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Abstract. While neural rendering has demonstrated impressive capa-
bilities in 3D scene reconstruction and novel view synthesis, it heavily
relies on high-quality sharp images and accurate camera poses. Numerous
approaches have been proposed to train Neural Radiance Fields (NeRF)
with motion-blurred images, commonly encountered in real-world sce-
narios such as low-light or long-exposure conditions. However, the im-
plicit representation of NeRF struggles to accurately recover intricate de-
tails from severely motion-blurred images and cannot achieve real-time
rendering. In contrast, recent advancements in 3D Gaussian Splatting
achieve high-quality 3D scene reconstruction and real-time rendering by
explicitly optimizing point clouds into 3D Gaussians. In this paper, we
introduce a novel approach, named BAD-Gaussians (Bundle Adjusted
Deblur Gaussian Splatting), which leverages explicit Gaussian represen-
tation and handles severe motion-blurred images with inaccurate camera
poses to achieve high-quality scene reconstruction. Our method mod-
els the physical image formation process of motion-blurred images and
jointly learns the parameters of Gaussians while recovering camera mo-
tion trajectories during exposure time. In our experiments, we demon-
strate that BAD-Gaussians not only achieves superior rendering quality
compared to previous state-of-the-art deblur neural rendering methods
on both synthetic and real datasets but also enables real-time rendering
capabilities.

Keywords: 3D Gaussian Splatting - Deblurring - Bundle Adjustment -
Differentiable Rendering

1 Introduction

Acquiring accurate 3D scene representations from 2D images has long been a
challenging problem in computer vision. Serving as a fundamental component
in various applications such as virtual/augmented reality and robotics naviga-
tion, substantial efforts have been dedicated to addressing this challenge over
the last few decades. Among those pioneering works, Neural Radiance Fields
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(NeRF) [30], parameterized by Multi-layer Perceptrons (MLP), stands out for
its utilization of differentiable volume rendering technique [22,28] and has gar-
nered significant attention due to its capability to recover high-quality 3D scene
representation from 2D images.

Numerous works have focused on enhancing the performance of NeRF, par-
ticularly in terms of training [5,31,37] and rendering efficiency [12,51]. A recent
advancement, 3D Gaussian Splatting (3D-GS) [14], extends the implicit neu-
ral rendering [30] to explicit point clouds. By projecting these optimized point
clouds (Gaussians) onto the image plane, 3D-GS [14] achieves real-time render-
ing while enhancing the efficiency of NeRF in both training and rendering, and
also improves rendering quality. However, both NeRF-based |1, 30, 31] methods
and 3D-GS [14] heavily rely on well-captured sharp images and accurately pre-
computed camera poses, typically obtained from COLMAP [38]. Motion-blurred
images, a common form of image degradation, often encountered in low-light
or long-exposure conditions, can notably impair the performance of both NeRF
and 3D-GS. The challenges posed by motion-blurred images to NeRF and 3D-
GS can be attributed to three primary factors: (a) NeRF and 3D-GS rely on
high-quality sharp images for supervision. However, motion-blurred images vi-
olate this assumption and exhibit notably inaccurate corresponding geometry
between multi-view frames, thus presenting significant difficulties in achieving ac-
curate 3D scene representation for both NeRF and 3D-GS; (b) Accurate camera
poses are essential for training NeRF and 3D-GS. However, recovering accurate
poses from multi-view motion-blurred images using COLMAP [38] is challeng-
ing. (c) 3D-GS necessitates sparse cloud points from COLMAP as the initializa-
tion of Gaussians. The mismatched features between multi-view blurred images
and the inaccuracies in pose calibration further exacerbate the issue, leading
to COLMAP producing fewer cloud points. This introduces an additional ini-
tialization issue for 3D-GS. Therefore, these factors result in a notable drop in
performance for 3D-GS when dealing with motion-blurred images.

Implicit neural representations, i.e. NeRF [30], have been employed to re-
construct sharp 3D scenes from motion-blurred images [19,27,47]. For example,
Deblur-NeRF [27] introduces a deformable sparse kernel that alters a canonical
kernel at spatial locations to simulate the blurring process. DP-NeRF [19] inte-
grates physical priors derived from the motion-blurred image acquisition process
into Deblur-NeRF [27] to construct a clean NeRF representation. In contrast,
BAD-NeRF [47] models the physical process of capturing motion-blurred images
and jointly optimizes NeRF while recovering the camera trajectory within the
exposure time. However, these implicit deblur rendering methods encounter sig-
nificant challenges in achieving real-time rendering and producing high-quality
outputs with intricate details. Additionally, the implicit representation intro-
duces extra difficulties in optimizing the neural parameters and camera poses as
mentioned in [11].

In order to address these challenges, we propose Bundle Adjusted Deblur
Gaussian Splatting, the first motion deblur framework based on 3D-GS, which
we refer to as BAD-Gaussians. We incorporate the physical process of motion
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blur into the training of 3D-GS, employing a spline function to characterize the
trajectory within the camera’s exposure time. In the training of BAD-Gaussians,
the camera trajectory within exposure time is optimized using gradients derived
from the Gaussians of the scene, while jointly optimizing the Gaussians them-
selves. Specifically, the trajectory of each motion-blurred image is represented
by the initial and final poses at the beginning and end of the exposure time,
respectively. By assuming the exposure time is typically short, we can interpo-
late between the initial and final poses to obtain every camera pose along the
trajectory. From this trajectory, we generate a sequence of virtual sharp images
by projecting the scene’s Gaussians onto the image plane. These virtual sharp
images are then averaged to synthesize the blurred images, following the phys-
ical blur process. Finally, the Gaussians along the trajectory are optimized by
minimizing the photometric error between the synthesized blurred images and
the input blurred images through differentiable Gaussian rasterization.

We evaluate BAD-Gaussians using both synthetic and real datasets. The ex-
perimental results demonstrate that BAD-Gaussians outperforms prior state-of-
the-art implicit neural rendering methods by explicitly incorporating the image
formation process of motion-blurred images into the training of 3D-GS, achieving
better rendering performance in terms of real-time rendering speed and superior
rendering quality. In summary, our contributions can be outlined as follows:

— We introduce a photometric bundle adjustment formulation specifically de-
signed for motion-blurred images, achieving the first real-time rendering per-
formance from motion-blurred images within the framework of 3D Gaussian
Splatting;

— We demonstrate how this formulation enables the acquisition of high-quality
3D scene representation from a set of motion-blurred images;

— Our approach successfully deblurs severe motion-blurred images, synthesizes
higher-quality novel view images, and achieves real-time rendering, surpass-
ing previous state-of-the-art implicit deblurring rendering methods.

2 Related Work

2.1 Neural Radiance Fields

NeRF [30], employing implicit MLP, exhibits remarkable performance in syn-
thesizing high-quality novel view images and accurately representing 3D scenes.
Numerous extension works have been proposed to enhance NeRF’s performance,
including improvements in training [5,31,37,42] and rendering [12, 18,36,49,51]
efficiency, as well as anti-alias capabilities [1-3|. Additionally, various methods
aim to bolster NeRF’s robustness against imperfect inputs, such as inaccurate
camera poses [13, 25, 35, 48], few-shot images [8, 15, 33], and low-quality im-
ages [19,23,24,27,29,47]. In the following section, we will primarily focus on
reviewing methods closely related to our work.

Fast Neural Rendering. Numerous approaches inspired by NeRF [30] have
sought to enhance its rendering efficiency by employing advanced data struc-
tures to reconstruct radiance fields, thereby minimizing the computational cost
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associated with implicit MLPs used in NeRF. These approaches are primarily
categorized into grid-based [4, 5, 10, 37] and hash-based [31] methods. Despite
these efforts, achieving real-time rendering for unbounded and complete scenes,
as well as high-resolution images, remains challenging. In contrast to methods
based on volume rendering and implicit representations, which may hinder fast
rendering, recent advancements like 3D-GS [14] achieve real-time high-quality
rendering through pure explicit point scene representation and the differentiable
Gaussian rasterization. Nevertheless, these 3D scene representations heavily rely
on accurately posed high-quality images.

NeRF for Camera Optimization. The pioneering work, BARF [25], was
the first to propose simultaneous optimization of camera parameters alongside
NeRF. They employed a coarse-to-fine bundle adjustment strategy to enhance
camera pose recovery. Concurrently, SC-NeRF [13] introduced a method to learn
various camera models, encompassing both extrinsic and intrinsic parameters,
along with scene representation. In the latest development, CamP [35] introduced
a preconditioner to mitigate correlations between camera parameters, aiming for
improved joint optimization of camera and NeRF parameters. In contrast to the
aforementioned works [13,25,35], which focus solely on optimizing camera poses
for sharp images, our approach goes further by recovering the trajectory of each
blurred image within the exposure time.

NeRF for Deblurring. Several scene deblurring methods based on NeRF
have been proposed, including Deblur-NeRF [27] and DP-NeRF [19], which re-
construct sharp scene representations from sets of motion-blurred images. How-
ever, these methods fix inaccurate camera poses recovered from blurred images
during training, leading to degradation in reconstruction performance. BAD-
NeRF [47] and ExBIuRF [20] jointly learns camera motion trajectories within
exposure time and radiance fields, following the physical blur process. Despite
these advancements, existing deblurring neural rendering strategies struggle to
achieve real-time rendering and reconstruct intricate scene details due to the
implicit MLP structure, necessitating significant improvements in rendering effi-
ciency and quality. Moreover, optimizing the 3D scenes jointly with camera poses
faces additional challenges due to NeRF’s implicit representations. To address
these issues, we propose achieving deblurring capability within the framework of
Gaussian Splatting [14].

2.2 Image Deblurring

Two primary categories typically classify existing techniques for addressing the
motion deblurring problem: the first involves formulating the issue as an opti-
mization task, wherein gradient descent is employed during inference to jointly
refine the blur kernel and the latent sharp image [6,9,16,21,34,40,50]. Another
pipeline phrases the deblurring task as an end-to-end learning, particularly lever-
aging deep learning methodologies. With the support of substantial datasets and
deep neural networks, superior results have been achieved for both single image
deblurring [17,32,44] and video deblurring [41]. However, these 2D deblurring
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Fig.1: The pipeline of BAD-Gaussians. Our approach utilizes Gaussian repre-
sentations to depict sharp 3D scenes derived from a series of motion-blurred images,
along with their inaccurate poses and sparse point clouds from COLMAP. Employing
forward projection and differentiable Gaussian rasterization, we jointly optimize the
Gaussians in the scene and the camera trajectory within exposure time, by backprop-
agating gradients from Gaussians to camera poses. Following the physical process of
motion blur, we model motion-blurred images by averaging the virtual sharp images
captured during the exposure time. These virtual camera poses are represented and
interpolated using a continuous spline within the SE(3) space. The joint optimization
of Gaussians and camera trajectories is achieved by minimizing the photometric loss
between synthesized and actual blurry images.

methods cannot exploit the 3D scene geometry between multi-view images, thus
failing to ensure the view consistency of the scene from different viewpoints.
In contrast, our approach focuses on leveraging the geometry within multi-view
blurry images to reconstruct a high-quality 3D scene.

3 Method

BAD-Gaussians aims to recover a sharp 3D scene representation by jointly learn-
ing the camera motion trajectories and Gaussians parameters, given a sequence
of motion-blurred images, along with their inaccurate poses and sparse point
clouds estimated from COLMAP [38], as shown in Fig. 1. This is achieved by
minimizing the photometric error between the input blurred images and the
synthesized blurred images generated based on the physical motion blur image
formation model. We will deliver each content in the following sections.

3.1 Preliminary: 3D Gaussian Splatting

Following 3D-GS [14], the scene is represented by a series of 3D Gaussians. Each
Gaussian, denoted as G, is parameterized by its mean position p € R3, 3D
covariance X € R3*3, opacity o € R and color ¢ € R3. The distribution of each
scaled Gaussian is defined as:

G(x) = e~ 20w 27 (xp), (1)
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To ensure that the 3D covariance ¥ remains positive semi-definite, which
is physically meaningful, and to reduce the optimization difficulty, 3D-GS rep-
resents X using a scale S € R? and rotation matrix R € R3>*3 stored by a
quaternion q € R*:

> = RSS'TRT. (2)

In order to enable differentiable Gaussian rasterization, 3D-GS projects 3D
Gaussians to 2D from a given camera pose T. = {R. € R**3 t. € R3} for
rasterizing and rendering using the following equation, as described in [53]:

> = JR.IRIJT, (3)

where ¥/ € R2*2 is the 2D covariance matrix, J € R?*3 is the Jacobian of
the affine approximation of the projective transformation. Afterward, each pixel
color is rendered by rasterizing these IV sorted 2D Gaussians based on their
depths, following the formulation:

N i—1
C=) co;[J(1-ay), (4)

i J
where c; is the learnable color of each Gaussian, and «; is the alpha value

computed by evaluating a 2D covariance X’ multiplied with the learned Gaussian
opacity o:

1 _
a; = 0; -exp(—0;), o5 = §A?2' A (5)

where A € R? is the offset between the pixel center and the 2D Gaussian center.

The derivations presented above demonstrate that the rendered pixel color,
denoted as C in Eq. (4), is a function that is differentiable with respect to all
of the learnable Gaussians G, and the camera poses T.. This facilitates our
bundle adjustment formulation, accommodating a set of motion-blurred images
and inaccurate camera poses within the framework of 3D-GS.

3.2 Physical Motion Blur Image Formation Model

The physical process of image formation in a digital camera encompasses the
gathering of photons during the exposure period, followed by their conversion
into measurable electric charges. Mathematically representing this phenomenon
involves integrating across a sequence of simulated virtual latent sharp images,
as follows:

B(u) = ¢ / " Cuu)dt, (6)

where B(u) € REXW*3 denotes the real captured motion-blurred image, u € R?
represents the pixel location in the image with height H and width W, ¢ serves
as a normalization factor, 7 is the camera exposure time, Ci(u) € RH*Wx3
is the virtual latent sharp image captured at timestamp t € [0, 7] within the
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exposure time. The blurred image B(u), resulting from camera motion during
the exposure time, is calculated by averaging all the virtual images C¢(u) across
different timestamps ¢. This discrete approximated of this model is dependent
on the number n of discrete samples, as denoted:

B(u) ~ % Y Ciu). (7)

The level of motion blur within an image is contingent upon the movement
of the camera during the exposure time. For instance, a swiftly moving camera
results in minimal relative motion, particularly with shorter exposure times,
while a slowly moving camera yields motion-blurred images, especially in low-
light scenarios with prolonged exposure times. Additionally, it can be deduced
that B(u) demonstrates differentiability concerning each virtual sharp image
Cl(u)

3.3 Camera Motion Trajectory Modeling in 3D-GS

Based on Eq. (7), a straightforward approach to address motion-blurred images
involves determining each virtual sharp image C,;, which serves as the depen-
dent variable of the motion-blur image B. Given that a sharp image C; can be
rendered from a specified camera pose T; within the framework of 3D-GS (i.e.
Gy) [14], establishing a one-to-one correspondence between poses and virtual
sharp images is feasible. Consequently, we formulate the corresponding poses
of each latent sharp image within the exposure time 7 by employing a camera
motion trajectory represented through linear interpolation between two camera
poses, one at the beginning of the exposure Tgtat € SE(3) and the other at
the end Tenq € SE(3). The virtual camera pose at time ¢ € [0, 7] can thus be
expressed as follows:

Ty = Toare - exp(— - 10g(Tiky - Tena)) (8)
where 7 represents the exposure time. f can be further discretized and derived
as — for the i*" sampled virtual sharp image (i.e. C;) in Eq. (7) (i.e. with pose
denoted as T;), when there are n sampled images in total. It follows that T;
is differentiable with respect to both Tgiart and Teng. We refer to prior works
[26,47] for a comprehensive understanding of the interpolation and derivations
of the related Jacobian. [26]. The objective of BAD-Gaussians is to estimate
both Tgtart and Teng for each frame, along with the learnable parameters of
Gaussians Gy.

3.4 Loss Function

From a collection of K motion-blurred images, we can proceed to estimate both
the learnable parameters 6 (i.e. mean position p, 3D covariance X, opacity o
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Table 1: Ablation studies on the number of virtual camera poses n. The
results indicate that performance reaches a saturation point with increasing number n.

Cozy2room Tanabata

n | PSNRt SSIMt LPIPS| | PSNRT SSIMt LPIPS)
3 31.63 19389 .0810 25.43 8215 2287
4 3299 9552  .0558 27.08 8704  .1764
5 33.68 19595 .0458 28.39 9011 .1400
6

8

33.86  .9627  .0368 29.57 9214 1101
34.48  .9654 .0315 3115 .9440 .0696
10 | 34.68  .9521 .0258 32,12 .9481 .0464
15 | 34.78  .9679 0257 33.58  .9652 .0198
20 | 34.63  .9646 .0307 33.87  .9668 .0151

Table 2: Ablation studies on the effect of trajectory representations. We de-
note Deblur-NeRF-S and Deblur-NeRF-R as the synthetic and real data from Deblur-
NeRF, respectively. The results demonstrate that cubic interpolation improves perfor-
mance in scenes with complex camera trajectories (i.e. MBA-VO and Deblur-NeRF-R).

Deblur-NeRF-S MBA-VO Deblur-NeRF-R
PSNR{ SSIM+ LPIPS||PSNRt SSIMt LPIPS||PSNRt SSIMt LPIPS|
Linear Interpolation|33.92 .9467 .0422 | 30.96 .8868 .1491 |24.77 .7778 .1291

Cubic B-spline 33.24 9395 .0473 |31.06 .8883 .1454 |26.11 .8157 .1067

and color ¢) of 3D-GS and the camera motion trajectories (i.e. Tgtars and Tepnq)
for each image. This estimation is accomplished by minimizing the following loss
function, which includes an £; loss and a D-SSIM term between By (u), the k"
blurry image synthesized from 3D-GS using the aforementioned image formation
model (i.e. Eq. (7)), and BY(u), the corresponding real captured blurry image:

L=(1-XNL1+ Ap.ssim- (9)

To optimize the learnable Gaussians parameter 0, and camera pose T (i.e.
Tgtart and Tepq in our model) for each image, it is necessary to derive the
corresponding Jacobians to complete the gradient flow:

%_If oL .lnilaBk% (10)
90 ~ £~ 9By n < 9C; 90

k=0 i=0
L~ 9L 15 0B 0C 90 a1)
OT £~ 0By n 4= 9C; 06 OT’

where By (u) and C;(u) are denoted as By and C; for simplification, and we pa-
rameterize both Ty, and Teng with their corresponding Lie algebras of SE(3),
which can be represented by a 6D vector respectively. For further details on
the Jacobian of Gaussians to camera pose, g—g, please refer to our supplemental
materials.
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Table 3: Quantitative comparisons for deblurring on the synthetic dataset of Deblur-
NeRF [27], referred to as DB-NeRF in the table due to space constraints. Notably,
DB-NeRF* and DP-NeRF* are trained with ground-truth poses, while the others are
trained with poses estimated by COLMAP [38]. The experiments highlight the su-
perior performance of our method over previous approaches. Additionally, the results
demonstrate the sensitivity of Deblur-NeRF and DP-NeRF to pose accuracy. Regard-
ing rendering efficiency, our method achieves over 200 FPS, whereas Deblur-NeRF,
DP-NeRF, BAD-NeRF and ExBluRF fall below 1 FPS. Our method takes about 30
minutes to train, while other methods take more than 10 hours. Each color shading
indicates the best and second-best result, respectively.

Cozyroom Factory Pool Tanabata Trolley
PSNRT SSIMt LPIPS||PSNRf SSIM?T LPIPS||PSNRt SSIMt LPIPS||PSNRT SSIM?T LPIPS||PSNRt SSIMt LPIPS|
NeRF [30] 26.13 .7886 .2484 |22.02 .5581 .4550 |29.90 .7901 .2595 | 20.57 .5653 .4584 | 21.71 .6413 .3814
3D-GS [14] [25.86 .7908 .2270 | 21.73 .5623 .4503 |29.37 .7816 .2561 |20.51 .5773 .4278|21.65 .6587 .3614
MPR [52] 29.90 .8862 .0915 | 25.07 .6994 .2409 33.28 .8938 .1290 | 22.60 .7203 .2507 |26.24 .8356 .1762
SRN [44] 29.47 8759 .0950 | 26.54 .7604 .2404 | 32.94 .8847 .1045|23.19 .7274 .2438 | 25.36 .8119 .1618
DB-NeRF [27] | 29.53 .8786 .0879 | 25.85 .7651 .2340 |31.07 .8477 .1397 |23.20 .7243 .2471 | 25.68 .8111 .1683
DB-NeRF* 30.26 .8933 .0791 | 26.40 .7991 .2191 |32.30 .8755 .1345 |24.56 .7749 .2166 |26.24 .8254 .1671
DP-NeRF [19] |29.02 .8761 .0773 | 25.42 .7559 .2139 |30.48 .8402 .1127|23.93 .7540 .2038 |26.17 .8269 .1359
DP-NeRF* [30.77 .9020 .0584 | 27.69 .8328 .1847 |33.22 .8922 .0954 |25.27 .7973 .1779|26.99 .8413 .1312
BAD-NeRF [47] 32.11 .9137 .0514 | 32.18 .9105 .1189 | 32.22 .8680 .0908 | 25.80 .8047 .1563 | 29.68 .8954 .0752
ExBIuRF [20] | 28.46 0.8707 0.1113|29.38 0.8511 0.1646| 31.66 0.8612 0.1719| 25.43 0.8006 0.227 | 25.7 0.8112 0.234
Ours 34.68 .9521 .0258 | 31.88 .9270 .0952 36.95 .9434 .0225|32.12 .9481 .0464 |33.97 .9628 .0209

Table 4: Quantitative comparisons for novel view synthesis on the synthetic dataset
of Deblur-NeRF [27], referred to as DB-NeRF in the table due to space constraints.
The results demonstrate Our methods outperform previous state-of-the-art approaches,
delivering the best performance across the board.

Cozyroom Factory Pool Tanabata Trolley
PSNR? SSIM?T LPIPS||PSNR?T SSIMt LPIPS||PSNR?T SSIMT LPIPS||PSNR?T SSIMT LPIPS||PSNRT SSIM?T LPIPS|
NeRF [30] 25.45 7734 .2514 | 22.51 5672 .4199 |29.23 7711 .2756 | 20.74 .5774 .4341 | 21.09 .6157 .3924
3D-GS [14] |25.24 .7789 .2084 | 21.34 .5532 .4371 | 28.61 .7562 .2610 | 20.37 .5755 .3958 | 20.86 .6167 .3701
MPR [52]+ [14]] 29.00 .8685 .0894 |23.38 .6848 .2374 [29.04 .8170 .1761 |22.53 .7349 .2162 | 26.27 .8352 .1694
SRN [44]+ [14] | 28.64 .8662 .0903 | 25.45 .7740 .2045 | 29.97 .8207 .1650 | 23.09 .7456 .2141 | 24.89 .8103 .1666
DB-NeRF [27] [29.09 .8718 .0937 |25.19 .7359 .2315 | 30.97 .8401 .1600 | 23.71 .7483 .2369 | 24.46 .7758 .2215
DB-NeRF* |29.88 .8901 .0747 |26.06 .8023 .2106 | 30.94 .8399 .1694 | 24.82 .7861 .2045 | 25.78 .8122 .1797
DP-NeRF [19] | 29.56 .8831 .0683 |27.91 .8317 .1833 | 30.98 .8454 .1265 | 24.73 .7867 .1865 | 25.62 .8123 .1606
DP-NeRF* 30.16 .8958 .0608 28.43 .8420 .1771 | 31.78 .8623 .1306 | 25.37 .8046 .1701 | 26.44 .8307 .1424
BAD-NeRF [47]| 31.07 .9027 .0551 31.71 .9038 .1204 | 30.95 .8389 .1107 | 25.42 .8011 .1566 | 28.60 .8806 .0843
Ours 32.35 9278 .0340 [28.18 .9164 .0999 [33.30 .8964 .0551 | 31.00 .9427 .0478 [31.44 .9443 .0345

4 Experiments
4.1 Experimental Settings

Implementation Details. We implemented our method within the Nerfstu-
dio [43] framework based on their Splatfacto implementation. Camera pose
interpolation and optimization on the SE(3) manifold is implemented with
pypose [45]. Both the optimization of Gaussians and camera poses are per-
formed using the Adam optimizer. The number of virtual camera poses (i.e., n
in Equation (7)) is set to 10, considering the trade-off between performance and
efficiency. We initialize camera poses and Gaussians using estimations obtained
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Table 5: Quantitative comparisons for deblurring on the synthetic dataset of MBA-
VO [27]. The results demonstrate that our method achieves the best performance even
when the camera undergoes acceleration

ArchViz-low ArchViz-high Average
PSNRY SSIM{ LPIPS| |PSNRT SSIM{ LPIPS||PSNR{ SSIM{ LPIPS|
NeRF [30] 26.26 .7887 .3775 |23.29 .7098 .4910 |24.78 .7493 .4343
3D-GS [14] 26.54 .8113 .3385 | 23.43 .7243 .4614 | 24.99 .7678 .4000
MPR [52] 29.60 .8757 .2103 |25.04 .7711 .3576 | 27.32 .8234 .2840
SRN [44] 30.15 .8814 .1703 | 27.07 .8190 .2796 | 28.61 .8502 .2250
DB-NeRF [27] | 28.38 .8484 .1792 [ 25.71 .7762 .3220 |27.05 .8123 .2506
DB-NeRF* 29.65 .8744 .1764 |26.44 .8010 .3172 |28.05 .8377 .2468
DP-NeRF [19] | 28.24 .8490 .1615 | 25.74 .7839 .2913 |26.99 .8165 .2264
DP-NeRF* 28.57 .8481 .1511 |26.80 .8081 .2736 | 27.69 .8281 .2124
BAD-NeRF [17]| 30.51 .8749 .1654 | 27.54 .8109 .2679 29.03 .8429 .2167
ExBIuRF [20] | 28.4 .8372 .2518 28.43 .8518 .1721 | 28.42 .8445 .2120
Ours 32.28 9167 .1134 29.64 .8568 .1847 30.96 .8868 .1491

from COLMAP [38]. All experiments are conducted on an NVIDIA RTX 4090
GPU.

Benchmark Datasets. We evaluate the performance of our method using both
synthetic and real datasets provided by Deblur-NeRF [27] and BAD-NeRF [47].
Deblur-NeRF [47] contains five scenes, where the blurred images are generated
via Blender [7] by averaging sharp virtual images captured during the exposure
time, under the assumption of consistent velocity camera motion. For our eval-
uation, we utilize the dataset from BAD-NeRF [47], which expands upon the
number of virtual sharp images to create more realistic motion-blurred images
while keeping other settings consistent with [27]. Additionally, Deblur-NeRF [27]
captured a real motion-blurred dataset by intentionally shaking a handheld cam-
era during exposure.

To enhance the evaluation of our method on severely motion-blurred im-
ages, we incorporate a dataset tailored for motion blur-aware visual odometry
benchmarking (i.e. MBA-VO [26]). Different from the assumption of constant ve-
locity in the Deblur-NeRF dataset [27], the blur images synthesized from MBA-
VO [26] are based on real camera motion trajectories obtained from the ETH3D
dataset [39], which do not exhibit constant velocity and include accelerations,
thus presenting notable challenges.

Baselines and Evaluation Metrics. We conduct a comparative deblurring
analysis between our method and state-of-the-art learning-based single image
deblurring algorithms including SRN [44] and MPR [52]. Additionally, we in-
clude evaluations against closely related approaches such as Deblur-NeRF [27],
DP-NeRF [19], BAD-NeRF [47] and ExBIuRF [20]. To evaluate deblurring per-
formance, we render high-quality images corresponding to the midpoint (i.e. C:z
in Eq. (6)) of exposure time of each training image from the optimized Gaussians.

To facilitate novel view synthesis using SRN [44] and MPR [52], we use the
deblurred images obtained from pre-trained models as inputs for training 3D-
GS, as these single deblurring methods are not optimized for synthesizing novel
images. During the training stage, all poses are estimated using COLMAP [38].
Additionally, we train Deblur-NeRF [27] and DP-NeRF [19] with ground-truth
camera poses from Blender to assess the impact of inaccurate pose estimation on
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BAD- DP- Deblur-
Ours NeRF [47] NeRF* [19] NeRF* [27] 3D-GS

Reference

Fig. 2: Qualitative novel view synthesis results of different methods with
synthetic datasets. Despite being trained with ground truth poses (*), BAD-
Gaussians outperforms Deblur-NeRF* and DP-NeRF* in recovering high-quality scenes
from motion-blurred images with inaccurate camera poses, showcasing its superior per-
formance.

these two methods. The quality of the rendered sharp image is evaluated using
PSNR, SSIM, and LPIPS metrics.

For pose accuracy evaluation, we compare the Absolute Trajectory Error
(ATE) metric, against classical structure-from-motion framework COLMAP [3§]
and BAD-NeRF [47].

4.2 Ablation Study

Virtual Camera Poses. We experimented to investigate the effect of the num-
ber of interpolated virtual camera poses within the exposure time, as described
by n in Eq. (7). Two of the five synthetic scenes provided by Deblur-NeRF [27]
were selected, representing sequences with minor and severe motion blur (i.e.
Cozy2room and Tanabata), respectively. We varied the number, n, from 3 to
20 in our study, and the rendering metric results are presented in Table 1. Our
experimental results demonstrate that increasing the number of interpolated
virtual camera poses helps in addressing severe motion blur. However, marginal
improvements are observed for minor blur instances. Based on our experiments,
we choose n = 10 interpolated virtual images to strike a balance between ren-
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dering performance and training efficiency (larger n means more computational
resources).

Trajectory Representations. To assess the impact of different trajectory
representations, we conduct two experiments: one involves optimizing Tgtart and
Teng to depict a linear trajectory, while the other utilizes a higher-order spline
(i.e., cubic B-spline) that jointly optimizes four control knots Ty, To, T3, and
T4 to capture more complex camera motions. We refer [46] for more details
about cubic B-spline. The average quantitative results on the synthetic datasets
of Deblur-NeRF-S [27] (Cozy2room, Factory, Pool, Tanabata and Trolley) and
MBA-VO [26] (ArchViz-low and ArchViz-high), along with real datasets, Deblur-
NeRF-S, which includes 10 real captured scenes from Deblur-NeRF, are pre-
sented in Table 2. In synthetic scenes, linear interpolation demonstrates com-
parable performance to cubic B-spline interpolation. However, in real captured
scenes, cubic B-spline interpolation outperforms linear interpolation, particu-
larly due to the longer exposure time during image capture. The effectiveness of
cubic B-spline interpolation in real scenes can be attributed to its ability to bet-
ter model the nuances of camera motion over longer time intervals. Conversely,
linear interpolation is sufficient to accurately represent camera motion trajec-
tories within shorter time intervals, as observed in synthetic scenes. Combining
the training efficiency and rendering quality, we employ linear interpolation in
synthetic datasets and cubic B-spline in real data.

PSNRt SSIMt LPIPS||Tirain (h)
NeRF [30] 22.69 .6347  .3687 2.5
3DGS [14] 22.72  .6390 .2887 0.3

DB-NeRF [27] | 25.63 .7675 .1820 | >5
DP-NeRF [19] | 25.91 7734 1589 | >5
BAD-NeRF [17]| 24.33 7003 .2196 | >5
ExBIuRF [20] | 25.31 .7293 2084 | 4.0

Ours-Cubic | 26.11 8157 .1064 | 0.5

Table 6: Quantitative comparisons for novel view synthesis on the real captured
dataset of Deblur-NeRF [27]. Full results can be found in our supplementary material.

4.3 Results

Results on Synthetic Data. We evaluate our approach against baseline meth-
ods using synthetic datasets obtained from both Deblur-NeRF [27] and MBA-
VO [26]. The quantitative evaluation results on deblurring and novel view
synthesis with the Deblur-NeRF dataset are presented in Table 3 and Table 4
respectively. All metrics (i.e. PSNR, SSIM, LPIPS) demonstrate substantial im-
provements over prior state-of-the-art methods (i.e. 3.6 and 1.7 dB higher than
the second best method on average in Table 3 and Table 4, respectively).

The results demonstrate that both NeRF [30] and 3D-GS [14] are suffer-
ing from motion-blurred images, which motivates the necessity of our method.
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3D-GS [14] Deblur-NeRF [27] DP-NeRF [19] BAD-NeRF [47] Ours Reference

Fig. 3: Qualitative novel view synthesis results of different methods with the
real datasets. The experimental results demonstrate that our method achieves supe-
rior performance over prior methods on the real dataset as well. In contrast, BAD-NeRF
yields poorer results when applied to real data and exhibits satisfactory performance
only within synthetic datasets.

Single-stage methods such as MPR [52] and SRN [44] fall short of matching the
performance of our approach due to their limited utilization of geometric in-
formation across multi-view images. Additionally, our method surpasses Deblur-
NeRF [27] and DP-NeRF [19], partly because they fail to optimize the inaccurate
camera poses estimated from COLMAP during training. We additionally trained
Deblur-NeRF and DP-NeRF with ground truth poses (denoted as *), and the
results demonstrate improved performance, reflecting the sensitivity to the pose
accuracies of both Deblur-NeRF and DP-NeRF. A notable result from both Ta-
ble 3 and Table 4 is that our method performs worse than BAD-NeRF on the
Factory sequence. We find that it is caused by the inferior capability to represent
the sky by Gaussian splatting compared to NeRF. Nevertheless, our method still
performs better than all prior methods with a large margin on average.

Qualitative results are presented in Fig. 2. It demonstrates that our method
effectively attains high-quality scene representations with intricate details, being
trained from a series of blurred images. In Fig. 2, it is evident that Deblur-
NeRF [27] and DP-NeRF [19] encounter difficulties in modeling regions with
significant depth variations, attributable to their method of synthesizing blurred
images through convolution with a blur kernel applied to rendered images. The
physically based method BAD-NeRF [47] exhibits superior performance overall,
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yet it still presents some deficiencies, particularly noticeable around areas with
significant color and depth variation. It demonstrates the effectiveness of the
explicit Gaussian splatting representation over the implicit neural representation.

We further assess the performance of our methods using a dataset charac-
terized by severe motion blur and camera movements with varying velocities,
sourced from MBA-VO [26]. The results presented in Table 5 demonstrate that
our method achieves the best performance even when the camera undergoes
acceleration.

Results on Real Data. The performance of novel view synthesis on real
data sourced from Deblur-NeRF [27] are also evaluated. The quantitative results,
as presented in Table 6, demonstrate the superior performance of our method
compared to other approaches. Furthermore, the qualitative results illustrated
in Fig. 3 vividly demonstrate our method’s ability to deliver intricate details.

Pose Estimation. Due to the unknown metric scale, we align the estimated
trajectories against their corresponding ground truth for the computation of the
absolute trajectory error metric. The experimental results presented in Table 7
demonstrate the effectiveness of our approach in recovering precise camera poses.

Table 7: Pose estimation performance of BAD-Gaussians on various blur
sequences. The results are in the absolute trajectory error metric in centimeters
(ATE/cm). The COLMAP-sharp / COLMAP-blur represents the result of COLMAP
with sharp/blurry images respectively.

Cozy2room Factory Pool  Tanabata Trolley ArchViz-low ArchViz-high|Average
COLMAP-sharp [38]| .133+.079 .1014.052 .1724.047 .277+.103 .173+.079 .148+.078  .115+.066 | .1599
COLMAP-blur [38] | .2874.161 1.6941.24 .633+.236 1.59+1.06 .9124+.559 .5364.309 = .766+.391 | .9163
BAD-NeRF [47] | .3164.101 .6004.208 .095+.046 1.34+.543 .1224+.070 1.244.635 2.18%1.54 | .8419
Ours 1654.057 .3954.426 .264+.098 1.20£.621 .134£.070 .5204.591  1.41+£1.11 | .5840

5 Conclusion

We presented the first pipeline to learn Gaussian splattings from a set of motion-
blurred images with inaccurate camera poses. Our pipeline can jointly optimize
the 3D scene representation and camera motion trajectories. Extensive experi-
mental evaluations demonstrate that our method can deliver high-quality novel
view images, and achieve real-time rendering compared to prior state-of-the-art
works.
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