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Abstract. Current high-resolution vision-language models encode im-
ages as high-resolution image tokens and exhaustively take all these to-
kens to compute attention, which significantly increases the computa-
tional cost. To address this problem, we propose FlexAttention, a
flexible attention mechanism for efficient high-resolution vision-language
models. Specifically, a high-resolution image is encoded both as high-
resolution tokens and low-resolution tokens, where only the low-resolution
tokens and a few selected high-resolution tokens are utilized to calculate
the attention map, which greatly shrinks the computational cost. The
high-resolution tokens are selected via a high-resolution selection mod-
ule which could retrieve tokens of relevant regions based on an input at-
tention map. The selected high-resolution tokens are then concatenated
to the low-resolution tokens and text tokens, and input to a hierarchi-
cal self-attention layer which produces an attention map that could be
used for the next-step high-resolution token selection. The hierarchical
self-attention process and high-resolution token selection process are per-
formed iteratively for each attention layer. Experiments on multimodal
benchmarks prove that our FlexAttention outperforms existing high-
resolution VLMs (e.g., relatively ∼9% in V* Bench, ∼7% in TextVQA),
while also significantly reducing the computational cost by nearly 40%.1

Keywords: High-resolution Image · Vision-language Model · Attention
Mechanism

1 Introduction

Large vision-language models (VLMs), such as those described in [28, 30], ex-
hibit remarkable capabilities across a range of multimodal tasks including image
1 Project page: https://vis-www.cs.umass.edu/flexattention
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Fig. 1: An overview of VLMs processing high-resolution images for the VQA
task. (a) low-resolution VLM will first downsample the high-resolution image to meet
its vision encoder requirement. The detail in the low-resolution image is missing, thus
it is hard for it to correctly answer the question. (b) high-resolution VLM can take the
high-resolution image as input, at the cost of a large amount of high-resolution image
tokens, leading to excessive computational cost. (c) Equipped with our FlexAttention,
the model encodes the whole high-resolution image and dynamically selects a small
portion of the high-resolution feature that the model is paying attention to during the
generation, thus avoiding the high computational cost.

captioning, visual question answering, image-text matching, and so on. However,
these models typically process images at relatively low resolutions (e.g., 224×224
or 336×336), thus struggling in scenarios where detailed scrutiny of small regions
(e.g., minor texts or small objects) is required. This limitation becomes evident,
for instance, in Fig. 1 (a), where these models fail to discern the words on the
printed sign due to the constraints of low-resolution inputs.

To address this problem, several high-resolution VLMs (e.g., LLaVA-1.5-HD
[35] and CogAgent [20]) have been proposed, which could take high-resolution
images as inputs and encode them as high-resolution tokens. Although such
models provide a more detailed examination of small regions, they exhaustively
process all high-resolution tokens to compute attention, which places a heavy
burden upon computational resources. These models deviate from the way hu-
man beings perform visual reasoning. Instead of memorizing all pixel-perfect
details, we tend to maintain a coarse representation at first, and attend to rele-
vant regions for retrieval of more details only when instilled with external stim-
uli [5,41,41,42]. It’s essential that high-resolution VLMs could also flexibly and
dynamically attend to the regions of interest based on low-resolution features
for high-resolution detail retrieval.

To this end, we present FlexAttention, a novel attention mechanism that
could be seamlessly plugged into most vision-language models to empower their
abilities to perceive images with higher resolutions in an efficient manner. Specif-
ically, as is shown in Fig. 1 (c), FlexAttention takes a high-resolution im-
age as input, and encodes the image both as high-resolution image tokens and
low-resolution image tokens. For computational efficiency, we only feed the low-
resolution tokens and text tokens to the first few layers to roughly understand
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the entire image. For subsequent layers, only the low-resolution tokens and a
very small portion of high-resolution tokens are utilized to calculate the atten-
tion, which significantly shrinks the computational cost. At each decoder layer
with FlexAttention, we have a high-resolution feature selection module and a
hierarchical self-attention module. The high-resolution feature selection module
retrieves high-resolution tokens of relevant regions based on the input attention
map. The selected high-resolution tokens are concatenated to the low-resolution
tokens along with text tokens, and input to the hierarchical self-attention mod-
ule. The hierarchical self-attention module produces an attention map, which
could be used for the high-resolution token selection that selects high-resolution
tokens that are input to the next-layer hierarchical self-attention. The two mod-
ules are iteratively processed until the last layer, which produces the final answer
through a projector.

We evaluate our FlexAttention on several high-resolution multimodal
benchmarks, including general benchmarks such as V* Bench [53] and Mag-
nifierbench [27], as well as domain-specific benchmarks such as TextVQA [45]
for text understanding and RSVQA [38] for remote sensing. We show a better
performance than other high-resolution methods with nearly 40% computational
cost reduction, proving the efficiency of our method. What’s more, we achieve a
higher score in V* Bench compared to commercial chatbots such as GPT-4V [1].

2 Related Works

Vision Language Models. Our work is closely related to the research that tried
to train large multimodal models [33,39,46,47,60,61] for various vision language
tasks like visual question answering [22, 45], referring expression comprehen-
sion [23,57] and text-based image retrieval [32,56]. Traditional methods [19,29]
usually collected large vision-language datasets and learned joint representation
between vision and language from scratch to handle different tasks. Such models
usually worked well in in-domain data but performed inferior in the benchmarks
that require common sense understanding and outside world knowledge [27,40].

Later, large language models (LLMs) [6, 49, 50] showed impressive power in
natural language understanding and reasoning, which brought new possibilities
and capabilities to the research of vision and language. A series of large vision-
language models have been proposed, which typically connect a pre-trained vi-
sion encoder [13,44] with a pre-trained large language model [9,50]. Flamingo [2]
first used the cross-attention mechanisms to encode the visual context into the
LLMs. BLIP2 [31] proposed the QFormer, which uses a bert model [24] to trans-
form the visual features into a set of learned tokens for LLMs. Fuyu [4] directly
projected the image patches into inputs for LLMs to get rid of pre-trained vi-
sion encoders. While these models have impressive performance on commonsense
understanding and perform incredibly well on traditional vision-language tasks,
they often fail to handle tasks that require high-resolution inputs [27,53] due to
two reasons: 1) most VLMs utilize CLIP [44] as their vision encoder, and this
limits the input image size of these VLMs to the fixed and relatively small resolu-
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tion that CLIP is trained on (e.g., 224x224), and 2) they lack model mechanisms
to efficiently handle long image patch sequences, which will lead to the excessive
computational cost when the number of image patches increased quadratically
with the image resolution increased.
High-Resolution VLMs. To improve VLMs’ capability to handle inputs with
high resolutions, several VLMs have been proposed [14, 20, 36]. DocPedia [14]
transformed the image into a frequency domain to maintain better semantics of
the high-resolution images. LLaVA 1.6 [36] designed inputs of various scales to
meet the needs of different tasks and balance efficiency and performance. While
these models relieved the problem of dense computation, they are orthogonal
to our method and have not designed any new attention mechanisms to han-
dle the quadratic computational cost increase challenge introduced by the self-
attention mechanism. Recently, CogAgent [20] designed a new vision encoder for
high-resolution image input. Different from us, it requires calculating the dense
correspondence between the hidden states and the whole high-resolution image
feature through cross-attention at every layer of the large language model, mak-
ing it less efficient. Also, the data for training the model is not publicly available
while we are planning to release all data, code, and models for the whole research
community.
Efficient Mechanisms for Sequence Modeling. Our work relates to the de-
velopment of efficient mechanisms for sequence modeling. One approach tackles
the quadratic complexity of standard attention mechanisms concerning sequence
length. This is done by using structured approximations [10,25,43,48,52,59] or
linear attention [7]. Another approach replaces attention entirely with recurrent-
style models, such as Recurrent Neural Networks (RNNs) and state-space mod-
els [17, 18, 21, 54]. Of particular relevance is the work by Yang et al . [55], who
introduced a hierarchical attention network for document classification. Their
model uses a hierarchical structure and two-level attention mechanisms to im-
prove document representation. Our work diverges by focusing on efficient mech-
anisms specifically designed for high-resolution image inputs, ensuring seamless
cooperation with the computations of large language models.

3 Preliminary

Notation. We define some terms that will be used throughout the paper. For a
high-resolution vision-language model, we define its high-resolution image input
as IHR and the text input as T . Furthermore, we define the low-resolution image
tokens as fLR, the high-resolution image tokens as fHR, and the text tokens as
fT . The hidden state for the VLM is denoted as H ∈ RN×D, with a sequence
length of N and a hidden state size of D. The hidden state H comprises Ni

low-resolution image tokens followed by Nt text tokens. We define fSHR as the
selected subset of M high-resolution image tokens fHR.
Autoregressive Large Language Models. Autoregressive large language
models (LLMs) such as LLaMA [50] play a crucial role in most vision-language
models as they are responsible for taking both image and text tokens as input
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and generating the answer sequence. An autoregressive LLM is constituted by
several stacked decoder layers. Each decoder layer has two sub-layers. The first
is a self-attention module, and the second is a feed-forward (FFN) layer. A skip
connection is employed around each of the two sub-layers, followed by layer nor-
malization (LN). In short, the output of each sub-layer is LN(x+ SubLayer(x)).
For simplicity, layer normalization will be omitted in the subsequent discussion.
Self-attention and Attention Map. Self-attention [51] is the basic module
for a decoder layer. For the self-attention, given input hidden state H ∈ RN×D,
it will first utilize a linear projection layer to project H into Q, K, and V , namely
the query, key, and value matrix, and performs the following calculation:

Self-attention(H) = softmax
(
QKT

√
dk

)
V, (1)

where Q = HWQ, K = HWK , V = HWV and WQ/WK/WV ∈ RD×d is the
learnable linear projection matrix. Specifically, the attention map Map is ob-
tained after the softmax operation:

Map = softmax
(
QKT

√
dk

)
. (2)

The attention map Map is an NxN matrix that measures the importance be-
tween tokens: the (i, j) attention value in the attention map indicates the im-
portance of the j-th token to the i-th token, and a higher value means that the
j-th token is more important to the i-th token.
Limitation of Self-attention. The computational cost of the self-attention
mechanism is characterized by a quadratic increase relative to the sequence
length N of the hidden state H. This computational complexity is further am-
plified when integrating high-resolution images, as it substantially increases the
number of image tokens, consequently extending the length of the hidden state.
As a result, the computational requirements of the self-attention mechanism un-
dergo a significant escalation, making the processing of high-resolution image
inputs impractical due to the prohibitive computational overhead.

4 Vision-language Model with FlexAttention

4.1 Overall Architecture

To solve the limitations of self-attention when dealing with high-resolution im-
ages, we introduce FlexAttention, which efficiently analyzes high-resolution
images by dynamically attending to important regions of high-resolution images.
The FlexAttention can be plugged into most vision-language models by re-
placing their self-attention module with our proposed FlexAttention module.

As shown in Fig. 2, the modified vision-language model consists of NSA+NFA

decoder layers, where the first NSA layers are with the vanilla self-attention
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Fig. 2: An Overview of FlexAttention. Within each FlexAttention layer, the en-
coded high-resolution image features are selected according to the input attention map.
These selected features are then inputted into the hierarchical self-attention mechanism
alongside input hidden states, which encompass both low-resolution image tokens and
text tokens, for computation.

module and the last NFA layers are with our proposed FlexAttention mod-
ule. Given a high-resolution image, we first downsample it to a low-resolution
one and feed both images into an image encoder to get high-resolution and low-
resolution image tokens, respectively. For computational efficiency, we only feed
the low-resolution image tokens and text tokens to the first NSA layers to roughly
understand the whole image. For the subsequent NFA decoder layers with Flex-
Attention, to efficiently perceive more image details, we additionally feed it
with selected high-resolution image tokens. Specifically, FlexAttention con-
sists of two modules: a high-resolution feature selection module and a hierarchical
self-attention module. Instead of feeding forward all high-resolution tokens, the
high-resolution feature selection module flexibly selects important tokens for the
next layer according to an attention map. The hierarchical self-attention mod-
ule is designed to fuse the selected high-resolution information into the original
hidden state. Finally, we use a projector linear layer to produce textual output.

4.2 High-resolution Feature Selection Module

For an autoregressive LLM, the next token is predicted by the last hidden state
of the last token. By inspecting the attention values of all other tokens cor-
responding to the last token in the attention map in Eq. 2, we can find out
which tokens the model is paying attention to when generating the next pre-
dicted token. When it comes to the vision-language model, this also applies to
image tokens fLR. Those image tokens that possess a high attention value can be
treated as relevant to important image regions when generating the next token.
Although the details contained in the low-resolution image tokens are limited,
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Fig. 3: Illustration of high-resolution feature selection module.

we could retrieve the high-resolution details of the same image regions that have
been attended to. Therefore, instead of feeding all high-resolution tokens to the
attention module which will lead to excessive computational cost, we dynam-
ically select a very small portion (approximately 10%) of the high-resolution
tokens, namely fSHR, and only forward this portion to the attention module.

As is shown in Fig. 3, we take the first Ni values from the last column of
the attention map, which corresponds to the importance of the low-resolution
image tokens to the last text token, and reshape this 1-D vector to a 2-D map,
denoted as the attention mask. Each value in this mask is linked with a patch in
the low-resolution image ILR, indicating that patch’s importance. The mask is
normalized, binarized, and then resized to the same size as the high-resolution
feature patch tokens to form the high-resolution selection mask, which serves as
the selection decision on whether to select the token of a patch or not. Finally,
we apply this mask to the high-resolution image tokens to get the selected high-
resolution feature fSHR.

4.3 Hierarchical Self-attention Module

The hierarchical self-attention is the core mechanism to fuse the information
from the selected high-resolution tokens fSHR into the hidden state H which
consists of both low-resolution tokens and the text tokens. It takes the selected
high-resolution tokens fSHR ∈ RM×D and the hidden state H ∈ RN×D as
inputs, and outputs the attention map Map′ and the updated hidden state H ′.
The calculation of the hierarchical self-attention is summarized as

Q = HWQ, (3)
Kall = Concat(HWK , fSHRW

′
K), (4)

Vall = Concat(HWV , fSHRW
′
V ), (5)

Hierarchical Self-attention(H, fSHR) = softmax
(
QKT

all√
dk

)
Vall, (6)
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Algorithm 1 Inference Algorithm of VLM with FlexAttention.
1: Input: High-resolution Image IHR, Text T ,
2: Sub-modules: Image Encoder Ei(·), Text Tokenizer Et(·), Self-Attention A(·), Hi-

erarchical Self-Attention HA(·), Feed-Forward Network FFN(·), Prediction Head
Head(·)

3: Parameters: #Self-Attention layer NSA, #FlexAttention layer NFA

4: Downsample IHR to low-resolution image ILR.
5: Generate image and text tokens fHR = Ei(IHR), f0

LR = Ei(ILR), f0
T = Et(T )

6: H0 = Concat(f0
LR, f

0
T )

7: # Decoder layers with self-attention
8: for i = 1 . . .NSA do
9: Mapi, Hi = A(Hi−1) # Self-attention

10: Hi = Hi +Hi−1 # Skip connection
11: Hi = FFN(Hi) +Hi # FFN + skip connection
12: end for
13: # Decoder layers with FlexAttention
14: for i = NSA+1 . . .NSA+NFA do
15: f i−1

SHR = R(fHR,Mapi−1) # Select attended high-resolution feature
16: Mapi, Hi = HA(Hi−1, f i−1

SHR) # Hierarchical attention
17: Hi = Hi +Hi−1 # Skip connection
18: Hi = FFN(Hi) +Hi # FFN + skip connection
19: end for
20: Generate output tokens from Head(HNSA+NFA)

where WQ/WK/WV /W ′
K/W ′

V ∈ RD×d is the learnable linear projection matrix.
Kall ∈ R(N+M)×d and Vall ∈ R(N+M)×d are the key and value matrix that fuses
the information from high-resolution features. Similar to self-attention, we can
obtain an attention map after the softmax operation:

Map′ = softmax
(
QKT

all√
dk

)
. (7)

Different from self-attention, this attention map Map′ has a shape of N ×
(N+M) as it additionally contains the attention values of high-resolution tokens
corresponding to other tokens. We only keep the first N × N attention values
of the matrix shown in Eq. 7 to be the attention map Map used to select the
high-resolution feature that will be used in the next layer. A pseudo algorithm
for how the vision-language model with our FlexAttention works is described
in Alg. 1.

4.4 Complexity Analysis

FlexAttention offers the advantage of executing computations akin to tradi-
tional self-attention, thereby minimizing alterations to the model’s architecture
while facilitating an efficient fusion of multi-grained features. Let the length of
the selected high-resolution feature be M , the length of the original hidden state
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be N , and the hidden state size be D. The computational complexity of our
hierarchical self-attention is

T = O((M +N)ND). (8)

If not using our hierarchical self-attention and directly adding the high-resolution
image along with the low-resolution one, the computational complexity will be

Toriginal = O((M +N)2D). (9)

For vanilla self-attention, the addition of an extra high-resolution feature will
lead to a quadratic increase in computation time due to the need to process a
significantly larger matrix, as every additional element in the sequence adds to
the computational load on a per-element basis. However, the hierarchical self-
attention mechanism employed by FlexAttention cleverly mitigates this issue
by maintaining a linear relationship in terms of the addition of high-resolution
features, thereby considerably reducing the computational burden.

5 Experiments

We evaluate FlexAttention on both high-resolution multimodal benchmarks
[27, 38, 45, 53] and general multimodal benchmarks [3, 15, 22, 34, 37, 57, 58], com-
paring our method with the low-resolution large vision-language models [8,11,28]
as well as other high-resolution methods [20,35].

5.1 Implementation

To assess the performance and efficiency of our proposed FlexAttention, we
integrated it into LLaVA-1.5-7b [35], resulting in a variant we call LLaVA-
FlexAttn. The input resolution is set to be 1008x1008, which is three times
the original input image resolution. We then compared this variant with the
original LLaVA-1.5-7b model to demonstrate the advantages of utilizing high-
resolution image inputs. We also compare FlexAttention with the methods
used in LLaVA-1.5-HD [35] and CogAgent [20] that enables the input of high-
resolution image in those models, to show the efficiency of our proposed method.

LLaVA-1.5-HD [35] In this model, the high-resolution image tokens act like
normal tokens. They are concatenated with the low-resolution image tokens and
are fed into the large language model together. Since this model has not been
publicly released yet, we re-implement it on top of the codebase for LLaVA-1.5.
We use the LLaVA-1.5-7b model as the base model. The input resolution of the
high-resolution image is set to 448x448 following the setting in [35]. We refer to
this baseline as LLaVA-HD.
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CogAgent [20] In this model, the high-resolution feature is perceived using a
cross-attention module. In the cross-attention module, the high-resolution fea-
tures serve as the key and value, while the hidden states, comprising both low-
resolution image tokens and text tokens, act as the query. Since CogAgent is
trained on document and GUI style data, and the data processing and training
code has not been released, for fair comparison on the effectiveness of the high-
resolution operator used in CogAgent, we transfer the cross-attention module
in CogAgent’s inference codebase to LLaVA-1.5 and re-implement the training
code. We use the LLaVA-1.5-7b model as the base model. The input resolution
of the high-resolution image is set to 1008x1008 to keep it the same as ours. We
refer to this baseline as LLaVA-XAttn.

5.2 Training Settings

For a fair comparison, both high-resolution baselines (LLaVA-HD and LLaVA-
XAttn) and our LLaVA-FlexAttn load the pre-trained weight for LLaVA-1.5-
7b as initialization, and are then finetuned on the LLaVA-1.5-7b’s finetuning
dataset for one epoch. We use a batch size of 1152 and a learning rate of 2e-5,
with a cosine learning rate scheduler. All evaluations are performed in a zero-shot
manner.

5.3 Evaluation on High-resolution Multimodal Benchmarks

Datasets. We conduct experiments on four high-resolution benchmarks: V*
Bench [53], MagnifierBench [27], TextVQA [45] and RSVQA-HRBEN [38]. The
first two benchmarks focus on evaluating the model’s capability on general high-
resolution VQA, while the last two benchmarks focus on evaluating the model’s
performance on domain-specific high-resolution VQA such as TextVQA for text
understanding and RSVQA-HRBEN for remote sensing.
Baselines. We conduct a comparative analysis between LLaVA-FlexAttn and
two categories of Vision-Language Models (VLMs): low-resolution VLMs, specif-
ically InstructBLIP [11], Otter [28], MiniGPT-4 [62], MiniGPTv2 [8] and LLaVA
[35], as well as high-resolution VLMs that were re-implemented for this research.
Additionally, comparisons are made with commercial chatbots such as GPT-
4V [1], and specialist VLM such as GeoChat [26], to evaluate the significance of
high-resolution image input capabilities.
Results. Table 1 shows the evaluation results on the two high-resolution gen-
eral VQA benchmarks. In general, all three high-resolution VLMs are better
than low-resolution VLMs, while our model is consistently better than other
high-resolution VLMs, with an overall accuracy of 54.5% for V* Bench and an
accuracy of 35.0% for MagnifierBench. Compared to the base model LLaVA-
1.5-7b, the overall accuracy gain for V* Bench is 6.9% and the accuracy gain
for MagnifierBench is 8.2%. Compared to other high-resolution methods, our
method achieves comparable and even higher accuracy at the cost of much lower
TFLOPs than other high-resolution methods, nearly 30% lower TFLOPs than
LLaVA-HD (from 24.9 to 17.1) and over 37% lower TFLOPs than LLaVA-XAttn
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Resolution V* Bench MagnifierBenchAttribute Spatial Overall

Commercial Chatbots
Bard [16] - 31.3 46.1 37.2 -
Gemini Pro [12] - 40.9 59.2 48.2 -
GPT-4V [1] - 51.3 60.5 55.0 -

Low-resolution VLMs
InstructBLIP [11] 2242 25.2 47.4 34.0 5.6
Otter [28] 2242 27.0 56.6 38.7 25.7
MiniGPT-4 [62] 2242 30.4 50.0 38.2 22.6
LLaVA-1.5-7b [35] 3362 41.7 56.6 47.6 26.8

High-resolution VLMs
LLaVA-HD [35] 4482 45.2 61.8 51.8 35.0
LLaVA-XAttn [20] 10082 42.6 56.6 48.2 32.2
LLaVA-FlexAttn 10082 47.8 64.5 54.5 35.0

Table 1: General high-resolution VQA benchmark results comparison.

(from 27.1 to 17.1). Detailed discussion on the TFLOPs and inference time can be
found in Sec. 5.6. Thanks to the high-resolution feature selection and hierarchi-
cal self-attention, our method can enable the input image resolution to increase
three times compared to the original resolution, with the cost of a sub-linear
computational cost increasing, achieving a better trade-off between computa-
tional cost and accuracy. Compared with GPT-4V on V* Bench, our method
shows competitive performance, achieving even higher accuracy on spatial cate-
gory than GPT-4V, and a comparable overall performance with GPT-4V.

Table 2 presents the results on two high-resolution domain-specific VQA
benchmarks. Our LLaVA-FlexAttn is consistently superior to the base model
and other high-resolution methods on both RSVQA-HRBEN and TextVQA.
Furthermore, our approach surpasses GeoChat [26] in terms of overall accuracy
on the RSVQA-HRBEN benchmark, a model explicitly crafted and fine-tuned
for remote sensing Visual Question Answering benchmarks. This outcome un-
derscores the efficacy of incorporating high-resolution image inputs, suggesting
that the increased detail and clarity provided by high-resolution inputs can sig-
nificantly improve the model’s understanding and processing of intricate visual
patterns in specialized VQA tasks.

5.4 Evaluation on General Multimodal Benchmarks

Datasets and Baseline. We evaluate the general vision-language model perfor-
mance on several multimodal tasks including GQA [22], VQAv2 [3], POPE [34],
RefCOCO [57], MM-Bench [37], MME [15], and MM-Vet [58]. This collection
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RSVQA-HRBEN TextVQAPresence Comparison Overall

Low-resolution VLMs
GeoChat [26] 58.5 83.2 72.3 -
MiniGPTv2 [8] 40.8 50.9 46.5 27.5
LLaVA-1.5-7b [35] 69.8 67.3 68.4 46.0

High-resolution VLMs
LLaVA-HD [35] 69.0 67.6 68.4 45.6
LLaVA-XAttn [20] 71.4 70.9 71.1 45.5
LLaVA-FlexAttn 72.2 73.1 72.7 48.9

Table 2: Domain-specific high-resolution VQA benchmark results comparison.

RefCOCO POPE GQA VQAv2 MM-Bench MME MM-Vet

LLaVA-1.5-7b [35] 75.8 85.9 62.0 78.5 64.3 1511 31.1
LLaVA-FlexAttn 79.3 85.9 62.2 78.7 65.7 1479 29.4

Table 3: Comparison of the multimodal capability between the base model and our
model on a broad range of multimodal benchmarks.

of benchmarks assesses the model’s overall capabilities, including spatial un-
derstanding, localization, ability to avoid hallucinations, and performance in
academic-oriented tasks. We compare our method to the base model LLaVA-
1.5-7b to analyze the change in the model’s general ability.
Results. In Table 3 we show that with our FlexAttention, the performance
on RefCOCO is improved. RefCOCO requires the localization of an object based
on a referring expression. Thus, incorporating a high-resolution feature could re-
duce the challenge of identifying a small object and enhance the precision of
its location prediction. We achieve a similar rate of hallucination on POPE and
maintain similar performance on large-scale VQA benchmarks. This indicates
that incorporating FlexAttention does not impact the model’s overall capa-
bility.

5.5 Ablation Study

H.R. Feature Selection Strategy. We first conduct an ablation study to verify
the effectiveness of the key design of our method, which is the strategy to select
high-resolution features using the attention map. We compare our attention map
selection strategy with two naive baseline strategies: 1) random selection, which
means randomly selecting a few patches of the high-resolution features, and 2)
center selection, which means selecting the center region of the high-resolution
features. The selection ratio is kept to approximately the same as our attention
map selection strategy which is about 10%. We finetune them respectively using
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Magnifierbench TextVQA

Random 31.4 44.5
Center 30.7 45.9
Attn. Map 35.0 48.9 size=672,
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Fig. 4: Ablation studies of selection strategies (left) and image sizes (right).

RefCOCO Val Acc. Large Small Overall

LLaVA 75.9 41.3 75.4
LLaVA-FlexAttn 78.8 (+2.9) 51.3 (+10.0) 78.4 (+3.0)

Table 4: Analysis on accuracy across different object sizes.

the same finetuning dataset and following the same training setting and evaluate
their performance on Magnifierbench and TextVQA.

The experiment results in Fig. 4 (left) shows that our attention map selec-
tion strategy is better than the other two baseline strategies. For the baseline
strategies, since the model cannot dynamically pay more attention to the region
that needs to be focused, the benefit of the high-resolution image is limited, and
no consistent improvement is observed especially for TextVQA which requires
the model to focus on a specific region to give the correct answer.
Impact of Resolution. We also explore the effect of the high-resolution image
size. The default setting is 1008x1008, tripling the resolution of the original low-
resolution image. Additionally, we introduce two other settings: 672x672 and
1344x1344, doubling and quadrupling the original resolution, respectively. We
finetune them respectively using the same finetuning dataset and following the
same training setting. We measure their average TFLOPs on Magnifierbench
benchmarks and evaluate their performance on Magnifierbench and TextVQA.

Fig. 4 (right) shows the experiment results. We can see that as the resolution
increases, the performance on Magnifierbench also increases. Performance on
TextVQA significantly enhances when the resolution is increased from 672 to
1008 but sees no further improvement from 1008 to 1344. Since the average
resolution of images in TextVQA is 950× 811, further increasing the resolution
beyond its original resolution is unbeneficial. This pattern is aligned with what
we observe for general VQA benchmarks.
Impact of Object Size. For general benchmarks evaluated in Section 5.4, most
questions do not focus on small details, and thus cannot reveal the capability of
our model for handling high-resolution image. To better evaluate our model on
general benchmarks, we divide the benchmark into two subsets according to the
size of question-relevant objects, categorizing those larger than 5% of the image
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as large objects and the rest as small. We conduct experiments on RefCOCO
val set as it provides object sizes.

Table 4 shows that the accuracy improvement on small objects is much higher
than large objects. It indicates that even for non high-resolution benchmarks
such as RefCOCO, our method can still improve the accuracy when the questions
involve small objects or detailed information.

5.6 Inference Time on Hardware

We measure the inference time on hardware to assess the efficiency of our Flex-
Attention. Models are implemented in PyTorch and the inference time is mea-
sured on a single NVIDIA V100 32G GPU. We measure the average TFLOPs
and total inference time on two benchmarks: Magnifierbench, in which the model
answer is a single letter, and TextVQA, in which the model answer is a short
phrase. Warm-up before inference and CUDA synchronization are employed to
ensure the accuracy of the measurement results.

The measurement results are presented in Table 5. In Magnifierbench, the
inference time reduction is linearly proportional to the theoretical computational
cost reduction measure in TFLOPs, and our method is nearly 30% and 40% faster
than the two baselines respectively. In TextVQA, the speed superior slightly de-
clined, but still about 15% and 25% faster than baselines. Note that the average
output length for TextVQA is longer than Magnifierbench, so the inference time
will be affected more by the generation phase, which is memory-bound instead
of computation-bound. A discussion is provided in the Supplementary.

Magnifierbench TextVQA
TFLOPs Time(s) TFLOPs Time(s)

LLaVA-HD [35] 24.9 154 24.5 3273
LLaVA-XAttn [20] 27.1 178 26.7 3741
LLaVA-FlexAttn 17.1 112 17.1 2839

Table 5: Average TFLOPs and total inference time measured on NVIDIA V100 GPU.

6 Conclusion

In this paper, we propose FlexAttention, a method designed to enhance large
vision-language models by allowing them to efficiently process and derive advan-
tages from high-resolution image inputs. By leveraging dynamic high-resolution
feature selection and hierarchical self-attention mechanism, FlexAttention
surpasses existing high-resolution methods in terms of performance as well as
efficiency. The idea behind FlexAttention can be extended to other long se-
quence modalities such as video or audio, which can be a crucial future direction.
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