,
319.5, 239.5], with an image size specified as 640 x 480. Our approach ensures
the diversity and breadth of the dataset, making it suitable for rigorous testing
and yielding accurate results.

3.2 Data Annotations

Rich Annotations. Each rendered output includes the ground truth class label,
instance mask, NOCS mapping [40], depth map, as well as 6D pose and size.
Fig. [I] exhibits a selection of rendered outputs. To reduce the storage size of the
dataset, we encode high-precision depth maps into RGB images by multiplying
depth by 10,000, rounding to nearest integer, and converting to base 256. The
resulting three digits represent RGB channels.

Rotational Invariance. Rotational invariance implies that a symmetric object
can retains its original shape after rotation by certain angles. Many common
objects have this property. As shown in Fig.[6 we define the coordinate system
as a right-handed system with the x-axis pointing outwards and the y-axis ori-
ented upwards. We contemplate three cases of rotational invariance where an
object maintains its original shape after following rotations: any degrees (Sym-
1), multiples of 90 degrees (Sym-2) and 180 degrees (Sym-3). Additionally, we
denote the case of no rotational invariance around the axis as Sym-0. Accord-
ing to these definitions, all objects in Omni6D are annotated for their rotational
symmetry around the xyz-axes. It’s worth noting that symmetry attributes may
differ among instances within the same category, requiring instance-level rather

! https://www.einscan.com/
2 https://www.artec3d.cn/
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Fig. 2: Symmetry statistics. The figure demonstrates different symmetry cases using
object instances and provides a quantitative representation of the occurrence frequency
for various combinations of distinct symmetry cases across the xyz-axes.

than category-level annotations. Fig. [0 illustrates all kinds of symmetry cases
using object instances and quantifies their occurrence frequency. Fig. [I] selects
several examples to provide a more visual explanation of rotational invariance.
These considerations are then integrated into our evaluation protocols in Sec. [£.2]

3.3 Dataset Statistics

Spatial Statistics. Omni6D aims to overcome challenges in estimating poses
for occluded object instances. Fig. [3a] and Fig. [3b] shows the spatial distribution
of point clouds and objects by projecting their centroids on the XY-plane (top)
and XZ-plane (bottom) . Fig. |3c| depicts the relative object size distribution,
defined as the square root of the object-to-image area ratio. We observe that the
spatial distribution of Omni6D is similar to that of CAMERA and REAL, with
a greater resemblance to CAMERA despite having a closer depth range. How-
ever, a more pronounced discrepancy between the spatial distribution of point
clouds and objects is evident in Omni6D compared to CAMERA and REAL.
This observation suggests a higher occurrence of occlusion scenes in Omni6D,
highlighting the intricate challenges it presents to 6D object pose estimation.
Nonetheless, as depicted in Fig. [da] algorithms trained on Omni6D demonstrate
their robustness in tackling these complexities.

Angular Deviation. Omni6D enables accurate pose estimation using only the
lower half or bottom appearance of objects. Fig.[3d]depicts the density of angular
deviations from the upward direction, i.e. y-axis. Our dataset displays a more
uniform distribution of object angles relative to the upward axis and exhibits
greater deviation from the canonical pose angles. Unlike NOCS, which primarily
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Fig. 3: Omni6D analysis. (a) distribution of point cloud centroids, (b) distribution
of object centroids on (top) normalized image, XY-plane, and (bottom) normalized
depth, XZ-plane, (c) density of relative 2D object size, (d) density of angular deviation
from the upward direction, (e€) Omni6D dataset clustering results. The angle of each
sector in the chart reflects the relative size of the instance count within that category.

uses upright object placement, Omni6D utilizes physical simulations for free-
fall object positioning ﬂgﬂ As a result, it presents more challenging and diverse
pose estimation scenes. Training on Omni6D enhances algorithms’ robustness to
object rotation angles, as evidenced by the image in Fig. [4b]

Shape Priors. We obtain the mean latent embedding and shape prior for each
category from the variational autoencoder . Fig. showcases categorical shape
priors, each displaying unique characteristics, facilitating an intuitive association
between point cloud shapes and corresponding real-world entities. Meanwhile,
Fig.|3¢| explains clustering results based on categorical latent embeddings, where
we employ agglomerative clustering to group categories into 20 clusters. It
highlights the geometric coherence among semantically identical objects (espe-
cially man-made ones) in Omni6D dataset and further confirms that these cate-
gorical shape priors can effectively leverage the wealth of shape information from
numerous similar objects to elucidate category features. These insights provide
a theoretical basis for applications of category-level 6D object pose estimation
using our Omni6D dataset.

4 Evaluation and Analysis

4.1 Experimental Setup

Datasets. Our experimentation utilized two datasets, namely Omni6D and
Omni6D,,;. Omni6D are partitioned into training, validation, and test sets in a
7:2:1 ratio, denoted as Omni6Dy,.qir, Omni6D,,; and Omni6D;.4; respectively.
These sets are further subdivided into subsets with increasing category sizes
of 3, 6, 12, 24, and 48. We denote the subset containing n categories as clsn.
Each subset includes all classes present in the previous subset with additional
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(a) Challenges from occluded object (b) Challenges from bottom views

Fig. 4: Challenges from Omni6D. (a) Algorithms trained on Omni6D can overcome
challenges in estimating poses for occluded object instances. The left shows an occluded
object instance at the edge of the image, while the right image shows an object instance
obstructed by other objects. (b) Algorithm trained on Omni6D can accurately estimate
poses with only the lower half or bottom appearance of an object. The green and red
colors respectively denote the ground truth and predicted 3D bounding boxes. The blue
and orange lines on the boxes separately highlight the intersecting lines of the frontal
face and the top face of the two 3D bounding boxes, while the darker lines indicate the
bottom of the bounding boxes.

classes included to meet the desired total. Fig. [6a] presents the specific categories
included in clsn and their respective sizes relative to each other. Omni6D,,;
is utilized as an additional test set to measure our algorithm’s inter-category
generalization. This dataset, constructed similarly to Omni6D, encompasses 52
models spanning 17 categories unseen in Omni6D, along with 4762 images. For
additional details on datasets, please refer to the appendix.

Details. All experiments are carried out on a server equipped with an Intel(R)
Xeon(R) Gold 6248R CPU @ 3.00GHz and an NVIDIA A100-SXM4-80GB GPU.
We maintain consistency in parameters and strategies throughout training, en-
suring uniformity in our experiment environment. Given the challenges of seman-
tic classification with a large vocabulary, we use ground truth masks to mitigate
the impact of low-quality classification on pose estimation results.

4.2 Symmetry-Aware Evaluation

Basic Evaluation Metrics. We utilize the average accuracy of Intersection over
3D Union (IoU) [14] in object detection, and n°m c¢m in pose estimation. We
further decompose n°m cm to individually evaluate the model’s predictive
error n° for pose and m c¢m for translation. For these three types of errors, the
thresholds considered are {50%,75%}, {5°,10°} and {2 c¢m,5 em} [3,130}/42].
Additionally, we set a detection threshold for objects requiring at least a 10%
overlap between predicted and ground-truth bounding boxes.

Our Symmetry-Aware Metrics. Due to NOCS’s limited categories, tradi-
tional algorithms mainly handle basic symmetry cases, such as rotational sym-
metry around the y-axis. However, Omni6D has a wider range of objects with
different rotational invariances across multiple axes. Fig. [f] provides symmetry
statistics for Omni6D objects. To alleviate this issue, we propose a symmetry-
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Algorithm 1 Compute Our Symmetry-Aware Metric L

1: procedure SYMMETRIC _METRIC(L, R, ng, ny, n;)

2: Oy = {OO}

3: e, = {0°,90°,180°,270°}

4: O35 = {0°,180°} // Rotations around Sym-1 azis need not be considered.
5: ¢ = count(1 occurrences in {ng, ny, n.})

6: if ¢ > 2 then // The object is a sphere.
7 L, =L(R",R)

8: else if ¢ == 1 then // Rotations around Sym-1 axis can be disregarded.
9: Without loss of generality, assume n, == 1.

10: Ly = mmgye@n 02€On, L(R;y,sz N R)

11: else if c==0 then // Simply enumerate all cases.
12: Ls = ming,cop,, ,0,€0n,,0:€0, L(R;m,ey,ezﬁR)

13: end if

14: return L
15: end procedure

aware metric. Unlike prior works focusing solely on the y-axis, our method con-
siders rotation symmetry around all three axes.

We define the relevant variables as follows: Ls denotes our symmetry-aware
metric, L denotes the original metric. R stands for the ground truth rotation
matrix, while R* represents the predicted rotation matrix. Ry 0,0, corresponds
to the predicted rotation matrix after sequentially rotating by HL, 0y, and 6,
degrees around the xyz axes. The rotational invariance cases around the x, y,
and z axes are denoted as Sym-n,, Sym-n,, and Sym-n,, where n,, n,, and n,
are the respective rotation parameters. Objects that align with Sym-n around
an axis maintain their original shape when rotated by an angle from ©,.

Since the Euler angles are compact [13], the most straightforward approach
is to determine the category of rotational invariance for each axis {x, y, z}
sequentially, as mentioned in To simplify computations, we set @y = {0°},

= {0°,1°,...,,359°}, Oy = {0°,90°,180°,270°}, ©3 = {0°,180°}. We can
define L, as L, = ming, co,,.0,€0,,.0.€6,. LR 4 o, R).

However, due to the singularity of Euler angles [13], we can simplify the above
rotation transformation. The pseudo-code implementation of our Symmetry-
Aware Evaluation is provided in Algorithm [1} It allows us to simplify what was
originally at most 360% computations to a maximum of only 43 computations.

4.3 Large-Vocabulary 6D Pose and Size Estimation

Performance on Omni6D. We present results of algorithms [6}|10}34,|46}47|
trained on Omni6Dy,.q;, and tested on Omni6D;.s;. We compare their quantita-
tive results in Tab. [2] and their qualitative results in Fig. S10 in Appendix. The
performance disparity among algorithms for category-level 6D object pose esti-
mation becomes markedly pronounced when applied to large-vocabulary datasets,
in contrast to the more consistent performance previously observed on the Real
and CAMERA datasets [40]. This highlights the inherent strengths and weak-
nesses across various model structures.

This observation suggests the potential importance of our large-vocabulary
dataset in uncovering the relative performance of different models. It appears
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Table 2: Category-level performance on Omni6D dataset. Models are trained
on Omni6Dy,qin and tested on Omni6D;.s;. Instances within each category in the test
set are unseen during training, substantiating the algorithms’ capacity to generalize
within individual categories under large-vocabulary settings. Bold and underlined re-
sults indicate the best and second-best performers.

Methods Network‘IoULr)o IoU75‘5°2cm 5°5c¢m 10°2em 10°5cm‘ 5° 10° 2ecm 5em
SPD [34] implicit | 44.56 20.37| 7.55 9.56 14.76 19.23 |10.68 21.02 37.49 70.09
SGPA 6] implicit | 36.34 14.44 | 4.78 6.84 10.13 15.03 | 8.49 17.73 25.57 59.18

DualPoseNet |20] hybrid |58.84 25.49| 8.28 9.30 17.26 19.05 | 9.38 19.18 73.82 96.37
RBP-Pose [46| hybrid |35.92 4.66 | 0.37 0.60 0.53 0.80 | 0.75 0.96 39.73 83.55
GPV-Pose [10] explicit | 15.28 0.26 | 0.10 0.70 0.14 0.96 2.25 296 5.31 33.70
HS-Pose |47| explicit |62.65 23.02 | 4.26 4.85 10.49 11.61 | 4.96 11.75 80.93 97.78

Table 3: Category-level performance on unseen categories. Models are trained
on Omni6bDy,q4yn and tested on Omni6D,,.. Categories in the test set never appear in
the training set, validating the algorithms’ ability to generalize across categories.

Methods Network‘]oUg,o IOU75‘5O2C’H’L 5°5¢m 10°2cm 10°5cm‘ 5° 10°  2cm 5em
SPD [34] implicit | 7.56 0.95 | 0.18 0.40 0.80 1.65 0.65 2.36 8.88 40.59
SGPA 6] implicit | 7.05 0.60 | 0.07 0.28 0.19 0.82 0.53 1.69 3.87 28.28

DualPoseNet [20] hybrid |36.85 12.06| 3.24 3.37 8.04 8.51 |3.39 8.64 78.00 98.60
RBP-Pose [46]  hybrid |26.18 1.95 | 0.01 0.02 0.02  0.03 |0.02 0.03 16.74 43.06
GPV-Pose [T0]  explicit |10.97 0.14 | 0.03 0.18 0.12  0.57 |0.30 1.07 7.14 41.30
HS-Pose [47] explicit [ 36.75 8.92 | 1.54 1.66 4.67  5.16 |1.75 5.38 79.95 98.27

that the increased complexity of the dataset could push model architectures
to their theoretical limits, possibly revealing intrinsic characteristics otherwise
obscured in less complex scenarios. For example, SPD, SGPA is particularly pro-
ficient in predicting rotation, and SPD achieves the highest score in n°m cm.
This could be due to its implicit network’s propensity for generating more re-
liable rotational forecasts. Meanwhile, DualPoseNet and HS-Pose provide more
accurate predictions for translation and score higher in IoU. This could be asso-
ciated with the characteristic of models with explicit networks to produce better
translations and size estimates.

Our large-vocabulary dataset, encompassing a broad spectrum of shapes and
appearances, enables a comprehensive evaluation of diverse category-level pose
estimation methods. This serves not only as a robust test of an algorithm’s gen-
eralizability but also as a valuable tool in understanding the advantages offered
by different algorithmic structures.

Generalization Performance. We evaluate algorithms on Omni6D,,; to as-
sess their inter-category generalization capabilities. The outcomes are presented
in Tab. 3] Notably, DualPoseNet and HS-Pose emerged as superior performers,
outclassing others across all metrics, thereby demonstrating excellent generaliza-
tion abilities. Contrastingly, implicit methods including SPD and SPGA exhib-
ited marked limitations. Qualitative results are shown in Fig. S11 in Appendix.

Drawing parallels with the observations from Tab. [2] we found that metrics

such as translation and IoU were relatively easier to excel in, suggesting superior
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lou75 R5T2 lou75 R5T2 lou75 R5T2

SPD SGPA DualPoseNet RBP-Pose GPV-Pose HS-Pose

Fig.5: Category-Wise Performance on Omni6D Dataset. The x-axis, moving
from left to right, sequentially represents: the number of objects within a category
(Semantic Category), the number of objects within a cluster clustered based on
shape priors (Shape Category) and the diversity of instances within a category. The
y-axis depicts category or clustered group results for IoU7s and 5°2 ¢m metrics. Each
plotted point illustrates the algorithm’s result for a specific category or cluster, while
the line showcases the trend of the linear fit for the scattered points.

generalization abilities in translation and size prediction. Conversely, the gen-
eralization of rotation emerges as a considerable challenge in category-level 6D
object pose estimation, especially within large-vocabulary scenes.

Category-wise Analysis. Based on the IoU75; and 5°2 ¢m metrics, we con-
ducted a detailed category-wise analysis of the results from Tab. 2| Left columns
in Fig. [f] illustrate the correlation between category-level 6D pose estimation
performance and the number of instances within each category in Omni6Dy;.q;p,
Middle columns in Fig. [f] analyze the correlation between cluster-level aver-
age performance and cluster size based on the clustering results described in
Fig. We found that the performance of pose estimation for each category is
more strongly correlated with the number of instances within clusters than with
semantic categories, showing a positive correlation. This suggests that shape cat-
egories have a greater impact on training than semantic categories do. Notably,
algorithms like SPD, SGPA, and RBP-Pose that utilize shape prior structures
are particularly sensitive to this influence.

Right columns in Fig. [f] reveal the correlation of pose estimation perfor-
mance relative to instance diversity within each category in the training set.
We measured instance diversity by calculating the mean chamfer distance [1]
among all pairs of instances in each category. The results show that as diversity
within a category increases, pose estimation performance tends to improve. This
observation aligns with the assertion made by [23]: The key to the success of
prior-based methods lies in the deformation modules, which learns to synthe-
size world-space target objects and explicitly builds the correspondence between
camera and world-space. As the number of instances increases and the diversity
within a shape category expands, the model’s capacity to learn deformation from
priors to actual instance shapes is strengthened, leading to improved results.
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Fig.6: Our finetune strategy. (a) Category inventory of clsn within Omni6D
dataset. The angle of each sector in the chart reflects the relative size of the instance
count within that category. (b) In each fine-tuning step, we double the category count,
copying trained global features and old category parameters into the new network while
initializing the new category parameters. An observable deepening of color is indicative
of the escalating count of training iterations.

4.4 Fine-Tuning from Limited Categories

We propose a finetuning strategy that helps extend methods from a limited
set of categories to large-vocabulary. We take SPD , DualPoseNet 7 and
HS-Pose as examples which belong to three different network architectures
and show good performance on Omni6D;.s;. We respectively take their best
models on CAMERA as our pre-trained models.

Initiating the fine-tuning process, we utilize three categories: bottle, bowl,
and cup, which are concurrently present in both Omni6D and CAMERA datasets,
aligning with the cls3 category. By facilitating the training on Omni6D-cls3, we
enable a transfer of the model from CAMERA to Omni6D. Following the method
illustrated in Fig. [6b] we engage in an iterative fine-tuning process on a progres-
sively expanded category dataset until it reaches our desired number. In our
experiments, we set this target number to be 48 categories.

In parallel, we conduct training from scratch separately on cls3, cls6, ..., and
cls48 as a comparison, employing the same number of training iterations. As
shown in Fig.[7} even with an exponential increase in the number of categories,
pre-trained models remain pivotal in our fine-tuning strategy. The performance
of fine-tuning consistently outperforms that of training from scratch.

However, regardless of whether the training approach is finetuning or training
from scratch, a decline in performance is observed as the number of categories
increases. The decline rates for SPD and DualPoseNet are slower, coupled with
an initial augmentation in performance due to increased training data and iter-
ations. In contrast, HS-Pose experiences a more rapid decline, with fine-tuned
5°2 em results dropping from initial 62.52% to 14.42%. Models that excel in tasks
involving a limited number of categories may not necessarily maintain their su-
periority in large-vocabulary tasks, they might be surpassed by models that are
more robust and easier to train.
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Fig. 7: Finetuned results. Each figure’s x-axis represents the number of categories in
the training and test set, while the y-axis displays the outcomes of 5°2 ¢m, 5° and 2 cm
metrics. Each row, from top to bottom, sequentially employs three methods: SPD [34],
DualPoseNet |20], and HS-Pose [47|. The figures depict the outcomes derived from two
training strategies as the number of training categories increases, accompanied by the
gradual expansion of corresponding test sets.

4.5 Visual Realism

Due to the complexity of collecting and annotating real-world data, contem-
porary datasets like NOCS [40] are composed of a large amount of synthetic
data and a small portion of real-world data. While collecting real data is rela-
tively straightforward when the number of categories is limited, gathering well-
annotated real-world data for pose estimation tasks involving large vocabulary
categories becomes a monumental task.

Our Omni6D dataset, which includes large vocabulary objects, is also derived
from rendering. However, the incorporation of real-scanned objects significantly
enhances the realism of the rendered images. As depicted in Fig. [§] Omni6D
receives a score of 2.69 4 0.39, surpassing the results obtained by CAMERA.

Given these significant advantages, our dataset excels not only in large-
vocabulary scenarios but also in real-world scenes. As depicted in Tab. [d We use
DualPoseNet |20] to train on the common categories in REAL [40] and Omni6D,
namely bottles, bowls, and mugs. We train separately on the two datasets and
their mix. The results show that Omni6D models perform well on REAL275,
and training on the mixed dataset outperforms using REAL or Omni6D datasets
alone. This demonstrates that our dataset enables the direct transfer of models
to real-world scenes. Moreover, it seamlessly supplements the existing real-world
dataset, enabling joint training of models on our dataset and the real-world data.

To further validate the sim2real capability of models trained with Omni6D,
we constructed a real-world dataset, Omni6D-Real, comprising 30 scenes, 39
categories, 73 instances, and 1k images. We captured RGBD images with Azure
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Fig. 8: Comparison of Visual Realism. We evaluated the visual realism of Omni6D
in comparison to other datasets through a survey involving 70 human subjects. We
randomly selected 10 images from each dataset and introduced noise by blending in
5 images from COCO , which included captured photos, and SKETCHﬂ which
comprised rendered images. Subjects were asked to rate the realism of sampled images
on a scale from 1 (least realistic) to 5 (most realistic). We report the mean and standard
deviation and include a sampled image from the study.

Table 4: Performance on REAL275 with Different Training Sets. It compares
how different training sets influence DualPoseNet’s performance on REAL275 [40], pro-
viding insights into the model’s ability to generalize in real-world tasks using Omni6D.

Train data Realism IoUsg IoU75|5°2¢cm 5°5em 10°2em 10°5em|  5° 2cm
Omni6D Real-Scanned| 78.76 32.69| 6.55 8.80 15.00 21.38 | 11.20 49.54
REAL Real 84.51 43.43| 8.76 10.40 21.24 25.39 |13.01 69.46

REAL-+Omni6D Mixed 85.28 58.59/14.10 17.83 30.10 38.97 |20.96 71.00

Kinect DKE| and preprocessed them using SAM for object masks and ICP
for point cloud registration. Details are provided in Appendix Section D.

5 Conclusion

In conclusion, this paper introduces Omni6D, a novel 6D pose estimation

dataset with large-vocabulary categories and intricate scenes. We evaluate exist-
ing category-level 6D object pose estimation methods on this benchmark, analyze
its challenges, and propose a fine-tuning strategy for large-vocabulary scenarios.
Limitations. Our dataset, though more complex, doesn’t fully encompass all
real-world challenges. Additionally, our fine-tuning strategy effectively extends
methods from a small set to a larger one, but its efficacy may decrease with
growing category diversity.
Future Work. Our study paves the way for diverse research avenues. An im-
mediate next step is expanding the Omni6D dataset with more object types and
scenes for comprehensive coverage. Additionally, annotating videos for scanned
objects will validate algorithms’ large-vocab pose estimation in real-world sce-
narios. Designing new training strategies for coping with increasing category
diversity presents an intriguing challenge.

3 https://learn.microsoft.com/azure /kinect-dk/
* https://sketchfab.com/
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