
Forest2Seq: Revitalizing Order Prior for
Sequential Indoor Scene Synthesis

Qi Sun1⋆, Hang Zhou2⋆, Wengang Zhou1, Li Li1, and Houqiang Li1

1 USTC
2 Simon Fraser University

0

21

3 4 5 6 7

…

Fig. 1: We present Forest2Seq that mines the implicit hierarchy from the scene
(bottom left), employing the tree-derived ordering as significant prior to direct the
sequential indoor scene synthesis (top). The presence of placing-adaptable furniture
items (bottom right), exemplified by the cabinets, necessitate the evolution from a
single tree to scene forest representation.

Abstract. Synthesizing realistic 3D indoor scenes is a challenging task
that traditionally relies on manual arrangement and annotation by ex-
pert designers. Recent advances in autoregressive models have automated
this process, but they often lack semantic understanding of the rela-
tionships and hierarchies present in real-world scenes, yielding limited
performance. In this paper, we propose Forest2Seq, a framework that
formulates indoor scene synthesis as an order-aware sequential learning
problem. Forest2Seq organizes the inherently unordered collection of
scene objects into structured, ordered hierarchical scene trees and forests.
By employing a clustering-based algorithm and a breadth-first traversal,
Forest2Seq derives meaningful orderings and utilizes a transformer
to generate realistic 3D scenes autoregressively. Experimental results on
standard benchmarks demonstrate Forest2Seq’s superiority in synthe-
sizing more realistic scenes compared to top-performing baselines, with
significant improvements in FID and KL scores. Our additional exper-
iments for downstream tasks and ablation studies also confirm the im-
portance of incorporating order as a prior in 3D scene generation.
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1 Introduction

Creating realistic virtual 3D indoor scenes has long been an expensive, labor-
intensive process [7, 43, 69], requiring expert designers to manually arrange and
annotate every piece to populate these rich environments [10, 31, 49]. Recent
advances in indoor scene synthesis, however, enable automating this process by
generating plausible room layouts simply by taking high-level room type and lay-
out [47,53,59,63] as inputs. This has immense potential, enabling virtual product
showcasing for retailers [1,35], automating environment creation for movies [33],
games [74] and complex visualization [48], and providing rich training data for
3D scene understanding AI models [4, 9, 58].

Early indoor synthesis approaches were formulated as a prior constraint opti-
mization task [17,30,43,55], achieving promising results. They encoded rules and
priors about functional relationships between objects [68,69] (like couches facing
TVs) as well as human use-case constraints [42, 73], which are time-consuming
and skill-dependent. As a result, this hand-crafted prior approach lacks flexibility
and generality as the 3D indoor scene becomes more complex [47,53].

As an alternative to hand-crafted priors, deep generative models have been
employed to learn scene priors directly from data, without the need for manu-
ally specified rules or constraints. Such approaches include autoregressive trans-
former models [46,47,64] and CNN-based methods [63,66]. While autoregressive
models generate objects in sequential order, a key limitation is that this order is
arbitrary [13, 62, 67] and lacks semantic understanding of the relationships and
hierarchies that exist in real 3D indoor scenes [59].

To address these limitations, we propose Forest2Seq, a framework that
formulates indoor scene synthesis as an order-aware sequential learning prob-
lem. Forest2Seq organizes the inherently unordered collection of scene objects
into structured, ordered hierarchical scene trees and forests. Specifically, For-
est2Seq first establishes orderings that prioritize the placement of dominant
furniture pieces before the associated secondary objects, aligning with intuitive
spatial reasoning principles for scene composition.

As illustrated in Figure 1 (bottom left), Forest2Seq used a clustering-based
algorithm to parse the scene into a tree, which is then linearized into an ordered
sequence via breadth-first traversal. To handle flexible objects like cabinets that
can belong to multiple functional zones, as depicted in Figure 1 (bottom right),
we extend this to an ensemble of trees forming a scene forest representation.
With these derived ordering, Forest2Seq employs a transformer coupled with
a denoising strategy. At inference time, Forest2Seq generates plausible 3D
scenes auto-regressively by sequentially placing furniture instances guided by
the predicted order as shown in Figure 1 (top).

We demonstrate the capability of Forest2Seq to synthesize more realistic
scenes using the 3D-FRONT dataset, outperforming the top-performing baseline
with an average margin of FID score of 2.58 and a KL score of 1.78. Additionally,
we illustrate how Forest2Seq enhances scene rearrangement and completion
tasks. Our extensive ablation studies further confirm that order-awareness as a
prior significantly improves the generation of 3D indoor scenes.
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2 Related Works

Scene synthesis with handcrafted priors. Early works reasoned scene syn-
thesis with various probabilistic models over scene exemplars in the view of
object functionality criteria [17, 42, 73] and human activities [18, 41, 55]. For ex-
ample, Fisher et al. [17] investigated Bayesian network and Gaussian mixture
model to model object co-occurrence. Make-it-Home [68] that pioneered in pro-
gressive synthesis, offered an interactive layout modeling tool by optimizing cost
function that encoding spatial relation between furniture objects. Ma et al. [41]
formulated an action graph with nodes represented as human actions, guiding
interior sythesis from human activity. In contrast, our approach is an end-to-
end differentiable pipeline and free of externally introduced elements previously
proposed for scene synthesis.
Scene synthesis via graph representation. Modeling scenes as graphs [23,
26,37,59,63,65,75] has been an intuitive approach for scene synthesis and been
extensively studied recently. GRAINS [37] proposed a recursive auto-encoder
network for scene synthesis, where novel scenes are generated hierarchically.
SceneGraphNet [75] utilized message-passing graph networks to model long-
range relationships among objects. SceneHGN [23] defined a fine-grained hierar-
chy in room-object-part order, allowing multi-level scene editing. LEGO-Net [65]
and DiffuScene [59] represented scene as a fully-connected graph with denois-
ing diffusion probabilistic models (DDPMs). CommonScenes [72] modeled scene
jointly with layout and shape via latent diffusion models. Our work represents
scene as directed rooted forest and learns scene synthesis with transformers.
Scene synthesis using language modeling. Recently, great success have been
made in language modeling [51, 61] for content generation [5, 6, 14, 38, 44, 54].
SceneFormer [64] modeled each scene object property with individual trans-
former network, where object order is predefined by class frequency. ATISS [47]
represented object properties as span using a single transformer network and re-
moved positional encoding for order permutation-invariance. CLIP-Layout [39]
learned to synthesize style-consistent indoor scenes with multi-modal CLIP [50]
encoder. LayoutGPT [16] leveraged rich visual concepts and notable zero-shot
capabilities of large language models (LLMs), i.e. ChatGPT [45]. COFS [46]
adapted masked language models and modeled scenes with a standard BART [36]-
like generative model, formed by a bidirectional encoder over corrupted input
and an auto-regressive decoder. In our method, we leverage the decoder-only
casual transformer and denoising strategy to enhance the generation ability.
Input as sequence or set. A significant limitation of language modeling is
it can only be applied to problems whose inputs are represented as sequences.
Hence, many research efforts [13, 29, 62, 67] have been made to perform map-
pings from different data structure, like set, to sequences. Set2Seq [62] proposed
read, process, write block to process the input set and find the optimal order-
ings while training, the results of which show that order matters in various tasks.
Tree2Seq [8] added unsupervised hierarchical structure on the source sentence to
Seq2Seq model for improving low-resource machine translation. CODE-NN [29]
showcased the effectiveness of transforming structured code into sequence cou-



4 Q. Sun and H. Zhou et al.

pled with LSTM [28] for summarization. Another line of research initiatives
have been focusing on processing the set-input data. DeepSets [70] handled set
data by ensuring permutation-invariance and enabling pooling over sets. Set
Transformer [34] featured as induced set attention block and attentional pooling
module to aggregate set input attributes. Since the indoor scenes do not provide
explicit ordering, following Set2Seq, our method ventures to search the optimal
priori choice of the indoor scene ordering for sequential modeling.

3 Method

Given a 2D floor/layout, we aim to develop a generative model to produce di-
verse and plausible object arrangements. Figure 2 shows the framework of our
proposed method.
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Fig. 2: Training framework of our Forest2Seq. On the left, we depict the construction
of a tree/forest from parsing the scene and its subsequent flattening into a sequence
through breadth-first search. The right panel illustrates our use of a causal transformer
equipped with a denoising strategy for sequential data learning.

3.1 Ordering construction

Scenes are represented as sets of oriented bounding boxes O = {o1, o2, . . . , on},
with each box oi = (ci, ti, bi, ri) containing a semantic class ci ∈ RC , a 3D
translation ti ∈ R3, a bounding box size bi ∈ R3, and a rotation angle ri ∈ R. To
enable transformer-based sequence-to-sequence learning, we seek a permutation
π that transforms the set O into a sequence S = π(O).
Scene tree. In Figure 2 (left), the implicit tree structure of the living room
is evident: Each subtree corresponds to a distinct functional zone, such as re-
laxation zone or dining zone, with the primary object forming the parent node
and the ancillary objects as children. This arrangement aligns well with intu-
itive spatial reasoning, where primary objects are positioned first, followed by
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their associated items. We posit this hierarchy, which we refer to as scene tree
ordering πT , naturally suits indoor scene composition and aligns with practical
spatial organization.

To realize the goal, we build a tree with Modified Euclidean Distance Cluster-
ing (MEDC), where on the top-down projected 2D bounding boxes oi = (ti, si),
we can calculate the distance between each pair, formulating a distance matrix
M = {mij}Ni,j=1 defined as:

mij = dij + λ · (1− GIoU(oi, oj)), (1)

where GIoU(·, ·) ∈ [−1, 1] is proposed in [52] to evaluate of distance of two bound-
ing boxes oi, oj ∈ R4, and dij is the Euclidean distance between two bounding
box centers. We employ the DBSCAN algorithm [15] on the distance matrix
to segment the furniture into multiple clusters and identify outliers. Within
each cluster, the largest object is designated as the root node, forming a sub-
scene, with the remaining items as child nodes. To eliminate inherent ordering
among siblings, we randomly shuffle nodes under the same parent. Then, utiliz-
ing breadth-first search (BFS) [3], we linearize the shuffled tree into a sequence
ST = πT (O).

Scene forest

Fig. 3: An example to illustrate the motivation of scene forest. The whole room is
clearly divided to 2 subscenes according to the human activity. However, “cabinet” is
an exception as it can reasonably belong to any subscene or the entire scene. Note that
some items in the base tree are ignored for simplification.

Scene forest. As depicted in in Figure 3, flexible furniture like cabinets ca-
pable of serving relaxation, dining, or the entire room, introduces ambiguity
into the conventional scene tree representation. To resolve this, we propose an
enriched tree structure that integrates these outliers by associating them with
each potential parent node, resulting in san ensemble of trees, as the forest scene
representation. During training, we randomly select a tree from the forest (see
Figure 3) and employ BFS to convert it into a sequence, denoted as SF = πF (O).
sNote that this forest ordering approach, which produces inherently non-unique
orderings, broadens the permutation space beyond what is possible with a single
scene tree. More details of the algorithm are provided in the supplementary.
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3.2 Masked language modeling

Upon establishing the scene priori ordering of the indoor scenes, see Figure 2
(right), our objective is to employ a transformer-based generative model to pop-
ulate the ordered sequence S = {si}Ni=1. The framework primarily comprises four
components, including layout encoder, object encoder, transformer decoder, and
attribute extractor.

Two encoder networks including layout encoder and object encoder trans-
form raw input into sequential embeddings. The layout encoder, a small vi-
sion transformer [12, 22], extracts the binary layout mask s0 ∈ R64×64 into a
start token x0 ∈ R512, establishing spatial constraints for object placement.
The object encoder handles attributes (ci, ti, bi, ri), coupled with sinusoidal po-
sitional encoding for extracting the discrete variable into a unified token xi =
[λ(ci);ψ(ti);ψ(bi);ψ(ri)] ∈ R512.

The transformer decoder [51], denoted as fθ, is tasked with the prediction
of subsequent object embeddings. It achieves this by accumulating context from
both the start layout token and previous object tokens, sleverages masked self-
attention mechanisms. To enhance this process, we integrate absolute positional
encodings to the sequence of object embeddings, thereby enpowering the model
with crucial sequence order information:

x̂i = fθ(x<i;x0), (2)

where x̂i represents the predicted embedding of the next object, and x<i is the
sequence of all previous object embeddings up to the i-th position.

Following previous work [47], our feature extractor outputs a probability
distribution for bounding box parameters, using K logistic distributions for con-
tinuous parameters including position, size, and orientation:

p(h) =

T∑
j=1

αjLogistic(µj , σj), (3)

where h is a component (ti, bi, ri), with αj , µj , σj being the logistic parameters.
And discrete class probabilities are derived from logit vectors lc via the softmax
function:

p(ci) = Softmax(lc). (4)

Probability distributions are represented by 3K-dim vectors for continuous, and
C-dim for discrete class variables, where C is the class number.
Training with denoising. We employ input corruption techniques [11,24,25] to
mitigate overfitting in the transformer in both attribute- and object token-level.
Specifically, a predefined percentage of the object embeddings are randomly
substituted with a [MASK] token. In addition, in the auto-regressive attribute
prediction process, a predefined percentage of the ground truth categories are
replaced with random categories, rather than consistent teacher forcing. We use
the same 5% mask/noise rate for simplification. Moreover, this design reduces
the error propagation in sequential predictions.
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Inference. During the inference phase, the process initiates with the layout em-
bedding or start token. Subsequently, we employ an auto-regressive approach to
iteratively sample attribute values from the distributions predicted for the sub-
sequent object. Each newly generated object is concatenated with the preceding
tokens, which then informs the subsequent generation step. This procedure is
repeated until the end token is produced.
Object retrieval. Once a labeled oriented bounding box is sampled, we identify
the matching furniture instance from the 3D-FUTURE dataset [20] by selecting
the closest size match within the predicted object category.

3.3 Objective loss functions

The language model is trained by minimizing the negative log-likelihood of the
sequence joint distribution, factorized as the product of conditional probabilities
across individual tokens [2]:

Lθ = − log

N∏
i=1

pθ(si|s<i) = −
N∑
i=1

log pθ(si|s<i), (5)

where pθ(si|s<i) is the cross entropy between the probability of the next object
attributes predicted by model and the ground truth, given the previous i tokens.

3.4 Implementation details

All experiments run on an NVIDIA RTX3090 GPU, with the AdamW [40] opti-
mizer at a 1e-4 learning rate, without warm-up or decay strategies. For DBSCAN
parameters, the eps and min-samples are set to 0.15 and 2 respectively, with a
GIoU weight of λ=0.02 applied to the distance matrix. The attribute modeling
employs a 10-component logistic mixture to accurately represent object distri-
butions. All models are trained using a batch size of 128 across 1000 epochs, in-
corporating random rotations from 0◦ to 360◦ for data augmentation. We adopt
standard practice for early stopping, evaluating against the validation metric
every 10 epochs and selecting the best-performing iteration as the final model.
All layers are applied with a universal dropout rate of 0.1 to counter overfitting.
Details of the network architecture are provided in the supplementary.

4 Experiments

4.1 Experimental settings

Datasets. In alignment with prior work [46, 47, 59], we utilize the 3D-FRONT
dataset [19] for training and evaluation, which includes around 10k professional
3D indoor scenes spanning bedrooms, libraries, living rooms, and dining rooms.
Following the preprocessing steps of ATISS [47], the dataset is split into subsets
with 3879/162 bedrooms, 230/56 libraries, 621/270 living rooms, and 723/177
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dining rooms for training/validation. Given the limited library/living room/din-
ing room data, we employ a pretrained bedroom model for initial weights for
each room type to improve performance.
Metrics. In line with established works [46, 47], we employ various metrics for
performance assessment, including Fréchet Inception Distance (FID) [27], classi-
fication accuracy score (CAS), and categorical Kullback-Leibler (KL) divergence.
The evaluation protocol involves rendering the indoor scenes into 256×256 or-
thographic maps and calculating the CAS/FID scores against the ground truth.
Baselines. Our method is benchmarked against recent advancements, including
FastSynth [53], SceneFormer [64], ATISS [47], COFS [46], LayoutGPT [16], and
DiffuScene [59]. Notably, DiffuScene utilizes top-down semantic maps for ren-
dering 3D scenes, while LayoutGPT computes FID using images rendered from
four distinct camera viewpoints. To ensure fair comparisons, we reproduce the
experiment of these two methods using their official implementations. We do not
report the results of DiffuScene on the library type, since the original paper did
not conduct this experiment.

4.2 Scene synthesis

Quantitative comparison. Our experiments on scene synthesis, when mea-
sured against baseline models, demonstrate the robustness of our approach.

Room type bedroom living room dining room library
Num. of nodes 5.00 11.7 10.9 4.61
Num. of trees 1.27 2.83 2.51 1.14

Table 1: Forest statistics.

As described in Table 2, Forest2Seq surpasses
all baselines with superior KL divergence scores,
implying a closer match to the ground truth. Fur-
thermore, Forest2Seq achieves the most favor-
able scores in both the FID and CAS, indicat-
ing its ability to render more realistic scenes. Ta-
ble 1 shows the basic statistics of the scene forest:
living room and dining room contains the most
nodes and trees, which explains performance improvement more substantial in
the two room types. In terms of computational efficiency, as illustrated in Ta-
ble 3b, our model demonstrates competitive inference times and requires the
fewest parameters (48% fewer than the model with the second fewest parame-
ters) among all methods compared. It is noteworthy that we employ a compact
transformer decoder and a small ViT-based layout encoder (2.58M) to mitigate
overfitting and improve efficiency.
Qualitative comparison. In Figure 4, we illustrate the visual results of scene
synthesis. To ensure a balanced evaluation, the same randomly sampled room
layout serves as the conditional input for DiffuScene, ATISS, COFS, and our
Forest2Seq across various room types. The comparison reveals that scenes
synthesized by Forest2Seq exhibit greater alignment with the given floor plans
and demonstrate a reduced tendency to place furniture beyond room boundaries.
Perceptual study. In Table 3a, we conduct user study by 37 participants who
assessed the realism of scenes generated by DiffuScene, ATISS, and COFS across
51 randomly selected rooms of each type for evaluation. The perceptual analysis
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Method
Bedroom Dining room Living room Library

KL FID CAS (%) KL FID CAS (%) KL FID CAS (%) KL FID CAS (%)
FastSyn [53] 6.4 88.1 88.3 51.8 58.9 93.5 17.6 66.6 94.5 43.1 86.6 81.5
SceneFormer [64] 5.2 90.6 97.2 36.8 60.1 71.3 31.3 68.1 72.6 23.2 89.1 88.0
LayoutGPT [16] 17.5 68.1 60.6 — — — 14.0 76.3 94.5 — — —
ATISS [47] 8.6 73.0 61.1 15.6 47.6 69.1 14.1 43.3 76.4 10.1 75.3 61.7
COFS [46] 5.0 73.2 61.0 9.3 43.1 76.1 8.1 35.9 78.9 6.7 75.7 66.2
DiffuScene [59] 5.1 69.0 59.7 7.9 45.8 70.6 8.3 38.2 75.1 — — —
Ours 4.2 67.9 58.3 5.5 40.2 65.6 5.9 35.2 68.0 5.2 69.1 57.3

Table 2: Quantitative comparison with the state-of-the-art methods [46,47,53,59,64]
on the task of scene synthesis. Note that for FID and KL, lower is better, and for CAS,
the score closer to 50% is better.

Layout Reference ATISS COFS OursDiffuScene

Fig. 4: Qualitative comparison with the-state-of-the-art methods [46, 47, 59] on scene
synthesis for three type of scenes: bedrooms (1st row), living room (2nd and 3rd rows)
and dining room (4th row). Note that reference is the scene from dataset with the same
floor plan.

reveals that more than 50% of our generated scenes for living rooms and din-
ing rooms are considered realistic than others. Furthermore, our results gain a
predominant preference in bedrooms and libraries.
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Method Bedroom Living room Dining room Library
ATISS 20.2 10.1 13.9 26.5
COFS 13.4 21.2 8.5 25.0
DiffuScene 23.1 16.7 19.6 —
Ours 43.3 52.0 58.0 48.5

(a) User study

Method ATISS COFS DiffuScene Ours
Parameters (MB) 36.1 19.4 74.1 9.99
Inference rate (s) 0.204 0.129 34.9 0.160

(b) Efficiency comparisons

Table 3: Additional quantitative comparison with the state-of-the-arts.

Analysis. ATISS utilizes a transformer encoder without positional encoding
and randomizes object order while training to achieve approximate permuta-
tion invariance. Similarly, COFS posits that the layout is inherently unordered,
leveraging BART, a masked language model, to underpin this assumption. Dif-
fuScene represents scenes as fully-connected graphs and learns to denoise over
Gaussian noise. However, these baselines do not account for the inherent order-
ing among objects. This oversight often results in predictions that place objects
too close to one another, leading to frequent intersections and thereby affecting
scene realism. On the other hand, our method introduces multiple strategies to
mitigate overfitting: 1) our scene forest offers a priori ordering that guides the
generative process; 2) we adopt a decoder-only architecture, which not only re-
duces the network capacity but also exhibits enhanced generative performance
over encoder-decoder frameworks [21] such as BART; 3) the denoising training
strategy improves the generalization ability of the model.

4.3 Discussion on the order prior

In Table 4, we incorporate different orderings scheme with the auto-regressive
generating network, in which each scene can be represented either with a single
(the first three columns) or multiple (the last three columns) ordered sequences.
We also report two statistics for the set of sequences: diversity means that the
average number of ordered sequences; inconsistency is evaluated by the average
hamming distance between two sequence pair within the set.

Order (set) Random(single) Fixed Tree+BFS Random(multiple) Forest+DFS Forest+BFS
Diversity 1 1 1 ∞ 2.83 2.83
Inconsistency 0 0 0 9.54 4.01 1.87
KL ↓ 20.0 17.9 7.90 13.1 9.40 5.90
FID ↓ 49.4 49.8 36.1 43.3 40.5 35.2
CAS (%) 83.7 80.1 68.1 76.4 71.7 68.0

Table 4: Ablation study: comparison of KL, FID and CAS of different order settings
in living room scenario. The second-best score is underscored.

Superiority of forest ordering. We observe that random permutation and
fixed order [64] using frequency-based arrangement perform worse than tree-
guided order. This indicates that an optimal ordering could be beneficial for
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scene modeling. The further improvement in KL from the tree to forest demon-
strates the benefit of our introducing scene forest, which explicitly model the
flexible objects. When comparing breadth-first (BFS) and depth-first (DFS)
traversal methods for scene tree sequences, we find that BFS yields superior
results due to the greater consistency within sets of BFS-derived sequences. Ad-
ditionally, we examine the ordering strategy that is utilized in ATISS [47] that
shuffles the sequence before fed into the network. This approach, representing a
scene as multiple random sequences, shows improvement over the single random
case, attributed to data augmentation and the resulting high diversity. However,
its performance is constrained by sequence inconsistency (9.54) within the set.
Supported by qualitative evidence in Figure 5, these findings underscore the
effectiveness of our proposed forest ordering in generating more realistic and di-
verse object arrangements. Notably, the placement of primary furniture is less
accurate in the DFS scenario compared to the BFS scenario.

Fixed Tree+BFS Forest+BFSForest+DFSRandom(multiple)

Fig. 5: Ablation study: visual comparison of different orderings. While random order
and fixed order can not provide appropriate prior, our tree-guided order benefits the
scene synthesis, generating plausible scenes. The forest representation further enhances
the scene diversity and realism.

On the methods for forest formation/order construction. The goal of
forest formation is to reconstruct the scene hierarchy from sthe given object
representations. Several studies [57,60,71] have explored learning tree structures
or scene graphs from natural images. Consequently, we evaluate the scene pars-
ing efficacy of pure Euclidean Distance Clustering (EDC), Modified Euclidean
Distance Clustering (MEDC), and a learning-based baseline, VCTree [60] that
was originally designed for parsing natural images. We assess reconstruction ac-
curacy using Average Hierarchical Distance (AHD), which calculates similarity
by comparing sets formed at each tree depth between the reconstructed and
human-annotated trees. AHD averages these set-based similarity scores across
all depths for a concise measure of accuracy. As indicated in Table 5a, while the
proposed MEDC method is straightforward, it effectively captures underlying
semantic relationships and offers computational efficiency advantages.
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Methods AHD Inference time(ms)
MEDC 0.84 0.827
EDC 0.53 0.777
VCTree [60] 0.77 56.1

(a) On different scene pars-
ing methods.

Positional Encoding type KL FID CAS (%)
w/o 11.1 41.2 74.3
w. absolute [61] 5.9 35.2 68.0
w. relative [56] 6.2 36.7 70.1

(b) On the type of positional en-
coding.

Mask/noise rate 0 0.05 0.1 0.15 0.2
KL ↓ 6.4 5.9 6.1 8.8 12.2
FID ↓ 35.6 35.2 34.4 39.6 42.5
CAS (%) 69.2 68.0 66.7 73.1 74.5

(c) On the mask/noise rate in de-
noising training scheme.

Table 5: Ablation study.

… …

Random Order Ordered (Forest+BFS)

… …

Fig. 6: Attention map for different order-
ing. The dash line boxes indicates the pre-
vious objects that are used to predict the
next objects that are annotated with red
solid boxes.

Attention visualization. Figure 6
presents a visualization of the atten-
tion heatmaps trained under multi-
ple random ordering and scene forest
ordering. It is evident that with our
scene forest ordering, pivotal objects
receive heightened attention scores in
the next object token prediction. This
inherent bias of underlying model con-
firms that the order prior affects the
model, also explains why the object
embeddings are predicted more accu-
rately. Conversely, in the unordered
scenario, the distribution of attention
scores is notably uniform across the object sequence without attention efficacy.

4.4 More ablation study

On the positional encoding. A core component of Transformers is the posi-
tional encoding mechanism that represents the order of input sequence [32]. We
compare the results of transformer decoder variant without positional encod-
ing and those incorporating relative [56] and absolute [61] positional encoding.
In Table 5b, the results clearly demonstrate that incorporating positional en-
coding facilitates learning of order, with the model variant employing absolute
positional encoding achieving marginally better generation outcomes.
On denoising strategy. Table 5c shows the effectiveness of our denoising strat-
egy. By introducing a small rate (0.05 or 0.1) of masked and random tokens, we
effectively prevent overfitting and enhance model generalization. Conversely, at
a higher mask/noise rate (0.2), we find that achieving convergence of training
loss becomes challenging.

4.5 Application in downstream tasks

With the sequential generation framework, our method is easily applicable to
various downstream tasks, such as scene completion and rearrangement.
Scene completion. We retain the ground truth of the firstN objects, predicting
subsequent tokens auto-regressively util the sequence concludes. In Figure 7, we
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OursPartial scene DiffuSceneLayout COFS

Fig. 7: Scene completion – Comparison with COFS and DiffuScene for bedroom
(1st row) and living room (the bottom three rows).

OursNoisy scene COFS DiffuSceneGround truth

Fig. 8: Scene rearrangement – Comparison with COFS and DiffuScene for living
room (the top two rows) and dining room (the bottom two rows).
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compare against the state-of-the-art method, DiffuScene [59] and COFS [46], on
the task. Unlike DiffuScene and COFS, which omits essential items like lights
(1st row) and introduces misplaced elements such as dining tables and cabinets
(2nd row), our approach (3nd column) yields clean and coherent scenes due to
the awareness of the key furniture placement.
Rearangement. Our method corrects one or multiple failure cases by resam-
pling the position of an object considering prior inputs. Figure 8 illustrates our
success in adjusting the location of a night stand (2nd row) and optimally plac-
ing the bookshelf and chairs (the last row), an improvement over the inability
of DiffuScene to correct these placements.

5 Conclusion, Limitations and Future Work
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Fig. 9: Failure cases – Neglecting window placement (left); overlapping furniture
arrangements (mid); objects placed out of boundary in non-standard layouts (right).

We have introduced Forest2Seq, a novel framework to synthesize indoor
scenes via sequential modeling. In contrast with previous works that neglect
ordering, we leverage a parsing tree/forest and breadth-first search (BFS) to ex-
plore the implicit scene ordering, train the underlying network in an order-aware
manner, and validate that order matters in scene modeling through extensive
experiments including scene synthesis, completion and rearrangement.

Figure 9 highlights three primary limitations of our method. The left column
indicates that the cabinet is blocking the window, creating undesirable scenes.
This occurs since our model currently not factoring doors and windows as ad-
ditional condition. In the mid column, we observe occasional instance of object
overlaps due to a lack of spatial constraints on relative positioning. As demon-
strated by the right, the model struggles with generating plausible results for
highly complex layouts, partially due to the limited diversity of training data.

In addition to addressing the difficulties suggested by the failure cases, the
future work should explore towards the optimal order for sequential generation.
For example, this could involve integrating learning-to-ordering module into an
end-to-end network by joint optimizing the ordering and the likelihood objective.
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