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Supplementary Materials

A Introduction

In this supplementary material, we present the derivation of the analytical ja-
cobian of the Gaussians w.r.t the camera poses and some additional qualitative
and quantitative evaluation of our BAD-Gaussians.

B Jacobian of the Gaussians w.r.t the Camera Poses
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where color c and opacity o of the Gaussian are independent with the virtual
camera pose Ti =

[
R t

]
∈ SE(3) of the ith virtual sharp image Ci. Also,

following GS-SLAM [12], we ignore ∂Σ′

∂Ti
for efficiency.

As for ∂µ′

∂Ti
, since the motion-blurred image synthesis is implemented in Py-

Torch [8], the first part of the gradient in Eq. (1) can be computed by the
auto-diff module of PyTorch. The remaining part of the gradient in Eq. (1) can
be computed as follows:
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where µc = Rµ+t represents µ transformed into the camera’s coordinate space.
The first term ∂Ci

∂µ′
∂µ′

∂µ = ∂Ci

∂µ is the Jacobian w.r.t. the mean position of the
Gaussians, which is already computed in the CUDA backend of the diffenren-
tiable projection and rasterization. The second term can be simplified as follows:
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Table A: Full quantitative comparisons for novel view synthesis on the real cap-
tured dataset of Deblur-NeRF [6].

Ball Basket Buick Coffee Decoration
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF [7] 24.08 .6237 .3992 23.72 .7086 .3223 21.59 .6325 .3502 26.48 .8064 .2896 22.39 .6609 .3633
3D-GS [2] 23.72 .6321 .3210 23.96 .7466 .2600 21.53 .6630 .2743 27.44 .6630 .2208 22.29 .6826 .2868

DB-NeRF [6] 27.15 .7641 .2112 27.35 .8367 .1347 24.93 .7791 .1545 30.72 .8949 .1070 24.15 .7730 .1700
DP-NeRF [3] 26.86 .7522 .2066 27.71 .8434 .1301 25.52 .7847 .1433 31.35 .9013 .0987 24.42 .7820 .1611

BAD-NeRF [11] 26.71 .7480 .2120 26.40 .8024 .1268 23.06 .7104 .2099 29.08 .8401 .1941 22.09 .6067 .3079
ExBluRF [4] 25.82 .7228 .2359 25.64 .8130 .1495 24.27 .7486 .1719 27.59 .8519 .1417 21.30 .6125 .3074

Ours 28.11 .8041 .2058 27.41 .8632 .0987 24.22 .8064 .1161 32.17 .9280 .0659 25.53 .8442 .0937
Girl Heron Parterre Puppet Stair

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF [7] 20.07 .7075 .3196 20.50 .5217 .4129 23.14 .6201 .4046 22.09 .6093 .3389 22.87 .4561 .4868
3D-GS [2] 19.97 .7276 .2613 20.28 .5254 .3109 22.98 .6326 .2967 22.38 .6463 .2645 22.68 .4709 .3911

DB-NeRF [6] 22.27 .7976 .1687 22.63 .6874 .2099 25.82 .7597 .2161 25.24 .7510 .1577 25.39 .6296 .2102
DP-NeRF [3] 23.43 .8148 .1459 22.79 .7010 .1891 25.90 .7658 .1893 25.56 .7560 .1469 25.53 .6326 .1778

BAD-NeRF [11] 19.72 .6194 .3378 21.81 .6249 .2340 24.86 .7066 .2131 24.14 .7073 .1833 25.64 .6370 .1768
ExBluRF [4] 19.35 .6923 .2748 21.10 .6091 .3049 23.14 .6794 .2471 22.41 .6639 .2006 23.51 .5446 .2508

Ours 21.28 .8152 .1040 24.52 .7657 .1187 25.94 .8133 .0983 25.25 .7991 .0948 26.63 .7177 .0685

where ⊗ is the Kronecker operator and I3 is a 3× 3 identity matrix [1] [13].
Finally, note that the virtual camera pose Ti is interpolated from the control

knots of the SE(3) coutinuous trajectory, e.g. Tstart,Tend ∈ SE(3) for linear
interpolation, and T1,T2,T3,T4 ∈ SE(3) for cubic B-spline. We use PyPose [10]
to implement the interpolations, thus the corresponding Jacobian of Ti w.r.t.
the pose adjustments (the actual parameters being optimized), e.g. εstart, εend ∈
se(3) for linear interpolation and ε1, ε2, ε3, ε4 ∈ se(3) for cubic B-spline, are
handled by auto-diff of PyTorch [8].

C Experimental Details

C.1 Full Table of Novel View Synthesis Results on Real Datasets

In this section, we present full quantitative results of novel view synthesis on real
datasets from Deblur-NeRF [6]. The results are shown in Table A. The results
demonstrate that our method outperforms the state-of-the-art methods in terms
of PSNR, SSIM, and LPIPS.

C.2 Full Table of Ablations on Trajectory Representations

The full results of our ablation study on trajectory representations are presented
in Table B. The results demonstrate that linear interpolation adequately repre-
sents the camera motion trajectory for synthetic datasets, such as MBA-VO and
Deblur-NeRF-Synthetic. However, cubic B-spline outperforms linear interpola-
tion in real data scenarios (i.e. Deblur-NeRF-Real), attributed to the extended
exposure time.
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Table B: Ablation studies on the effect of trajectory representations. The
results demonstrate that cubic interpolation improves performance in scenes with com-
plex camera trajectories (i.e.MBA-VO and Deblur-NeRF-Real).

Linear Interpolation Cubic B-spline
Dataset Sequence PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deblur-NeRF

Synthetic [6]

Cozy2room 34.68 .9521 .0258 33.74 .9446 .0346
Factory 31.88 .9270 .0952 31.87 .9324 .0897

Pool 36.95 .9434 .0225 34.77 .9107 .0440
Tanabata 32.12 .9481 .0464 32.09 .9477 .0464
Trolley 33.97 .9628 .0209 33.73 .9619 .0220

MBA-VO [5] ArchViz-low 32.28 .9167 .1134 32.43 .9165 .1118
ArchViz-high 29.64 .8568 .1847 29.68 .8601 .1789

Deblur-NeRF

Real [6]

Ball 23.10 .6423 .2778 28.11 .8041 .2078
Basket 27.03 .8564 .0998 27.41 .8632 .0987
Buick 23.44 .7939 .1118 24.22 .8064 .1161
Coffee 30.52 .9017 .0913 32.17 .9280 .0659

Decoration 24.99 .8305 .0992 25.53 .8442 .0937
Girl 21.23 .8028 .1449 21.28 .8152 .1040

Heron 21.70 .6929 .1495 24.52 .7657 .1187
Parterre 25.03 .7817 .1173 25.94 .8133 .0983
Puppet 24.78 .7811 .1021 25.25 .7991 .0948
Stair 25.87 .6944 .0975 26.63 .7177 .0685

C.3 Details of Ablations on the Number of Virtual Cameras

In our ablation study on the number of virtual cameras n, for a fair comparison,
we make the number of the densified Gaussians roughly the same by adjusting the
threshold of the gradient in densification with n. This is based on the following
derivation: In Eq. (1), during the synthesis of motion-blurred image, the gradient
of every Gaussian is scaled by 1

n . Therefore, if we change n to n′, the densification
threshold should be multiplied by n

n′ , in order to match the scaled gradients.

D Additional Qualitative Evaluation

We provide further qualitative experimental results on both the synthetic and
real datasets, showcased in Fig. A and Fig. B respectively. These results demon-
strate the superior performance of our method over previous state-of-the-art
approaches.

D.1 Visualization of Pose Estimation Results

In this section, we present the visualization results in terms of camera pose esti-
mation. The experiments are conducted on the synthetic dataset of Deblur-NeRF
[6]. We present the comparison result of BAD-Gaussians against COLMAP [9]
and BAD-NeRF [11] in Fig. C. It demonstrates that our method recovers motion
trajectories more accurately.
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D.2 Video of Novel View Synthesis Results

To showcase the effectiveness of our approach, we provide supplementary videos
illustrating the capability of BAD-Gaussians to recover high-quality latent sharp
video from blurry images. The videos contain results on both synthetic and real
scenes from Deblur-NeRF [6]. In the provided videos, on the left are our rendered
novel view images and on the right are the input blurry images.

Notably, in the provided videos, due to the fast training speed and low GPU
memory requirements of our method, we are able to train real scenes at the native
resolution 2400× 1600 to achieve maximum reconstruction quality in about 1.5
hours, compared to the resolution of 600× 400 that we used in all experiments
above in this paper for a fair comparison.
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Fig.A: Qualitative deblurring results of different methods with synthetic
datasets from MBA-VO [5] and Deblur-NeRF [6]. The scenes, from left to right,
encompass ArchViz-high, Cozy2room, Factory, and Trolley. Despite being trained with
ground truth poses (*), BAD-Gaussians outperforms Deblur-NeRF* and DP-NeRF*
in recovering high-quality scenes from motion-blurred images with inaccurate camera
poses, showcasing its superior performance.
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Fig. B: Qualitative novel view synthesis results of different methods with
the real datasets from Deblur-NeRF [6]. The scenes, from left to right, encompass
Basket, Coffee, Girl, and Stair. The experimental results demonstrate that our method
achieves superior performance over prior methods on the real dataset as well.
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Fig. C: Qualitative Comparisons of estimated camera poses on Deblur-
NeRF dataset. These are results on Cozy2room, Factory, Pool, Tanabata and Trolley
sequences respectively. The results demonstrate that our method recovers motion tra-
jectories more accurately compared with both COLMAP [9] and BAD-NeRF [11].
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