Spatially-Variant Degradation Model for
Dataset-free Super-resolution

Supplementary Material

A Visual Representation of Membership Function

The visual representation of the proposed membership function { uz}f\g’l with
varying values of o, and Np in Eq.(5) is shown in Fig. [1] It is evident that as
the number of membership functions Np increases, the mean difference between
different membership functions diminishes. This implies that the texture infor-
mation from distinct areas is extracted more finely. Additionally, as o, increases,
the overlapping regions under the membership functions expand, indicating that
the structural information utilized by different membership functions becomes
more similar.

B Hyper-parameter Analysis of Membership Function

We empirically analyze the impact of o, on SVDSR. The PSNR and SSIM
performance of SVDSR under different o, are shown in Tab. [I and the corre-
sponding visualization results of fuzzy coefficient matrices and atom blur kernels
are shown in Fig. 2

It can be seen that when o is 0.5, the texture information of different intensi-
ties in the image can be effectively extracted. When o, takes other different val-
ues, the captured texture information will be missing at certain frequencies. The
learned atom degradation kernel of the central atom exhibits a clear shape re-
sembling an anisotropic Gaussian kernel, which is very different from the shapes
of other kernels. The leftmost atom degradation kernel approximates an isotropic
Gaussian blur kernel because the pixels extracted by corresponding membership
function in the textureless area cannot provide sufficient degradation information
for learning the atom degradation kernel. Since the high-frequency region con-
tains a small number of pixels and a lot of noise, it is difficult for the rightmost
atom degradation kernel to learn a clear shape. Taking into account the quanti-
tative results and the visual results of the learned atom degradation kernels and
fuzzy coeflicient matrices, o, is empirically set to 0.5.

C Network Architecture

The generator G is based on an encoder-decoder backbone structure. A skip
connection structure is imposed to focus on capturing more global shallow-level
information, implemented in the frequency domain using FFT/IFFT. Instance
normalization layers are incorporated to alleviate overfitting in the absence of a
dataset. The detailed network architecture is shown in Fig. [3]
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Fig. 1: Visualization of the membership function with different Np (1st row) and oy
(2nd row).

Table 1: The impact of the o4 on Set5 with the scale factor of 2..

log= 0.1  |og=05 [og=1.0 |og=2.0 |og=3.0

PSNR |33.14 |33.51 |33.45 |33.30 33.17
SSIM 0.90 0.92 0.92 0.91 0.91
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Fig.2: (a)Visualization of the fuzzy coefficient matrices under the different oy.
(b)Visualization of the learned atom degradation kernels under the different o,. The
atom degradation kernel in (b) correspond to the fuzzy coefficient matrices in (a) that
are similar in position to the respective atom degradation kernel.
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Fig. 3: The detailed network architecture of the generator G. “Conv (k,p,s)” represents
the 2-D convolution operator with kernel size k, stride s and reflection padding size p,
and “Upsampling (s)” represents the bilinear interpolation operator with scale factor s.
IN represents the instance normalization layers.
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