
Forest2Seq 1

Forest2Seq: Revitalizing Order Prior for
Sequential Indoor Scene Synthesis

(Supplementary Material)

This supplementary material contains four sections: section 6 details the al-
gorithm of ordering construction; section 7 is the architecture details of masked
language modeling; section 8 provides evaluation details, including the user study
and tree reconstruction accuracy; section 9 offers a comprehensive visual com-
parison with the-state-of-art methods in various tasks, including scene synthesis,
scene completion and rearrangement. The source code and pretrained models will
also be released upon publication.

6 Algorithms

Our core algorithms can be simply implemented by tens of lines. In training
stage, we first use Set2Tree (algorithm 1, see Page 8) to organize the set of
objects into a scene tree, followed by Tree2Forest (algorithm 2, see Page 9) to
expand the single tree to forest representation. Then we use Forest2Seq (algo-
rithm 3, see Page 9) to obtain the object sequence from the constructed forest.

7 Architecture details

Layout encoder. We employ a ViT [12]-based layout encoder. Shown in Ta-
ble 6b, we further conduct ablation study to understand which type of layout
encoder is better. We compare our results of the ResNet18 [26] introduced in
ATISS [49], PointNet [51] employed in LEGO-Net [68]. We find that with the
second-fewest number of parameters, our vit-based layout encoder achieves the
best performance. Additionally, we note that while the PointNet-based layout
features primarily concentrate on the shape of the floor plan, they tend to omit
scale details. ResNet18 model tends to disregard low-level features, such as edges,
due to its pooling module. However, our vision transformer adapts at capturing
these low-level features as evidenced by Figure 6a.
Object encoder. Following ATISS [49], we first apply positional encoding [45,
64] to each continuous object attribute h, including (r, t, b):

h′ = (sin (20πh), cos (20πh), · · · ,
sin (2L−1πh), cos (2L−1πh)),

(6)

where L=32, h′ ∈ R64 is the encoded scalar and we use a linear projection for
c to c′ ∈ R64. The final object embedding s ∈ R512 is the concatenation of all
attributes. The model is illustrated in Figure 7a.

2 Q. Sun and H. Zhou et al.

La
yo

ut
 m

as
k

A
tte

nt
io

n
m

ap
La

yo
ut

 (r
en

de
re

d)

(a) Attention map visualization in the ViT-based layout en-
coder.

Model Parameters (M) KL FID CAS (%)
PointNet [51] 1.13 8.3 40.5 77.4
ResNet18 [26] 11.1 6.2 36.7 70.1
ViT-S [12] 2.56 5.9 35.2 68.0

(b) Ablation study on differ-
ent type of layout encoder.

Table 6: Ablation study and visualization on the layout encoder.

Position encoding Linear

cat

r t b c

s

c’b’t’r’

(a) Object encoder.

Layer norm

Masked
multi-head attention

Layer norm

MLP

6 x +

+

Object sequence

(b) Transformer decoder.

Table 7: Architecture details on the model components.

Transformer decoder. As illustrated in Figure 7b, we take GPT2 [54]-like
structure to implement the transformer decoder. Different from the vanilla trans-
former [64], it uses layer normalization before self-attention block, adds one addi-
tional layer normalization after the final self-attention block, and utilizes GeLU
as the activation function. Our model configuration employs a smaller variant
of GPT-23, consisting of 6 layers and a 6-head self-attention mechanism, with a
hidden dimension size of 192.

3 https://github.com/karpathy/nanoGPT

Forest2Seq 3

8 Details on evaluation

User study. In our user study, each participant evaluates 204 pairs of images (51
samples × 4 room types). They are asked to score the quality of the generated
indoor scenes based on two criteria: “Which scene fits better within the layout
boundary?” and “Which of these indoor scenes appears more realistic?”, then
select the best.
Tree reconstruction accuracy. We use Average Hierarchical Distance(AHD)
to measure the accuracy of reconstructed tree. A scene tree T can be decomposed
into set of node sets {Si}Ni=1, where N is the total depth of the tree and Si

represents all nodes at the i-th depth. Further, we compare set similarity in
average, formally:

AHD =
1

N

N∑
i=1

|Si ∩ Ŝi|
|Si ∪ Ŝi|

, (7)

where Ŝi is the set at the i-th depth from the ground truth tree. For fair com-
parison of the different tree reconstruction methods, we select 60 scenes in the
experiment and calculate the AHD in average.
Sequence set inconsistency. The score is defined as the Hamming distance
of two different sequences in average, which can be formulated as:

Inconsistency =
1

|N(i, j)|
∑
i

∑
j ̸=i

dHamming(si, sj), (8)

where si is randomly selected sequence and N(i, j) is the number of (i, j) pairs.
The score is higher when the the sequences within the set are more inconsistent.
Specifically, when the set contains only one sequence, the inconsistency score is
zero, as there are no pairs of sequences to compare.

9 Visual results

More visual comparisons. As shown in Figure 10 11 12 13, we compare our
results with the-state-of-the-art methods [48, 62] in bedroom and living/dining
rooms. Our approach yields more realistic scenes with fewer occurrences of ob-
jects extending beyond the layout boundaries.

4 Q. Sun and H. Zhou et al.

OursLayout Reference COFS DiffuScene

Fig. 10: Scene synthesis. Visual comparison with the-state-of-the-art methods [48,
62] on the bedroom type.

Forest2Seq 5

OursLayout Reference COFS DiffuScene

Fig. 11: Scene synthesis. More visual comparison with the-state-of-the-art meth-
ods [48,62] on the bedroom type.

6 Q. Sun and H. Zhou et al.

Layout OursReference COFS DiffuScene

Fig. 12: Scene synthesis. Visual comparison with the-state-of-the-art methods [48,
62] on the living room / dining room type.

Forest2Seq 7

OursReference COFS DiffuSceneLayout

Fig. 13: Scene synthesis. More visual comparison with the-state-of-the-art meth-
ods [48,62] on the living room / dining room type.

8 Q. Sun and H. Zhou et al.

Algorithm 1 Pseudocode of Set2Tree algorithm in a PyTorch-like style.

def giou(boxes1, boxes2):
giou between 2 bboxes
pass

def find_biggest(subscene):
find the biggest furniture in a subscene
pass

def fn_dist(self, bbox2d_set, xy_set):
dist_giou = 1 - giou(bbox2d_set) # [N, N]
dist_enc = sqrt(sum((xy_set[:, newaxis] - xy_set) ** 2, axis=2)) # [N, N]
weighted distance matrix
return dist_euc + k * dist_giou

"""
Definition of Furniture: node of Tree
"""
class Furniture:

def __init__(self, x1y1x2y2=None, xy=None, feature=None):
self.bbox2d = x1y1x2y2
self.xy = xy
self.feature = feature
self.children = []

def add_node(self, furniture):
self.children.append(furniture)

"""
Definition of Tree
"""
class Tree:

def __init__(self):
self.root = Furniture() # empty

def shuffle(self):
pass # easy to implement

def bfs(self):
pass # easy to implement

def set2tree(self, f_set, labels):
organize the furniture set into a scene tree
for l in len(set(labels)):

if l != -1: # not outlier
subscene = [f_set[j] for i in labels if i == l]
find the largest furniture as parent node
f_parent = find_biggest(subscene)
add the parent node under the root node
self.root.add_node(f_parent)
add the remaining objects under the parent node
for f in subscene:

if f != f_parent:
f_parent.add_node(f)

iou: intersection-over-union of two bounding boxes; sqrt: square-root; sum: summarization; newaxis:
new axis of an array.

Forest2Seq 9

Algorithm 2 Pseudocode of Tree2Forest algorithm in a PyTorch-like style.
from sklearn.cluster import DBSCAN
from numpy import array
from copy import deepcopy
def tree2forest(f_set, eps=0.15, min_samples=2):

"""
Prepare the distance matrix
"""
bbox2d_set = array([f.bbox2d for f in f_set]) # [N, 4]
xy_set = array([f.xy for f in f_set]) # [N, 2]
dist_mat = fn_dist(bbox2d_set, xy_set)
"""
DBSCAN clustering
"""
dbscan = DBSCAN(eps, min_samples, metric=’precomputed’)
labels = dbscan.fit_predict(dist_mat)
tree = Tree() # empty tree
tree.set2tree(f_set, labels) # build tree
forest = [] # create empty forest
find all outliner
outliers = [f_set[j] for j, k in enumerate(labels) if k == -1]
for f in outliers: # process each outlier

add to the parent nodes
for i in range(len(tree.root.children)):

tmp_tree = deepcopy(tree)
tmp_tree.children[i].add_node(f)
forest.append(tmp_tree)

add to the root node
tmp_tree = deepcopy(tree)
tmp_tree.root.add_node(f)
forest.append(tmp_tree)

return forest

Algorithm 3 Pseudocode of Forest2Seq algorithm in a PyTorch-like style.

"""
Flatten a forest (set of tree) to a sequence
"""
def forest2seq(forest):

"""
forest: list of Tree
return: list of Furniture
"""
N = len(forest) # number of trees
idx = randint(0, N) # randomly select one tree
tree_selected = forest[idx]
return tree_selected.shuffle().bfs()

bfs: breadth-first traversal; shuffle: tree shuffle; randint: return random integers from low (inclusive)
to high (exclusive).

	Forest2Seq: Revitalizing Order Prior for Sequential Indoor Scene Synthesis

