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Fig. 1: CSD supervises the entire 4D space.

A Project Website

For more detailed and intractable results, please visit our Project
Website at https://AnimatableDreamer.github.io/.

B CSD supervises the entire 4D space

Our approach can traverse the entire XYZ-t space. In contrast, approaches that
focus exclusively on the canonical space or solely on reference views are limited
to supervising just a single hyperplane within this 4D space. In unobserved
regions, CSD achieves better texture consistency and geometry quality compared
to BANMo.

C Ablation Results of Generation

For the generation process, we conduct ablation studies on Lbone and Lskel as
detailed in main paper. Our findings indicate that the absence of skeletal con-
straints Lskel leads to divergence in generation or results in motions becoming
disconnected from the model. Additionally, it is observed that incorporating
Lbone enhances the surface quality of the generated models. In the context of
reconstruction, the ablation of LCSD reveals a significant enhancement in per-
formance, for it refines the texture and geometry of unobserved regions. Please
refer to the Appendix for more results. As depicted in Figure 2, an ablation study
was conducted to evaluate the proposed techniques. Specifically, the inclusion of
Lskel enhances the coherence between motion and the generated model, ensuring
a tighter bond. The model is prone to collapse in the absence of Lskel. Concur-
rently, Lbone plays a critical role in aligning the generated surface meticulously
with the underlying skeletal structure.

We present visualizations of the skeletal structures in the collapsed case above
without Lskel, attributing the collapse to the divergence in bone transformations.
To substantiate the efficacy of Lskel, a comparative visualization with Lskel ap-
plied is provided, as shown in Figure 3.

https://AnimatableDreamer.github.io/
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Fig. 2: Comparison and Ablation study. The model is prone to collapse in the
absence of Lskel. Concurrently, Lbone plays an indispensable role in precisely aligning
the generated surface with the underlying skeletal structure. ProlificDreamer fails to
generate meaningful results because of the lack of multi-view information. MVDream
generates relatively reasonable result, but degrades after warping.

Fig. 3: Bone transformations diverge without skeleton restriction. The bones
go into implausible positions without skeleton restriction.

D Additional Generation Results

We present additional results of AnimatableDreamer for non-rigid generation in
Figure 4. AnimatableDreamer exhibits robust generalization performance across
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various types of non-rigid objects. In addition to the generation of texture, the
geometry is also produced.

Fig. 4: Results of high-quality animatable models from AnimatableDreamer.
In addition to the generation of texture, geometry is also produced. Here we set the
background to black in some cases for better generation.
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E Additional Reconstruction Results

We present additional results of AnimatableDreamer for non-rigid reconstruction
in Figure 5. In contrast to existing methods, our framework effectively completes
the unobserved regions on the 3D model, leveraging the inductive priors and in-
stance information provided by the multi-view diffusion model. We also visualize
the extract skeletons with animations in Figure 6.

F Pseudo-code for AnimatableDreamer

A more detailed pseudo-code for AnimatableDreamer is presented in Algo-
rithm 1.

Algorithm 1 Pseudo-code for AnimatableDreamer
Require: {I}, {t}, {p}, y
Ensure: ϕGen

1: Initialize ϕRecon

2: for each i ∈ [1, N ] do
3: Set position embedding bandwidth
4: if i mod 2 == 0 then
5: I, t,p← Sampler({I}, {t}, p)
6: Ir ← Render(ϕRecon, t, p)
7: L ← (LRecon(Ir; I) + LReg)
8: Optimize ϕRecon

9: else
10: t,p, T ← Sampler({t}, random pose, schedule)
11: Ir ← Render(ϕ, t, p)
12: L ← (LCSD(Ir; t, T,p,y) + LReg)
13: Freeze CameraMLP, Embedder
14: Optimize ϕRecon

15: Unfreeze CameraMLP, Embedder
16: Generate Skeletons S
17: Initialize ϕGen with S
18: for each i ∈ [1, N ] do
19: Set position embedding bandwidth
20: Freeze CameraMLP, Embedder
21: t,p, T ← Sampler({t}, random pose, schedule)
22: Ir ← Render(ϕ, t, p)
23: L ← (LCSD(Ir; t, T,p,y) + LReg + LSkel)
24: Optimize ϕ

25: return ϕGen

This pseudo-code provides an overview of the CSD process, including initial-
ization, sampling, rendering, loss calculation, and optimization steps for training
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Fig. 5: More reconstruction result. Our approach enhances the fidelity of the re-
constructed models, particularly in regions not previously observed.

the model. The Sampler function is responsible for extracting relevant informa-
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Fig. 6: The extracted skeletons with animations. We extract skeletons associated
with extended animations.

tion from input datasets, and the Render function renders images based on the
current model parameters. The loss terms include reconstruction loss LRecon,
CSD loss LCSD, and regularization loss LReg. Optimization of the reconstructed
articulated model, denoted as θRecon, is conducted in an alternating manner
between the generation and the reconstruction loss functions. Subsequently, the
extracted skeletons are utilized to steer the 4D generation process of θGen. It
is noteworthy that both the CameraMLP and Embedder components are main-
tained in a frozen state when the optimization is driven by the generation loss
LGen.

G Weighting scalar α and threshold ξ

In this study, the weighting scalar α and the threshold ξ are determined through a
hierarchical approach. The parameter α is optimized to ensure that geometrically
distinct parts possessing similar semantic features are disconnected. Conversely,
the threshold ξ is established to facilitate the connection of skeletons with the top
80% of scores. Subsequent to these adjustments, bones lacking a corresponding
skeleton are eliminated.

H Additional Details

Hyper-parameters. During the generation stage, the weight of LCSD is pro-
gressively increased from 0 to 0.0001, while the weight of Lreg is adjusted accord-
ing to a logarithmic function, ranging from 0.01 to 1. Throughout the skeleton
extraction stage, the weight assigned to LCSD is methodically reduced from 0.001
to 0.00001. Furthermore, given the disparate magnitudes of Lskel and Lbone in
comparison to other loss terms, a balancing factor related to the dimensions of
the canonical mesh is employed to maintain equilibrium. An AdamW optimiza-
tion algorithm is utilized, configured with a learning rate of 5× 10−4.

CSD is more CFG friendly. For multi-view diffusion, the classifier-free
guidance (CFG) weight is set to 50. In our experiments, we observe that setting
CFG to around 30 yields the most beneficial results, as illustrated in Figure 8.
This observation is attributed to the fact that the reconstruction loss aids in con-
trolling the consistency of the generated content. However, for the reconstruction
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Fig. 7: The effect of the SDS time
step. The broader the range of the time
step, the more significant the modifica-
tions to the model will be. An excessively
large time step can compromise the in-
tegrity of the skeleton’s structure, leading
to erroneous results. Conversely, a time step
that is too small may not induce sufficient
changes in the model. Here we assign differ-
ent time steps for reconstruction and gen-
eration.

Fig. 8: Influence of guidance scale.
Setting CFG to 100 enhances the mode-
seeking feature and almost bypasses the
generation loss, while setting CFG to 10
results in the collapse of the 3D model.
This behavior may be attributed to the
strong constraints imposed by the ar-
ticulation extracted from the template
video, rendering high CFG unnecessary
for ensuring the consistency of the dif-
fusion model.

task, we have observed that setting CFG to a relatively large value is beneficial,
as shown in Table 1. Therefore, we set CFG to 100 for the reconstruction process.

CDS time step schedule. Given that our framework is a combination
of both a generator and a reconstructor, we have carefully designed the SDS
time step schedule based on a series of experiments. For prompts that induce
significant changes in the object’s geometry, we implement an annealing time step
schedule ranging from 0.8 to 0.5. In cases where the prompt primarily affects
texture or involves minimal geometry changes, we sample the time step in the
range of 0 to 0.5. The impact of the SDS time step for generation is illustrated
in Figure 7. For reconstruction, we fix the time step to 0.5 after experiments
(Table 2).

Near-far planes. Given that we render from a free viewpoint rather than
fixing on the reference, it is essential to compute the near-far plane of each
frame dynamically. Therefore, our near-far planes are calculated on the fly to
encompass all points of the proxy geometry with a considerable margin.

Issue about MVDream. MVDream is trained in a controlled environment
where the object always faces the “forward” direction and is maintained at a
proper distance from the camera. In contrast, our framework defines the “for-
ward” direction based on the input video. To align the canonical model with the
“forward” direction, we introduce an azimuth offset.
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Guidance scale CD F@%2

10 5.52 44.8
30 5.33 43.7
50 5.45 45.5
100 4.6 52.1

Table 1: Ablation of the guid-
ance scale in reconstruction. A
large guidance scale can ensure the con-
sistency of the reconstructed model.

Maximum T CD F@%2

0.5 4.6 52.1
0.8 5.06 47.8
0.98 4.68 49.1

Table 2: Ablation of the time step
schedule in reconstruction. Setting
the maximum T to an excessively large
value can alter the original content and
reduce the accuracy of reconstruction

The prompt impact result. Our findings indicate that the incorporation of
certain fixed negative prompts significantly benefits our task. Examples of these
prompts include ugly, bad anatomy, blurry, pixelated, and obscure. Additionally,
the inclusion of descriptors pertaining to the background proves advantageous,
particularly in scenarios where the model’s color closely resembles that of the
background, thereby mitigating the risk of model disappearance.

Time-invariant RGB. Given the generally time-invariant appearance of
the template object, we configure RGB as time-invariant to enhance the model’s
temporal consistency, especially when employing the CSD loss for reconstruction
assistance.


