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Abstract. Advances in 3D generation have facilitated sequential 3D
model generation (a.k.a 4D generation), yet its application for animat-
able objects with large motion remains scarce. Our work proposes Ani-
matableDreamer, a text-to-4D generation framework capable of generat-
ing diverse categories of non-rigid objects on skeletons extracted from a
monocular video. At its core, AnimatableDreamer is equipped with our
novel optimization design dubbed Canonical Score Distillation (CSD),
which lifts 2D diffusion for temporal consistent 4D generation. CSD, de-
signed from a score gradient perspective, generates a canonical model
with warp-robustness across different articulations. Notably, it also en-
hances the authenticity of bones and skinning by integrating inductive
priors from a diffusion model. Furthermore, with multi-view distillation,
CSD infers invisible regions, thereby improving the fidelity of monocular
non-rigid reconstruction. Extensive experiments demonstrate the capa-
bility of our method in generating high-flexibility text-guided 3D models
from the monocular video, while also showing improved reconstruction
performance over existing non-rigid reconstruction methods.
Project page https://zz7379.github.io/AnimatableDreamer/.
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1 Introduction

Automatically building animatable 3D models with non-rigid deformations and
motions plays a crucial role in broad fields such as gaming, virtual reality, film
special effects, etc. With the remarkable success of deep generative models, gen-
erating various 2D images through text prompts comes to reality [27,28,58], and
this success is expanding beyond 2D generation. The application of Score Dis-
tillation Sampling (SDS) [25] has elevated 2D text-to-image diffusion models to
generate high-quality 3D models. Numerous subsequent works have emerged in
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Fig. 1: Given a monocular generic category video, AnimatabaleDreamer initially ex-
tracts the skeleton with skinning and motions assisted byprior from a diffusion model.
Subsequently, through our canonical score distillation, AnimatabaleDreamer generates
novel animatable 3D models from the extracted skeleton and a text prompt with tem-
poral consistency and warping robustness.

this domain [15,32,36,44]. However, generating deformable objects remains chal-
lenging due to their inherent unconstrained and ill-conditioned nature [22,23,39].

Intuitively, bones and motions extracted by implicit animatable models could
serve as geometry constraints for deformable object generation. Recent efforts
have been devoted to reconstructing animatable 3D models with pre-defined
or learned skeletons [10, 34, 46, 52, 55]. Nevertheless, these methods are mostly
category-specific with limited diversity or largely rest on the captured multi-view
data [6, 35, 51]. We believe this problem can be greatly alleviated by distilling
2D priors from the diffusion model to hallucinate plausible geometry of invisible
regions and avoid short-cut solutions [18].

To address these challenges, we propose AnimatableDreamer, a two-stage
framework designed to extract skeletons from monocular videos and generate
generic categories of non-rigid 3D models on these skeletons. Initially, the non-
rigid object in the monocular video is disentangled into a canonical implicit
field [4, 17] with a skeleton-based structure consisting of bones and neural skin-
ning. AnimatableDreamer extracts bones and skinning from a monocular video,
leveraging multi-view diffusion priors to refine the warping, geometry, and tex-
ture of unseen regions. Skeletons are generated based on the skinning weights
of vertices and further constrain the pairwise relationship between bones of the
generated model. Subsequently, under the constraint of the extracted skeleton
and a specific text prompt, AnimatableDreamer generates 4D content with a
diffusion model. Considering that directly employing SDS [25] or Variational
Score Distillation (VSD) [44] will make the canonical model detach from the
extracted motions and harm the plausibility of the warped model, we propose
Canonical Score Distillation (CSD) to generate novel non-rigid 3D models.
CSD is a novel distilling strategy designed to simultaneously generate a canonical
model aligned with motions and refine the skeletons and skinning. CSD denoises
multiple warped models through invertible warping functions while consistently
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optimizing a static canonical space shared by all animation frames. This novel
approach simplifies 4D generation into a more manageable 3D process, yet main-
tains comprehensive supervision throughout the 4D space and ensures the mor-
phological plausibility of the model under various object poses. Furthermore,
CSD refines the motions and skinning weights to ensure consistency with the
canonical model.

To summarise, we make the following contributions:

– AnimatableDreamer: A novel framework that extracts skeletons with mo-
tions from a monocular video and generates generic categories of non-rigid
3D models based on these skeletons. This is the first implementation of gen-
erating text-guided non-rigid 4D content leveraging video-based skeletons.

– Canonical Score Distillation: A new distillation method enhances the
generation and reconstruction of non-rigid 3D models. By back-propagating
gradients from multiple camera spaces to a static canonical space, CSD en-
sures the morphological plausibility of models after warping. Besides, CSD
refines bones and skinning weights through a specifically tailored gradient
term. With these designs, CSD improves the reconstruction quality of un-
seen regions with diffusion prior and is capable of generating 4D models with
time consistency and warping robustness.

– Skeleton-based Generation: An innovative approach for 4D generation
taking skeletons, bones, skinning weights, and motions as prior. With con-
structed skeletons, a constraint with SE(3) is utilized to guide the trans-
formations of bone pairs, thereby preventing motion detaching and ensuring
convergence. Furthermore, the density of Gaussian bones is considered as an
indicator for the generation of surfaces with warping robustness.

2 Related Work

2.1 Neural Reconstruction for 3D Non-rigid Object

Neural Radiance Field (NeRF) has been a groundbreaking advancement in rep-
resenting static scenes, enabling the generation of photorealistic novel views
and detailed geometry reconstruction [1, 2, 13, 17]. Adapting NeRF for dynamic
scenarios has involved augmenting the field into higher dimensions to accom-
modate objects with changing topologies [23]. An alternative strategy in dy-
namic object reconstruction employs an additional warping field to deform the
NeRF [22, 26]. Nonetheless, these dynamic NeRF adaptations often encounter
performance degradation, primarily due to the complexities introduced by the
added temporal dimension. This could be alleviated by applying alternative
representations including tesnors [30], Gaussian Splatting [45] and explicit rep-
resentation [3, 9, 16]. Despite these innovations, synthesizing space-time views
from monocular perspectives remains a significant hurdle. Implementing spatio-
temporal regularization methods, including depth and flow regularization, has
shown potential in overcoming this issue [8,48]. Furthermore, exploring category-
specific or articulate priors offers promising avenues for reconstructing non-rigid
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objects [6,24,41,51–53]. These approaches offer novel opportunities and insights
for advancing the field of 3D non-rigid object reconstruction. However, they of-
ten overlook the application of generic priors, which could reduce the reliance on
domain-specific priors and manually designed templates. Contrarily, our method
leverages model training on extensive, generic datasets to distill such priors,
thereby enhancing the reconstruction process.

2.2 Distillation-based 3D Generation from Diffusion Model

SDS [25] has gained prominence for its capability to elevate pre-trained 2D dif-
fusion models to the realm of 3D generation. By distillate 2D prior learned from
large-scale datasets and optimizing implicit field [17], SDS is able to generate
high-quality 3D models based on text-prompt [5, 38, 44, 56, 59, 60]. The integra-
tion of differentiable marching tetrahedra [31] further enhances the combination
of explicit meshes and SDS [15]. However, semantic consistency challenges arise
in distillation-based 3D generation methods due to their disconnection from the
3D dataset during training. Addressing this concern, MVDream [32] introduces
a multi-view diffusion model for panoramas with homography-guided attention,
improving semantic consistency by incorporating cross-view attention and cam-
era conditions. Further, 2D diffusion model trained can be lifted to 4D via a
temporal score distillation sampling [33], which integrates world knowledge into
3D temporal representations. In contrast, our method aims to produce a time-
consistent and warp-robust 4D model by initially generating a non-rigid model
based on a skeleton extracted from the video. By applying this model across var-
ious animations, we ensure morphological plausibility even when the skeletons
exhibit differing articulations.

3 Method

Given a monocular video V = {(Ii, ti)}ni=1, our objective is two-fold: first, to
generate an object related to a specified prompt y on the skeletons and rigging
extracted from the provided video; second, to reconstruct the original object
with diffusion prior. The proposed framework, AnimatableDreamer, as illus-
trated in Fig. 2, comprises two distinct stages: skeletons extraction (Sec. 3.1)
and skeletons-based generation (Sec. 3.2). Both stages employ CSD for content
generation and warping refinement (Sec. 3.3). These workflows supervise the de-
formed model in camera space (articulated poses) and optimize the model in
canonical space (rest pose) through differentiable warping.

3.1 Implicit Articulate Model

Canonical Model. We utilize the NeuS model [40] as our canonical represen-
tation to accurately reconstruct surface geometries, in conjunction with render-
ing an additional feature descriptor [50] to incorporate priors from off-the-shelf
methods [14, 20] for self-supervised 3D registration. This approach facilitates
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Fig. 2: Framework overview. Top: The AnimatableDreamer framework extracts
the skeletons, skinning, and animation from monocular generic category videos with
CSD to enhance the invisible regions. Subsequently, through our canonical distillation
strategy, AnimatabaleDreamer generates text-guided novel animatable 3D models on
the extracted skeleton. Bottom: We decompose the articulated model into a static
neural field and time-varying neural skinning. During training, we optimized the model
in camera space across different frames. The canonical generation term in CSD enhances
the morphological plausibility of warped models, while the warping refinement term
further refines the bone motions and skinning.

the articulation extraction and 3D reconstruction of objects across various cat-
egories from monocular video. In our representation, each 3D point X ∈ R3 on
the canonical model is characterized by a color vector c ∈ R3, a Signed Distance
Field (SDF) value d ∈ R, and a feature descriptor ψ ∈ R16:

(c,d) = MLP∗ (X,v) , (1)
ψ = MLPψ (X) , (2)

where v ∈ SO(3) is view direction. Through the cumulative function of an
unimodal distribution Γβ(·), the Signed Distance Function (SDF) is transformed
into a density representation [40, 43]. The feature descriptor ψ is learned based
on 2D features extracted from the self-supervised vision model, DINOV2 [20].
Considering that CSD supervises a point along the time axis without strong
texture continuity constraints, we employ a time-invariant canonical model to
prevent texture flickering.
Warping Field. In contrast to dense motion fields [3, 22, 23], we disentangle
non-rigid objects into a canonical model and a compact motion field [19, 51].



6 X. Wang et al.

Fig. 3: Skeleton Construction. (a) Pipeline of skeleton construction. We extract
mesh from canonical space and construct skeletons using both semantic correlation
and morphological correlation. (b) Constructed skeletons for cat, penguin, and hand.

Such disentanglement mitigates the challenges associated with the ill-conditioned
nature inherent to 4D generation and enables the application of distillation-based
3D generators. To warp the field from camera space to canonical space, we build
the mapping between the 3D point in canonical space X∗ and 3D point in camera
space Xt through a blend skinning deformation defined on B rigid bones:

X∗ =Wϕw
(Xt) =

B∑
b=1

Sb,t(X
t)Qt

bX
t, (3)

where W (·) is warping field, ϕw are warping-related parameters, and transfor-
mations of the b-th bone Qt

b ∈ SE(3) is dual quaternion blend skinning (DQB)
[11] learned from MLPQ(t). Here we applied the Fourier function for time em-
bedding [17]. St(Xt) is skinning weight of the bones related to Xt:

St(X
t) = softmax(M(Qt, σ,Xt) +∆St). (4)

Here M is the Mahalanobis distance between Xt and the b-th bone at time t.
Each Gaussian bone is assigned with a learnable scaling parameter σb. The term
∆St represents the delta skinning weights derived from MLP∆. It is important
to note that the global motion of the object is integrated into the camera poses
to enhance clarity. The warping-related parameters ϕw includes MLPQ, σb, and
MLP∆. To render a pixel c in camera space for a given time t, we warp camera
space sampling points Xt

i ∈ R3 to canonical space with warping function and
apply volume rendering:

c
(
xt
)
= Rϕ∗(X

∗(Xt)), (5)

where ϕ∗ are parameters of MLP∗ defined in Eq. (2). R(·) is pixel-level volume
rendering function [17].
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3.2 Skeleton-based Generation

With a deformable model with the bone motions extracted from the reference
video, a vanilla way to generate a new text-guided model is to directly modify the
canonical model using SDS. However, this raises two problems: first, considering
that SDS is an incremental process without a target function, brutally applying
SDS to a well-reconstructed model will limit the generated model’s diversity.
Secondly, the distribution of rendered images from the reconstructed model is
different from that of the diffusion model’s training set. The reconstructed model
may hurt the performance instead. In this context, we proposed skeleton-based
generation, which generates from a new start while being constrained by previ-
ously extracted motion.
Skeleton Construction. We pass model irrelevant parameters including the
position embedding and time embedding from the reconstructed model to the
generated model. Subsequently, we initialize the density field of canonical space
of the generated model through bones and skeletons. To extract the skeletons
from the reconstructed model, we first extract canonical mesh with edges E =
{ei = {vm,vn}} and vertices V = {vi ∈ R3} using marching cube. Then we
estimate the relation of each pair of bones based on the skinning weights and
feature descriptor ψ of vertices. The feature descriptor of each bone b is defined
as the weighted sum of related vertices in Eq. (6):

ψb =

∑N
i=1 Sb,∗(vi)(MLPψ (vi))∑N

i=1 Sb,∗(vi)
, (6)

and the semantic correlation of two bones Gj,k is calculated as:

Gj,k = softmax (⟨ψj , ψk⟩) , (7)

where ⟨·⟩ is the cosine similarity score. Though bones with similar features are
intended to be connected, it may fail when multiple instances share one semantic
feature (e.g. arms of a squirrel). To address this issue, we further explore the
morphological correlation matrix M ∈ RB·B of each bone pair. For each edge
connecting a pair of vertices, we calculate the M as defined in Eq. (8):

M =

√∑L
ei={vm,vn} S∗(vm)S∗(vn)T

L
, (8)

where L is the number of edges, S∗(·) ∈ RB is the skinning weight matrix in
canonical space. The higher the value of M, the greater the degree to which two
bones jointly influence the control over the same surface regions. We balance the
semantic correlation and morphological correlation of a pair of bones and define
the strength of the skeleton Tj,k as:

Tj,k =

{
Gj,k + αMj,k Mj,k ≥ ξ

0 Mj,k < ξ
, (9)
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where weighting scalar α and threshold ξ are learned in a hierarchical manner.
The constructed skeletons are shown in Fig. 3.
Constrain with Skeletons and Bones. Given that we have retained only
motion-related parameters and discarded the canonical space model, our goal is
to ensure that generated objects remain aligned with the motion, and to prevent
model collapse during subsequent optimization of the motion. To achieve this, we
employ skeletons and bones as constraints in the generation process. We convert
Qt
b into a rotation quaternion Rt

b ∈ SO(3) and a translation vector Tt
b. For j-th

bone and k-th bone share a skeleton, we iterate over all time t, and compute the
range of relative position Tt

jk = ∥Tt
j −Tt

k∥2 and the range of quaternion angle
At
jk = ∠(Rt

j ,R
t
k). With this setting, constraints can be applied to the motion of

bones, thus preventing motion divergence when generative loss is applied:

Lskel = λTLskel,T + λAAskel,T , (10)

Lskel,T =
∑

j,k
Tj,kmax(Tjk −Tmax,Tmin −Tjk, 0)

2, (11)

Lskel,A =
∑

j,k
Tj,kmax(Ajk −Amax,Amin −Ajk, 0)

2, (12)

where Tmax and Tmin denote the maximum and minimum values of Tt
jk across

time t, respectively, while Tmax and Tmin represent the maximum and minimum
values of At

jk across time t, respectively.
Besides, we also use bones to constrain the generated surface as well as skin-

ning weights:

Lbone =
∑
X

H (d(X), dg(X)) +
∑
t,Xt

St(X
t) log(

1

St(Xt)
), (13)

where H denotes the binary cross entropy, and d and dg represent the density
from the Signed Distance Function (SDF) value of the canonical model and
Gaussian bones, respectively. The first term aims to ensure that the surface is
closely aligned with the Gaussian bones, taking into account their covariance
matrix. It also seeks to maintain consistency with the neural skinning weights,
thereby enhancing the convergence of generation. The second term is designed
to encourage the sparsity of the skinning weights in order to mitigate potential
degradation resulting from the first term as well as the generative loss.

3.3 Canonical Score Distillation

We distillate prior from the diffusion model for bot reconstruction and gen-
eration. This 2D supervision is sufficient for static object generation [25, 44].
However, in 4D reconstructing, supervising a single view at a single time point
t becomes insufficient.The supervision from the reference video forms a hyper-
plane in the 4D space, resulting in lower quality for unobserved viewpoints.
When denoising an image rendered from a viewpoint far away from reference
with a large guidance scale, SDS tends to sample a new instance from its own
distribution, due to the lack of sufficient information about the original instance.
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Here we incorporate multi-view consistent diffusion model MVDream [32], which
is trained on a large 2D and 3D dataset [7, 29], to generate multi-view consis-
tent images. Cross-view attention spreads the known information to unobserved
views. Please refer to Supplementary for more detailed analysis.
Design of CSD. A straightforward way for temporal consistent articulate ob-
ject generation is to supervise the model in canonical space. However, the canon-
ical model is merely a “time-slice” of the 4D object. Roughly supervising the
canonical model without considering articulations will result in the degradation
of the morphological plausibility of the model in camera spaces. Additionally,
unreachable points in canonical space will not be optimized (e.g., occluded body
parts at canonical pose), even though they will be rendered in camera space.

To mitigate these issues, we employ a multi-view consistent diffusion model
and propose a novel Canonical Score Distillation (CSD) to generate a 4D ar-
ticulate model with both time consistency and warp robustness across different
articulations. We elaborately design CSD to utilize the warping field as a bridge
between diffusion prior and canonical model. Conversely, the warp is also refined
by diffusion prior, especially in contexts of significant motion and in regions lack-
ing ground-truth images. Distinct from SDS [25], CSD traverses all frames and
replaces the image gradient with two terms: canonical generation and warping
refinement, as defined in Eq. (14):

∇ϕLCSD = E[w(T )(ϵθ(It,T ; y,p, T )− ϵ)︸ ︷︷ ︸
Diffusion Prior

∂Rϕ∗(X∗)

∂X∗︸ ︷︷ ︸
Canonical

Generation

∂Wϕw
(Xt)

∂ϕw︸ ︷︷ ︸
Warping

Refinement

]. (14)

To distinguish from the previous time t of the articulate model, we refer to
the time step of diffusion as T . w(T ) is hyper-parameter controlling the weight
of T , y is text prompt, It are four images rendered in the camera space of time
t from four orthogonal view-points p, It,T are sampled noisy images relative to
frame time t and diffusion time step T , ϵθ(It,T ; y,p, T ) is noise predicted by
diffusion model conditioned on prompt and camera poses.
Canonical Generation. The first term is the gradient of the canonical render-
ing with respect to the sampling point. It is designed to simplify the generation
process from a 4D time-varying model to static 3D models warped from a shared
canonical model. Although we traverse all camera spaces, the distillation process
is consistently conducted with respect to the canonical model parameters ϕ∗.
Warping Refinement. Regarding the second term, it signifies that the warping
parameters ϕw are optimized to better collaborate with the canonical model in
different poses. As depicted in Fig. 4(a), CSD corrects faulty skinning weights
Sb,t(X

t) and misplaced bone transformations Qt
b.

3.4 Optimization

We optimize all learnable parameters during the reconstruction phase. Following
the extraction of skeletons from the reference video, we optimize a new implicit
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articulate model with MLPϕ and camera-related parameters discarded. The
total loss for skeleton extraction and model generation is defined as Eq. (15) and
Eq. (16), respectively:

LExt = Lrecon + LCSD + Lreg, (15)

LGen = Lskel + Lbone + LCSD + Lreg. (16)

The reconstruction loss, denoted as Lrecon, comprises the photometric Mean-
Square Error (MSE) Lrgb, silhouette reconstruction MSE Lsil, and flow loss
LOF [51], as defined in Eq. (17):

Lrecon = λrgbLrgb + λgeo (Lsil + LOF) , (17)

where silhouette and optical flow are pre-computed with an off-the-shelf model
[54]. λrgb and λgeo are balancing weights. The registration loss Lreg is defined
in Eq. (18):

Lreg = Lmatch + L2D−cyc + L3D−cyc, (18)

where Lmatch, L2D−cyc, and L3D−cyc represent the loss functions for 3D point
feature matching [51], 2D cycle consistency [50], and 3D cycle consistency [14],
respectively.

Here, we have designed a two-stage schedule with balanced weights for gen-
eration. During the articulation extraction stage, the model is primarily super-
vised by images, with pre-computed mask, flow, and features. Concurrently, the
weight of LCSD is configured to be low for the complementation of unseen re-
gions, thereby ensuring a gentle adjustment without overpowering the original
data. For the generation stage, the position embedding bandwidth is set to max
value to guarantee the detail of the generated model.

4 Experiments

We conducted experiments on generation (Sec. 4.2) and reconstruction (Sec. 4.3)
tasks using the Casual Videos dataset and Animated Objects dataset [51]. The
experiments conducted spanned a diverse array of species, such as squirrels, cats,
finches, eagles, humans, hands, and manipulators, among others, to convincingly
showcase the capability of our method across generic categories. In the context
of the generation task, our method excels in creating spatiotemporally consis-
tent, animatable 3D models with text prompts and a template video. With the
proposed CSD method, the generated 4D model exhibits superior performance
over existing distillation strategies in terms of temporal consistency and warp ro-
bustness, as demonstrated in Table 2. For the reconstruction task, our approach
significantly outperforms previous methods, particularly when the number of
viewpoints and videos is limited, as shown in Table 3.
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Fig. 4: Canonical score distillation results. (a) Through the warping refinement
term, bones are optimized by the diffusion prior and warped surfaces. (b) Compared
with VSD and MVDream, our method generates a more detailed result

Method Prompt Category Generation 3D Model Motion Articulation

ProlificDreamer [44] Text Generic Shape+Texture NeRF - -
Text2Video-Zero [12] Text Generic - - Learned -
BANMo [51] - Generic - NeRF Learned Learned
Farm3D [10] Image Specific Texture Mesh Manual Pre-defined
Ours Video+Text Generic Shape+Texture NeRF Learned Learned

Table 1: Related work overview on non-rigid 3D model reconstruction and
generation. Distinguishing from previous work, our method, AnimatableDreamer,
generates text-guided animatable models across generic categories without the need
for pre-defined templates. This attribute establishes AnimatableDreamer as a versatile
and user-friendly 4D generation tool.

4.1 Technical Details

To enlarge the Casual Videos dataset [51], we collect videos containing a single
complete instance with large kinesis from the internet. We utilize off-the-shelf
models [20, 49, 54]to extract mask, optical flow, and features. We modify the
camera distance and near-far plane calculation to avoid the articulated model
out of frustum or obstructing the camera. Considering that viewpoints are fixed
for reconstruction and randomly selected for generation, we alternate the loss
calculation of reconstruction and generation in practice. On a single Nvidia A800
GPU, we sampled 128 pixels from 32 images in reconstruction and rendered four
200× 200 images for generation. The complete training takes 5 hours for 12000
iterations. Here we adopted a gradient cache technology for saving memories [57].

4.2 Animatable 3D Model Generation

Qualitative Comparisons. We present our generated results alongside the in-
put videos in Fig. 5. By disentangling the deformation and canonical model,
our generated models demonstrate time consistency, even in cases where the
video duration is extensive. Through optimization across all frames, our ap-
proach effectively eliminates issues such as disconnected shapes, flickering, and
shape inconsistency. Notably, our method is capable of generating various species
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Methods CLIP↑ CLIP-T↑ R-Precision@10↑ GPT Eval3D elo ↑

ProlificDreamer [44] 33.1 95.9 56.3 959
MVDream [32] 34.8 94.4 31.2 979
w/o Lbone/skel 27.1 94.2 35.6 954

w/o Lskel 28.4 94.0 40.1 960
w/o Lbone 37.8 96.1 81.7 1070
Our CSD 38.2 96.6 87.5 1098

Table 2: Quantitative results for generation. We use CLIP ViT-B/32 for eval-
uation. CLIP-T is the average CLIP between frames, CLIP R-Precision@10 evaluates
text-image consistency. GPT Eval3D [47] is an evaluator for Text-to-3D generation.

Methods Number
of videos

Cat-Coco Cat-Pikachu Penguin Shiba
CD↓ F@%2↑ CD↓ F@%2↑ CD↓ F@%2↑ CD↓ F@%2↑

BANMo [51] 1 10.7 15.3 3.71 57.3 6.47 43.9 6.81 36.6
BANMo [51] 4 4.66 51.6 4.51 52.7 3.75 60.3 4.66 51.9

RAC [52] 1 6.25 42.2 3.60 60.2 4.68 53.7 7.94 30.1
RAC [52] 4 4.48 55.8 3.39 68.1 8.77 26.9 6.86 41.9
w/o LCSD 1 8.34 32.6 3.88 59.6 6.94 42.3 5.83 35.2

Ours 1 3.65 63.3 2.0 88.9 3.7 64.0 4.54 53.9

Table 3: Quantitative results of monocular reconstruction on Casual Videos
and Animated Objects. We calculate the Chamfer distance (cm, ↓) and F-score (%,
↑), averaging the results over all frames and videos. Leveraging prior from diffusion,
our method outperforms existing methods, despite the absence of multiple videos or
templates.

including quadruped, squirrel, eagle, bird, penguin and so on, and goes be-
yond mere texture generation with modifying the model’s geometry. We employ
VSD [44] and MVDream [32] as baselines and qualitative comparisons are shown
in Fig. 4(b). Also, we conducted a comparative analysis with several notable 3D
generation and 4D reconstruction methods: ProlificDreamer [44], 3D reconstruc-
tor BANMo [51], texture-swap articulated representation Farm3D [10] and text
to video generator Text2Video-Zero [12] and summarize our strengths in Tab. 1.
Quantitative Comparisons. We perform a quantitative evaluation of the gen-
eration quality and the consistency between text and images by utilizing the
CLIP-score [21] and the GPT-4 Eval3D [47] methodologies. A video is rendered
employing the camera trajectory specified in Eval3D [47], which navigates around
the scene at a constant elevation angle while varying the azimuth. Each video
frame is then assessed using the CLIP ViT-B/32 model, and the scores are ag-
gregated across all frames and text prompts to compute the overall CLIP score.
Additionally, we assess the temporal consistency of CLIP-T by calculating the
CLIP similarity between consecutive frames. We employ VSD [44] and MV-
Dream [32] as baselines, as presented in Tab. 2. Please refer to Supplementary
for more ablation analysis.

4.3 Animatable 3D Model Reconstruction

Qualitative Comparisons. As depicted in Fig. 6, we outperform the existing
animatable object reconstruction method on Casual Videos dataset and Anima-
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Fig. 5: Text-to-4D Generation. We generate animatable 3D models by leveraging
a text prompt and a template video, achieving diverse outcomes that encompass both
texture and geometry while maintaining temporal consistency and morphological plau-
sibility across different poses. See the Appendix for more results.

tion Objects dataset (Sec. 4). A notable observation is that our approach goes
beyond merely refining the canonical model. It also encompasses modifications
to the bones and warping fields, as stated in Eq. (14). This comprehensive mod-
ification is especially effective in scenarios where the initial bone structures are
implausible. In such cases, our method adeptly repositions the bones, accom-
panied by corresponding adjustments to the warping function, which is clearly
evidenced in Fig. 4(a). While BANMo delivers good results at the input views,
its performance significantly diminishes in unobserved spaces. This discrepancy
in quality can be attributed to the model’s tendency to overfit on the reference
views, especially when there is a lack of supervision from other viewpoints.

Quantitative Comparisons. Our evaluation utilizes both Chamfer distances [37]
and F-scores using a threshold set to 2% of the bounding box size. Considering
that Casual Videos has no ground truth, we employ BANMo on multiple video
sequences and extract meshes to serve as pseudo ground truth. The result in
Tab. 3 suggests we significantly outperforms BANMo, even when the pseudo
ground truth is derived from BANMo itself. With CSD, our framework effec-
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Fig. 6: Monocular reconstruction result on Casual videos dataset. Our method
is visibly superior to BANMo, particularly in frames with large motion (squirrel) or
in regions not present in the reference image (cat and penguin). Each experiment is
performed based on a single monocular video.

tively supplements the missing information, surpassing the need for additional
video data. Please refer to Supplementary for more ablation analysis.

5 Conclusion

In this work, we present AnimatableDreamer, a pioneering framework for the
generation and reconstruction of generic-category non-rigid 3D models. With
the proposed Canonical Score Distillation (CSD), AnimatableDreamer addresses
the challenges of unconstrained deformable object generation by simplifying the
4D generation problem into 3D space. Our method excels in generating diverse
spatial-temporally consistent non-rigid 3D models based on textual prompts.
With articulations extracted from monocular video, users can manipulate and
animate these models by controlling the rigid transformations of bones. We
demonstrate improved performance compared with existing monocular non-rigid
body reconstruction methods, especially in scenarios with limited viewpoints and
substantial motion.
Limitations. Our method requires large VRAM to render high-resolution im-
ages for CSD during training, due to the long gradient chain from camera space
to canonical space, posing constraints on the optimization process. Future re-
search could focus on enhancing the fidelity of both textures and geometric
structures [42]. The requirement to feed four images into MVDream also poses
a computational burden. Addressing these issues could enhance the overall per-
formance and versatility.
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