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Fig. 1: Repaint123 generates high-quality 3D content with detailed texture from a
single image in 2 minutes. Repaint123 adopts 3D Gaussian Splatting in the coarse
stage and then utilizes a progressively repainting strategy with the diffusion model for
high-quality 3D content generation with efficiency.

Abstract. Recent image-to-3D methods achieve impressive results with
plausible 3D geometry due to the development of diffusion models and
optimization techniques. However, existing image-to-3D methods suffer
from texture deficiencies in novel views, including multi-view inconsis-
tency and quality degradation. To alleviate multi-view bias and enhance
image quality in novel-view textures, we present Repaint123, a fast
image-to-3D approach for creating high-quality 3D content with detailed
textures. Repaint123 proposes a progressively repainting strategy to si-
multaneously enhance the consistency and quality of textures across dif-
ferent views, generating invisible regions according to visible textures,
with the visibility map calculated by the depth alignment across views.
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Furthermore, multiple control techniques, including reference-driven in-
formation injection and coarse-based depth guidance, are introduced to
alleviate the texture bias accumulated during the repainting process for
improved consistency and quality. For novel-view texture refinement with
short-term view consistency, our method progressively repaints novel-
view images with adaptive strengths based on visibility, enhancing the
balance of image quality and view consistency. To alleviate the accumu-
lated bias as progressively repainting, we control the repainting process
by depth-guided geometry and attention-driven reference-view textures.
Extensive experiments demonstrate the superior ability of our method
to create 3D content with consistent and detailed textures in 2 minutes.
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Fig. 2: Motivation. Current image-to-3D
methods adopt SDS loss for generating, re-
sulting in inconsistent and poor textures.
Repaint123 proposes a progressively re-
painting strategy based on visible content
to efficiently create invisible content with
MSE loss, achieving consistent and high-
quality textures.

Generating 3D content from one
given reference image plays a key
role at the intersection of computer
vision and computer graphics [11,
17, 24, 25, 33, 35], which is desired
by users for innovative applications
across fields including robotics, vir-
tual reality, and augmented reality.
However, the image-to-3D task is
quite challenging due to the gener-
ated 3D content is expected with rea-
sonable geometry and consistent tex-
tures, while the single image input
is insufficient in multi-view informa-
tion. Recent studies [24, 28, 35, 50,
51] employ 2D diffusion models [14,
39] to guide 3D generation from the
reference image with Score Distilla-
tion Sampling (SDS) [34]. While pre-
liminary attempts [28, 51] leverag-
ing view-independent diffusion mod-
els (e.g. Stable Diffusion [39]) faced
challenges with over-saturated tex-
tures and multi-face geometry, more
recent efforts [24, 26, 35, 46, 50] utilize view-conditioned diffusion models [24, 26,
46]. Although these methods utilizing view-conditioned diffusion models miti-
gate the multi-face problem and generate 3D content with plausible geometry,
they still encounter challenges in generating high-quality textures. This limi-
tation stems from training these models on small-scale synthetic 3D datasets,
hindering their ability to produce detailed images from novel views.
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To address textural deficiencies including inconsistency and low quality men-
tioned above, we propose a novel approach named Repaint123 for fast and
high-quality image-to-3d generation by generating consistent and high-quality
novel-view images with a controllable content repaint process. As shown in Fig-
ure 2, the core of Repaint123 is to progressively repaint the invisible content
with a view-independent diffusion model for adjacent-view consistency, incor-
porating multiple controls of geometry and texture for enhanced quality and
multi-view consistency. Specifically, our method adopts a two-stage optimiza-
tion framework. In the coarse stage, we utilize 3D Gaussian Splatting [18] as the
representation to efficiently obtain a coarse 3D model in 1 minute. In the fine
stage, we progressively sample the camera views around and repaint invisible
content with control techniques including using novel-view depth map as geom-
etry prior, injecting reference-view attention features as texture prior [61] and
employing reference-view image prompt as semantic prior. To further enhance
image quality and preserve multi-view consistency, we propose a visibility-based
adaptive strategy that refines the visible regions with different strengths. After
achieving high-quality repainted images with multi-view consistency, we directly
leverage simple MSE loss to efficiently refine 3D content textures instead of the
time-consuming and over-smoothed SDS.

We conduct extensive experiments on multiple datasets and demonstrate
that our method significantly advances image-to-3D generation, producing high-
quality, multi-view consistent 3D content with detailed textures in approximately
2 minutes from scratch (as shown in Figure 1), outperforming current state-of-
the-art NeRF-based and Gaussian-Splatting-based methods in both consistency
and texture quality. Our contributions can be summarized as follows:

– We propose a progressively repainting strategy based on visibility for the
image-to-3D task to generate 3D content with consistency and high quality
by repainting invisible parts according to visible textures.

– We introduce multiple control techniques including reference-driven informa-
tion injection and coarse-based depth guidance to alleviate the texture bias
accumulated during the repainting process for further quality enhancement.

– Our experiments demonstrate Repaint123 efficiently generates high-quality
3D content with consistent and detailed textures in 2 minutes.

2 Related Works

2.1 Diffusion Models for 3D Generation

The recent notable achievements in view-independent 2D diffusion models [14,39]
have brought about exciting prospects for generating 3D objects. Pioneering
studies [34, 53] have introduced the concept of distilling a 2D text-to-image
generation model to generate 3D shapes. Subsequent works [1, 6, 7, 10, 16, 22,
28, 35, 37, 42–44, 51, 52, 55–57, 60, 61, 64] have adopted a similar per-object op-
timization approach, building upon these initial works. Nevertheless, the ma-
jority of these techniques consistently experience low efficiency and multi-face
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issues. Unlike the previous study HiFi-123 [61], which employed similar inversion
and attention injection techniques for image-to-3D generation, our approach di-
verges primarily in our proposed repainting strategy, as well as many variations
in optimization objectives, image prompting, and 3D representations. Recently,
some works [23, 25, 26, 48] extend view-independent diffusion model to view-
conditioned diffusion model to generate multi-view images for reconstruction,
while these methods usually suffer from low-quality textures as the multi-view
diffusion models are trained on limited and synthesized data. To optimize both
consistency and quality, we integrate a view-conditioned diffusion model for ini-
tial consistency in the coarse stage and a view-independent model to enhance
texture quality in the fine stage.

2.2 Controllable Image Synthesis

A major challenge in the field of image generation is achieving controllability.
Many works have been done recently to increase the controllability of images
generated by diffusion models. ControlNet [62] and T2I-Adapter [31] attempt to
control the creation of images by utilizing data from different modalities. Besides,
some optimization-based methods [12, 30, 40] learn new parameters or fine-tune
the diffusion model in order to enhance control over the generation process.
Other methods [3, 58] leverage multi-view attention to introduce information
from other-view images for gaining superior control. We incorporate multiple
control techniques into the view-independent diffusion model for maintaining
view consistency in the fine stage.

2.3 3D Representations

Neural Radiance Fields (NeRF) [29], as a volumetric rendering method, has
gained popularity for its ability to enable 3D optimization [2, 4, 8, 13, 21] under
2D supervision, while NeRF optimization can be time-consuming. Numerous ef-
forts [32,41] for spatial pruning have been dedicated to accelerating the training
process of NeRF on the reconstruction setting. however, they fail in the genera-
tion setting. Recently, 3D Gaussian Splatting [5, 9, 18, 50, 59] has emerged as an
alternative 3D representation to NeRF and has shown remarkable advancements
in terms of both quality and speed, offering a promising avenue. Therefore, we
adopt Gaussian Splatting for efficiently generating coarse 3D model.

3 Preliminary

3.1 DDIM Inversion

DDIM [47] transforms random noise xT into clean data x0 over a series of
time steps, by using the deterministic DDIM sampling in the reverse process,
i.e., xt−1 = (αt−1/αt)(xt − σtϵϕ) + σt−1ϵϕ. On the contrary, DDIM inversion
progressively converts clean data to a noisy state xT , i.e., xt = (αt/αt−1)(xt−1−
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Fig. 3: Overview of Repaint123. In the coarse stage, we leverage 3D Gaussian
Splatting to represent the coarse content, which is optimized by MSE loss at the ref-
erence and SDS loss at the invisible views. In the fine stage, we convert coarse content
to mesh and progressively sample and generate invisible views from the reference view
bidirectionally. Concretely, the current view is repainted based on the visibility map
from bidirectional neighbor views with control techniques including attention injection
and depth guidance, leading to consistent and detailed textures.

σt−1ϵϕ) + σtϵϕ, here ϵϕ is the predicted noise by the UNet. This method can
precisely reconstruct the original clean data while greatly speeding up the process
by skipping many intermediate diffusion steps.

3.2 3D Gaussian Splatting

Gaussian Splatting [18] presents a novel method for synthesizing new views and
reconstructing 3D scenes, achieving real-time speed. Unlike NeRF, Gaussian
Splatting uses a set of anisotropic 3D Gaussians defined by their locations, co-
variances, colors, and opacities to represent the scene. To compute the color
of each pixel p in the image, it utilizes a typical neural point-based render-
ing [19,20], The rendering process is as follows:

C(p) =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) ,

where, αi = oie
− 1

2 (p−µi)
TΣ−1

i (p−µi),

(1)

where ci, oi, µi, and Σi represent the color, opacity, position, and covariance of
the i-th Gaussian respectively, and N denotes the number of related Gaussians.

4 Method

In this section, we introduce our two-stage framework named Repaint123 for
fast and high-quality image-to-3D generation, as illustrated in Figure 3. In the
coarse stage, we adopt 3D Gaussian Splatting [18] representation optimized by
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SDS loss [34] with the view-conditioned diffusion model [24] to learn a coarse
geometry and texture (see Section 4.1). Inspired by [50], we convert the coarse
3D Gaussians to textured mesh to facilitate subsequent texture enhancement in
UV space. In the fine stage, we progressively repaint invisible content in novel
views by rotating camera viewpoints bi-directionally from the reference view (see
Section 4.2). To mitigate texture bias accumulated during the gradual repainting
across wide angles, we incorporate multiple control techniques including depth
guidance, injection of reference-view attention, and the use of reference-view im-
age prompts (see Section 4.2). Additionally, we propose a visibility-based adap-
tive strategy to refine visible regions when observed from a superior perspective
(see Section 4.2). After obtaining a high-quality repainted image that remains
consistent across different views, we efficiently optimize the texture map by sim-
ple Mean Square Error (MSE) loss (see Section 4.2). This process is repeated for
each sampled view, alternating between repainting and optimization, until the
texture is completely reconstructed to accommodate a 360-degree perspective.

4.1 Coarse Stage: Gaussian Splatting with 3D Diffusion Prior

In the coarse stage, we adopt 3D Gaussian Splatting for efficient initialization.
Through SDS [34], 3D diffusion priors are back-propagated to the 3D Gaussians.
At each diffusion step, we sample a random current camera view vc and its
camera pose pc, which orbits around the center of the object. Subsequently,
the RGB image, denoted as Icrgb, and the alpha image, represented by Ica , are
rendered from the current viewpoint p. Given an image Ĩrrgb and an alpha mask
Ĩra as input to the reference view, the SDS loss can be formulated as:

LSDS = Et,c,ϵ

[
(ϵϕ(I

c
rgb; t, Ĩ

r
rgb, ∆pc)− ϵ)

∂Icrgb
∂Θ

]
(2)

where ϵϕ(·) is the predicted noise by the diffusion ϕ, ∆pc is the relative camera
pose and Θ represents the optimizable Gaussian parameters. Additionally, we
optimize the RGB image and alpha image rendered from the reference view to
align with the input reference image using reconstruction loss:

LRef = λrgb||Irrgb − Ĩrrgb||22 + ||Ira − Ĩra ||22. (3)

The final loss function is the weighted sum of LSDS and LRef.

4.2 Fine Stage: Visibility-based Controllable Repainting

Progressive Invisible Content Repainting. We repaint previously unseen
content with progressively sampling novel camera viewpoints, beginning from
the reference view and increasing a certain angular interval with each iteration.
To obtain invisible regions in the image from a newly sampled view vc, we use the
back-projection technique based on the depth map Dp ∈ RH×W in the previously
seen view vp. Formally, given the camera intrinsics K ∈ R3×3, we first remap the
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pixels of the image rendered from vp into 3D points Xp expressed in the camera
coordinate frame, which can be obtained as Xi,j = K−1 [iDi,j , jDi,j , Di,j ]

⊤.
With Pp, Pc ∈ R3×4 the world-to-camera poses for images from vp and vc, we
can transform Xp into camera coordinate frame of vc to obtain Xp,c:

Xp,c = PpP
−1
c h(Xp), (4)

where h : (x, y, z) → (x, y, z, 1) is the homogeneous mapping. Then we can
render a depth map Dp,c from Xp,c as Dp,c

i,j = KXp,c
i,j,2. Regions with dissimilar

depth values between Dc and Dp,c are recognized as invisible regions, forming a
repainting mask M where areas with zeros are invisible and areas with ones are
visible. Therefore, we repaint invisible content and maintain visible content by:

xt = xinv
t ⊙M + xrev

t ⊙ (1−M), (5)

where ⊙ is element-wise matrix multiplication, t is the current denoising timestep,
xinv
t is the DDIM [47] inverted latent, and xrev

t ∼ N (µϕ (xt+1, t) , Σϕ (xt+1, t))
is the diffusion model output.

Additionally, to mitigate accumulated bias for distant camera views during
gradual repainting, as shown in the fine stage in Figure 3, we sample camera
viewpoints bi-directionally, alternating between clockwise and counterclockwise
directions. This bidirectional sampling allows us to repaint up to 180 degrees
from two opposite directions, instead of repainting across the entire 360 degrees
from one direction. Moreover, to repaint bidirectionally invisible content and
ensure smooth transitions at the junction of the two directions, we replace the
previous unidirectional repainting mask M by a bidirectional repainting mask.
This mask merges two unidirectional masks from bidirectional neighbor views
(red cameras in Figure 3) by taking the maximum value of each pixel.

Control-based Content Enhancement. While the progressive repainting
maintains consistency between adjacent views, views that are farther apart may
become inconsistent and experience a decline in quality due to cumulative errors.
To tackle these issues, we improve the repainting process by incorporating various
control techniques to enhance the consistency and quality of synthesized images.
Specifically, for geometry control, we employ ControlNet [62] to condition the
diffusion model with coarse depth maps, ensuring geometric consistency across
images. To transfer reference textures and mitigate the cumulative texture bias
during the progressive repainting, inspired by HiFi-123 [61], we incorporate an
attention injection mechanism [3] that injects reference attention features into
the diffusion denoising process. By replacing the novel-view content features (Key
features Kt and Value features Vt) with reference-view attention features (Kr

and Vr) during each denoising step, the novel-view image features can directly
query the high-quality reference features by:

Attention(Qt,Kr, Vr) = Softmax

(
QtK

T
r√
d

)
Vr, (6)
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Fig. 4: Visibility-based Controllable Repainting Pipeline. Our method repaints
invisible content (black areas in Mt) of novel-view rendered image Irgb according to
the inverted latent xinv

t and the visibility map V to obtain refined image Ifine
rgb . We

introduce multiple control techniques to enhance the consistency and quality of gen-
erated textures, including attention feature injection, depth guidance by ControlNet,
and semantic prompt by CLIP encoder. Noticing that the repainting mask Mt is si-
multaneously changed with denoising timesteps for adaptive refinement.

where Qt represents the novel-view query features. This enhancement facili-
tates the transfer of texture details and improves the consistency between the
reference-view image and novel-view images.

During our experiments, we observed a decline in image quality during re-
painting, likely due to not using text prompts for performing classifier-free guid-
ance [15], crucial for producing high-quality images in diffusion models. To im-
prove this, we adopt IP-Adapter [58], which uses a CLIP encoder to convert
reference images into semantic features. These features are then projected into
image prompts, providing visual cues that enhance image generation through
classifier-free guidance.

Adaptive Visible Content Refinement. Repainting only the invisible con-
tent often leads to distortion in the visible area As shown in Figure 5, when the
previous view is an oblique view, it leads to a low-resolution update on the tex-
ture maps, resulting in high distortion when rendering from a better observing
view. Therefore, the visible content currently observed in a superior view should
be refined to replenish details. However, the selection of refinement strength for
these visible content is tricky [38, 54], as excessive strength produces unfaithful
results leading to inconsistency with previously repainted views, while insufficient
strength limits quality improvement. We propose a visibility-based adaptive re-
finement strategy to refine these previously seen regions with different strengths,
aiming to achieve improved quality-consistency trade-off. As visualized in Fig-
ure 5, we view repainting for visible content as a process similar to super-
resolution that replenishes detailed information. According to the Orthographic
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Projection Theorem, which asserts
that the projected resolution of a sur-
face is directly proportional to the
view obliqueness (cosθ as shown in
Figure 5), we can assume that the
repainting strength is equal to (1 −
cosθ1/cosθ2), where cosθ2/cosθ1 rep-
resents the upsampling scale in terms
of super-resolution and visibility vari-
ations in the context of 3D render-
ing. Therefore, we can define a visi-
bility map V as Vi,j = cosθp,ci,j /cosθ

c
i,j ,

where cosθp,ci,j and cosθci,j are obtained
by multiplying the current-view nor-
mal map with camera rays of the pre-
vious view vp and the current view vc
respectively. Higher visibility value in-
dicates less repainting strength, while
invisible areas require full strength.
By this association between repainting strength and the visibility map V , we
can binarize the visibility map to the timestep-aware adaptive repainting mask
Mt during each denoising step, visualized in the green box “Timestep-aware bi-
narization“ in Figure 4:

M i,j
t =

{
1, if V i,j > 1− t/T

0, else,
(7)

where i, and j are the 2D position of pixels in visibility map V , and T is the total
number of timesteps of the diffusion model. By doing this, we can adaptively
refine visible content with a proper strength.

Efficient Optimization. Using a progressive repainting strategy and various
control techniques to refine the inverted latent, we obtain a high-quality, view-
consistent refined image, Ifinergb . This process allows us to use simple MSE loss for
efficient texture map optimization:

Lfine = ||Ifinergb − Irgb||22, (8)

where Irgb represents the rendered image in the fine stage. MSE loss is faster
and more deterministic to optimize than the traditional SDS loss, speeding up
the optimization process. After sampling a novel view, we first conduct image
repainting and then proceed with efficient texture optimization, repeating this
process until we cover a 360-degree view range.
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5 Experiment

5.1 Implementation Details

In our experiment, we consistently apply the same hyperparameters across all
our method’s results.We progressively turn around the viewpoints by 40 degrees
each time, consequently obtaining 8 views per object. We use a 50-step DDIM
schedule and perform a 30-step latent diffusion inversion. Stable Diffusion 1.5
is utilized for all methods. During the coarse stage training, we set λrgb to 10.
Generating a single 3D object takes only 2 minutes on a single 40G A100 GPU,
approximately 1 minute for the coarse stage and mesh extraction, and another
1 minute for refinement.

5.2 Baselines

We adopt RealFusion [28], Make-It-3D [51], and Zero123-XL [24], Magic123 [35]
as our NeRF-based baselines and DreamGaussian [50] as our Gaussian-Splatting-
based baseline. RealFusion presents a single-stage algorithm for NeRF genera-
tion leveraging 2D SDS loss for novel views. Make-It-3D is a two-stage approach
that shares similar objectives with RealFusion but employs a point cloud rep-
resentation for refinement at the second stage. For Zero123-XL, we adopt the
implementation [49] and add a mesh fine-tuning stage for fair comparison. In-
tegrating Zero123 and RealFusion, Magic123 incorporates a 2D SDS loss with
3D SDS loss provided by Zero123 to balance geometry and texture and adopts
DMTet [45] representation at the second stage. DreamGaussian integrates 3D
Gaussian Splatting into 3D generation and greatly improves the speed.

5.3 Evaluation Protocol

Datasets. Based on previous research, we utilized the Realfusion15 dataset [28]
and test-alpha dataset collected by Make-It-3D [51], which comprises many com-
mon objects from diverse styles.

Evaluation metrics. An effective 3D generation approach should produce 3D
content which closely resemble the reference view, and maintain consistency
of semantics and textures with the reference image when observed from new
views. Therefore, to evaluate the overall quality of the generated 3D object,
we choose the following metrics from two aspects: 1) PSNR and LPIPS [63],
which measure pixel-level and perceptual reconstruction quality respectively at
the reference view; 2) CLIP Similarity [36] and Contextual Distance [27], which
assess the similarity of semantics and detailed textures respectively between the
novel perspective and the reference view.
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Fig. 6: Qualitative comparisons on image-to-3D generation. Zoom in for details.
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Dataset Metrics\Methods
NeRF-based Gaussian-Splatting-based

RealFusion Make-it-3D Zero-123-XL* Magic123 DreamGaussian Repaint123

RealFusion15

CLIP-Similarity↑ 0.71 0.81 0.83 0.82 0.77 0.85
Context-Dis↓ 2.20 1.82 1.59 1.64 1.61 1.55

PSNR↑ 19.24 16.56 19.56 19.68 18.94 19.00
LPIPS↓ 0.194 0.177 0.108 0.107 0.111 0.101

Test-alpha

CLIP-Similarity↑ 0.68 0.76 0.84 0.84 0.79 0.88
Context-Dis↓ 2.20 1.73 1.52 1.57 1.62 1.50

PSNR↑ 22.91 17.21 24.39 24.69 22.33 22.38
LPIPS↓ 0.105 0.237 0.050 0.046 0.057 0.048

Optimization time 20min 1h 30min 1h (+2h) 2min 2 min

Table 1: We show quantitative results in terms of CLIP-Similarity↑ / Contextual-
Distance↓ / PSNR↑ / LPIPS↓. The results are shown on the RealFusion15 and test-
alpha datasets, while bold reflects the best for all methods and the underline rep-
resents the best for Gaussian-Splatting-based methods. * indicates that Zero123-XL
incorporates a mesh fine-tuning stage for further quality improvement. The time re-
quired by textual inversion is indicated in parentheses.

5.4 Comparisons

Comparisons with NeRF-based Methods. As shown in Table 1, we eval-
uate the quality of generated 3D objects across various NeRF-based methods.
Our method achieves superior 3D consistency in generating 3D objects, as ev-
idenced by the best performance of CLIP-similarity and Contextual-distance.
Regarding reference-view reconstruction quality, there is a gap compared with
NeRF-based approaches as shown in Table 1, which we attribute to the imma-
turity of current Gaussian-Splatting-based methods. Compared to NeRF-based
methods for the optimization time, our approach reaches a significant acceler-
ation of over 10 times and simultaneously achieves high quality, due to the 3D
Gaussian-Splatting representation in coarse stage and efficient texture refine-
ment in fine stage. As shown in Figure 6, Repaint123 achieves the best visual
results in terms of texture consistency and generation quality as opposed to
other NeRF-based methods. From the visual comparison, our method achieves
consistent and detailed textures in invisible areas, while Zero123-XL results in
over-smooth textures, Magic123 produces inconsistent and oversaturated colors,
Realfusion and Make-It-3D fail to generate full geometry and consistent textures.

Comparisons with GS-based methods. We conduct comparisons with other
works based on 3D Gaussian Splatting in the last column of Table 1. Within a
comparable generation time, our method demonstrates superiority over existing
Gaussian-based approach in aspects of texture consistency and the quality of
reference-view reconstruction. The superiority of our proposed Repaint123 is
evidenced by the evaluation of four distinct metrics from the Table 1. As shown
in Figure 6, DreamGaussian usually leads to over-smooth texture inconsistent
with reference view, while our method can produce high-quality 3D content with
view-consistent and detailed textures.
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Ours w/o repainting w/o attention
injection

w/o image 
prompt

w/o adaptive
refinement 

View 2

View 1

View 1

View 2

Reference view

Ice cream

Anya

Fig. 7: Qualitative ablation study by removing one component at a time from the
overall method. The presence of artifacts is highlighted by red boxes. Inconsistencies
such as multi-face problems and mismatches in content and style are evident without
using repainting and attention injection strategies. Absence of image prompting and
adaptive refinement notably degrades quality.

5.5 Ablation and Analysis

This section details both qualitative and quantitative analyses to highlight the
effectiveness of our proposed methods, as illustrated in Figure 7 and Table 2.

Effectiveness of Repainting. Figure 7 illustrates that without repainting
strategy, the generated novel-view image tends to resemble the reference image,
leading to inconsistencies in the shared visible areas between different views,
such as the content misalignment (observed in the Ice Cream example) and
issues with multiple faces (evident in the Anya example). These issues stem
from the absence of alignment constraints for shared visible regions, leading to
conflicts and quality degradation of the reconstructed 3D texture.

Impact of Attention Injection. Table 2 shows that injecting attention fea-
tures from the reference-view image markedly enhances the consistency of both
semantics and fine-grained textures, as evidenced by increased CLIP similarity
and reduced Contextual distance. Without this injection strategy, as depicted
in Figure 7, the synthesized images retain basic semantics but fail to accurately
transfer detailed textures and styles from the reference view, resulting in incon-
sistencies across multiple views.
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Method \ Metric CLIP↑ Contextual↓ PSNR↑ LPIPS↓

Coarse 0.71 1.78 21.17 0.133
vanilla repainting 0.71 1.62 22.41 0.049
+attention injection 0.78 1.56 22.42 0.048
+image prompt 0.84 1.52 22.40 0.048
+adaptive refinemnet (Ours) 0.88 1.50 22.38 0.048

Table 2: Quantitative ablation study on Test-alpha dataset by progressively adding our
proposed components. The last three lines show the cumulative effects of the proposed
modules. Our approach, utilizing all strategies, delivered the best performance.

Role of Image Prompt. The introduction of using the reference image
as an image prompt, as shown in Table 2 and Figure 7, significantly boosts
both multi-view consistency and image quality of the generated images. Without
this technique to perform classifier-free guidance, the generation of detailed and
consistent textures across views is compromised.

Benefits of Adaptive Refinement. The necessity of adaptive refinement
is clear from Figure 7, where its absence leads to artifacts and blurriness in
obliquely viewing areas of previous views due to low-resolution updates, as men-
tioned in Section 4.2. Table 2 also demonstrates its benefits through improved
CLIP similarity and Contextual distance.

6 Limitations

Despite the promising results, our method still has some limitations. Our method
is based on 3D Gaussian Splatting representation in the coarse stage during
training. While 3D Gaussian Splatting accelerates the training process, it may
exhibit geometry artifacts during mesh extraction, such as holes, and inferior
results compared to NeRF-based methods for the reconstruction of reference
view, due to immaturity in generation tasks. This is supported by results in the
Appendix, where NeRF is considered as an alternative to 3D Gaussian Splatting
for the coarse stage. We expect these limitations can be mitigated with the
development of 3D Gaussian Splatting in the future.

7 Conclusion

This work presents Repaint123 for generating high-quality 3D content from a
single image in about 2 minutes. By leveraging progressive controllable repaint,
our approach overcomes the limitations of existing studies and achieves state-
of-the-art results in terms of both texture quality and multi-view consistency,
paving the way for future progress in 3D content generation from one image.
Furthermore, we validate the effectiveness of our proposed method through a
comprehensive set of experiments.
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