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Abstract. This paper focuses on the dataset-free Blind Image Super-
Resolution (BISR). Unlike existing dataset-free BISR methods that focus
on obtaining a degradation kernel for the entire image, we are the first
to explicitly design a spatially-variant degradation model for each pixel.
Our method also benefits from having a significantly smaller number
of learnable parameters compared to data-driven spatially-variant BISR
methods. Concretely, each pixel’s degradation kernel is expressed as a
linear combination of a learnable dictionary composed of a small num-
ber of spatially-variant atom kernels. The coefficient matrices of the atom
degradation kernels are derived using membership functions of fuzzy set
theory. We construct a novel Probabilistic BISR model with tailored
likelihood function and prior terms. Subsequently, we employ the Monte
Carlo EM algorithm to infer the degradation kernels for each pixel. Our
method achieves a significant improvement over other state-of-the-art
BISR methods, with an average improvement of 1 dB (2×).Code will be
released at https://github.com/DeepMed-Lab-ECNU/SVDSR
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1 Introduction

Super-Resolution (SR) aims to reconstruct high-resolution (HR) images from
their degradation red, noisy low-resolution (LR) counterparts. Due to the chal-
lenge of obtaining the degradation kernel in real-world scenarios, Blind Im-
age Super-Resolution (BISR) has recently garnered significant research interest.
Mathematically, SR degradation model can be formulated as:

y = (Dx)↓s + n, (1)

where x denotes the HR image, y denotes the LR image, D denotes degradation
operator, ↓s denotes subsampling operator with scale factor s, and n denotes
the noise.

Numerous BISR methods have been proposed in recent years to reconstruct
images afflicted by complex and unknown degradation operators. These methods
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can be broadly classified into two categories. Methods [10,13,17,23] belonging to
the first category directly use complex deep neural networks (DNNs) to map the
observed LR images to HR images, which do not effectively utilize the physical
information (e.g., edge and texture) of image degradation in Eq. (1) and may
yield suboptimal results. Methods belonging to the second category first estimate
the degradation operator D from the LR images and then transform the blind
super-resolution problem into a non-blind SR problem. The challenge with this
approach lies in how to accurately estimate the unknown degradation operator.
Estimating the degradation operator directly from the LR image is a highly
ill-posed problem. Many priors for degradation operator have been proposed to
better estimate the degradation kernel. [2,21,31,41] designed explicit or implicit
kernel priors for the entire image to better utilize the information within LR
images, these priors are all spatially-invariant. [4, 15, 19, 20, 45] formulated a
unique degradation kernel for each patch or even each pixel of the image. These
spatially-variant adaptive degradation kernels can fully utilize the structural
information differently for each pixel location, thereby obtaining richer visual
details in the reconstructed image. However, learning its own degenerate kernel
for each pixel is computationally expensive. [19,45] use a linear combination of 72
pre-defined atom kernels to represent the degenerate kernels of different pixels,
which greatly reduces the computational burden. They meticulously designed the
networks to learn the huge coefficient matrix of the atom kernel for each pixel,
rather than focusing on learning the shape of the entire degradation kernel.
But these networks still need to be trained on large paired artificially generated
dataset, which significantly reduces the practicality of the proposed methods.

This work introduces a novel spatially-variant degradation model for dataset-
free BISR, which enjoys the benefit of (1) dealing with spatially-variant degra-
dation model for dataset-free BISR and (2) much smaller numbers of learnable
parameters than data-driven BISR. Our approach enables the determination of
individual degradation kernels for each pixel in the image without the require-
ment of a dataset. Each pixel’s degradation kernel in our model is expressed as
a linear combination of a dictionary of learnable atom kernels. In accordance
with the observation in [19], the shape of the degradation kernel is highly corre-
lated with the texture density of the area where its corresponding pixel is located.
Therefore, we innovatively use fuzzy set theory to derive the coefficient matrix of
the atom kernels based on the texture information of the images. Different from
the fixed atom kernel dictionary used in previous works, various degradation
kernels are enabled to be more flexibly represented thanks to the learnability
and adaptability of the proposed learnable dictionary. Our approach eliminates
the need to learn the shape of the entire atom kernels. Each atom kernel in the
proposed dictionary is uniquely determined by only three learnable parameters,
which are theoretically supported by high-dimensional Gaussian kernel decompo-
sition technology [12], significantly reducing the number of learning parameters.
Additionally, we meticulously design the likelihood function and priors under the
Maximum A Posteriori (MAP) framework to further enhance the performance
of the proposed model.
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Our main contributions can be summarized as follows:

– The first dataset-free deep learning method for BISR with an explicit spatially-
variant degradation model. To the best of our knowledge, all existing spatially-
variant degradation models require extensive training on large datasets.

– A novel Probabilistic BISR Model with elaborately designed likelihood func-
tion and prior terms. An inference algorithm for the proposed model is also
derived based on the Monte Carlo Expectation Maximization (MCEM) al-
gorithm.

– Extensive experiments on synthetic datasets and real images verify the effec-
tiveness of our method. Compared to sota dataset-free BISR methods, there
is an average improvement of 1 dB (2×) achieved.

2 Related Works

Non-learning BISR Methods: Most existing non-learning methods adopt
an iterative approach to search the HR image. These models are designed to
incorporate various handcrafted image priors, such as sparsity priors [14, 16,32,
34] and non-local similarity priors [5, 7], to address the ill-posed nature of the
BISR problem. However, these methods often yield poor performance due to the
inherent structural complexity of natural images.

Data-driven Deep Learning Methods: Many deep learning methods [6,
8, 11, 13, 19, 22, 24, 28, 35, 38, 40, 44] have been proposed for BISR task. Here,
we provide a brief introduction to spatially-variant degradation-based models.
Shocher et al . [33] propose a Zero-Shot SR (ZSSR) model to leverage the re-
curring patterns of image patches across different scales to achieve SR. Liang
et al . [20] partition images into patches and suggests a Mutual Affine Network
(MANet) to emulate space-variant blur for each patch. Kim et al . [15] design the
Kernel-Oriented Adaptive Local Adjustment (KOALA) method for jointly learn-
ing spatially-variant degradation and restoration kernels. Chen et al . [4] design
a Cross-MOdal fuSion network (CMOS) that estimate both blur and semantics
simultaneously for images with out-of-focus blur. Zhou et al . [45] improve SR re-
sults by adjusting degradation to known degradation using the proposed linearly-
assembled pixel degradation-adaptive regression module (DARM). [19,45] utilize
a dictionary of multiple pre-defined filter bases to transform the complex degra-
dation kernel prediction task into a linear coefficient regression task. [29, 37, 43]
use the HR datasets and their degradation algorithm to generate the HR-LR
dataset to train their model. These methods all require training on large gener-
ated datasets and do not fully exploit physical priors for kernel inference.

Dataset-free deep learning Methods: Training a neural network for BISR
without a dataset is challenging. Existing dataset-free methods all assume that
the priors proposed are spatially-invariant. Ulyanov et al . [36] propose the Deep
Image Prior (DIP) framework, which leverages a generator network as an implicit
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prior for SR tasks without the need for a dataset. Liang et al . [21] and Yue et
al . [41] respectively introduce implicit flow-based kernel prior (FKP) and explicit
kernel prior (EKP) into DIP to enhance the performance of BISR. Our method
also falls into this category. However, in contrast to previous approaches which
all assume that the degradation kernel is spatially-invariant, we are a pioneer in
proposing the spatially-invariant degradation model using deep learning methods
without relying on datasets. The unique degradation kernel for each pixel is
established by leveraging the texture information in its local neighborhood. This
approach tailors the degradation process for each pixel based on its individual
characteristics. Besides, the degeneration kernel in Yue et al. [41] is assumed to
follow a simple Gaussian distribution, whereas our model extremity enhances its
representation through the utilization of a Gaussian mixture model.

3 The Proposed Model

In this section, we first suggest a spatially-variant degradation model with the
HR image x and variables related to the degradation operator (see Sec. 3.1).
Then, to model the variables in the degradation model, a probabilistic model
is employed under the Maximum A Posteriori (MAP) framework, which incor-
porates uncertainty and probability distributions to represent and analyze the
variables (see Sec. 3.2). In the next section, we will utilize the MCEM algorithm
to solve the proposed probability model (see Sec. 4). The entire model and its
solution are shown in Fig. 1.

3.1 Spatially-Variant Degradation Model

Inferring the degradation kernel for each pixel is computationally expensive and
challenging, especially in the absence of a dataset. Therefore, having reasonable
prior assumptions is crucial for improving the computational efficiency and prac-
ticality of spatially-variant degradation models. Considering that each pixel in
the same photo undergoes a similar imaging process, a lower-dimensional mani-
fold should exist in the degradation operator space of a whole photo. We utilize
the O’Leary [30] formula to decompose degradation operator as follows:

(Dx)[h,w] :=
∑
r,c

ND∑
i=1

W i[h,w]Dix[h− r, w − c], (2)

where {Di}ND
i=1 is a learnable dictionary composed of a set of atom degradation

kernels, {W i}ND
i=1 is a set of coefficient matrices, ND is the number of atom degra-

dation kernels, [h,w] denotes the location of each pixel, r, c denotes the location
of the surrounding pixels. More than that, each element of the degradation ker-
nel should obey the physical constraints that it is non-negative and the sum of
all elements is equal to one, the constraints

∑ND
i=1 W i[h,w] = 1, W i ≥ 0 are

also imposed on Eq. (2). Note that in previous linearly-assembled degradation
models [19], the dictionary {Di}ND

i=1 is pre-defined and the coefficient matrices
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Fig. 1: The framework of the entire model and its solution (MCEM inference algo-
rithm). The proposed Spatially-Variant Degradation Model consists of of a dictionary
of learnable atom operators {Di}ND

i=1 and corresponding coefficient matrices {W i}ND
i=1

. Each atom degradation operator is determined by three learnable parameters θi, σi,1

and σi,2. The coefficient matrices {W i}ND
i=1 are obtained from the tentative HR image

x̃. Image prior, kernel prior and likelihood are suggested to solve the proposed spatially-
variant degradation model under the MAP framework. In the inference process, the
latent variable z is sampled in the E-Step and parameters {Γ }ND

i=1 and weights ϕ of G
are updated in M-step.

{W i}ND
i=1 need to be learned and its size is usually related to the size of the

image. We further model Di and W i separately.

Atom degradation Operator Di: Inspired by the the fact that any continuous
distribution can be approximated with any specific non-zero amount of error by
a Gaussian mixture model with sufficient components [27]. The atom degrada-
tion operator Di is expressed through convolution with an anisotropic Gaussian
degradation kernel gi in Eq. (2). Additionally, the anisotropic Gaussian degra-
dation kernel can be decomposed [12] as follows:

Di ≜ gi (x1, x2) =

2∏
l=1

1√
2πσi,l

exp

(
−
(
x⊤νl

)2
2σ2

i,l

)
, (3)

where x = (x1, x2)
⊤ ∈ R2, ν1= (cos(θi), sin(θi)) and ν2= (− sin(θi), cos(θi))

⊤,
σi,l are the variances of the two isotropic Gaussian kernels obtained by decom-
posing gi, and θi ∈ [0, π) is the rotation angle of the coordinate axis. Note
that for the given W i, Eq. (2) is differentiable w.r.t. the set of free parame-
ters Γ = {θi, σi,1, σi,2}, indicating that {Di} are learnable. The learnable atom
degradation operator is in stark contrast to previous spatially-variant degrada-
tion models, where the atom degradation kernel is fixed.
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Coefficient Matrices W i: The shape of the degradation kernel is significantly
different between pixels in flat areas and high texture density areas [19]. Inspired
by the correlation between the shape of the degradation kernel and the texture
richness of its region, we propose to estimate the set of coefficient matrices W i

for the atom degradation kernel through a sequence of membership functions of
fuzzy set theory, utilizing the tentative HR image x̃ as follows:

W i =
µi(x̃)∑ND
i=1 µi(x̃)

. (4)

Eq. (4) is a sum normalization operation, aiming to ensure the physical prior
that the sum of all elements is equal to one. As a reminder, when ND = 1, the
coefficient matrix corresponding to the only degradation kernel is an all-ones ma-
trix, which makes the proposed degradation model naturally degenerates into a
conventional spatially-invariant degradation model. When ND ≥ 2, membership
function {µi}

ND
i=1 are defined as follows:

µi(x̃) = exp

(
− (ND − 1)

2σ2
g

(
h (x̃)− i− 1

ND − 1

)2
)
, (5)

where σg is the shape parameter. h(·) is the feature extraction function used to
extract the texture features of x̃, i.e.,

h (x̃) = H ∗ (∇x̃), (6)

where ∗ denotes the convolution operator, H is a median filter with window size
P × P , ∇ is a first-order derivative used to extract the texture features of x̃.
Remark 1. The proposed degradation model offers a more compact yet ex-
pressive approach compared to previous spatially-invariant degradation mod-
els [15,19–21,41], which fully utilizes the low dimensional manifold information
in the imaging process and greatly reduces the number of learned parameters.
The learnable degradation kernel dictionary ensures the expressive ability of the
proposed degradation model, and the coefficient matrix obtained through fuzzy
set theory makes full use of the physical information in the image. This allows
the proposed spatially-variant degradation model to be effectively utilized on a
single LR image without the need for extensive dataset training.

3.2 Probabilistic BISR Model

We construct a probabilistic BISR model based on the proposed Spatially-
Variant degradation model illustrated in Sec. 3.1. Under the MAP framework,
Eq. (1) can be modeled as a MAP estimation as follows:

max
D,x

log p(y | D,x) + log p(x) + log p(D), (7)

where p(y | D,x) represents the likelihood, while p(x) and p(D) denote im-
age prior and kernel prior. We elaborately design these three terms to achieve
accurate HR reconstruction without relying on a dataset.
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Likelihood: Unlike most existing methods that only consider the likelihood p(y |
D,x) in the spatial domain, in this work we define a likelihood in both the
spatial domain and the frequency domain as:

y ∼ N (y | (Dx) ↓s, σt1)N (F (y) | F ((Dx) ↓s) , σf1), (8)

where 1 represents the identity matrix, σt and σf are hyper-parameters which
represent the variances of Gaussian white noise in the spatial and frequency do-
mains, respectively. The likelihood in the frequency domain enhances the recon-
struction effectiveness of the proposed model. An ablation study of the frequency
domain likelihood can be found in Sec. 5.

Kernel Prior: Based on the aforementioned implicit constraints priors and phys-
ical priors, a spatially-variant degradation model is plugged into Eq. (7) as the
kernel prior. Next, each element of Γ can be naturally defined as Dirac distri-
butions with the ground truth Γ̂ = {θ̂i, σ̂i,1, σ̂i,2}, i.e.,

Γ ∼
h×w∏
i=1

Dirac(θi | θ̂i)
h×w∏
i=1

2∏
l=1

Dirac(σi,l | σ̂i,l). (9)

Since the ground truth θ̂i are unknowns in BISR, we adopt Gaussian distri-
butions with zero mean and variance σγ to represent Eq. (9) as:

Γ ∼
h×w∏
i=1

N (θi | 0, σγ)

h×w∏
i=1

2∏
l=1

N (σi,l | 0, σγ). (10)

Remark 2. By employing Eq. (9) and Eq. (10), our model is versatile, capable of
accommodating both blind SR with Dirac distributions using the ground truth
Γ̂ and non-blind SR with Gaussian distributions featuring a zero mean and
variance σγ .

Image Prior: We approximately characterize the complex structural nature of
natural images by reparametrizing the latent space using a network G with 3-
layer encoder-decoder structure U-net, i.e.,

x = G (z;ϕ) , (11)

where z denotes the latent variable, ϕ denotes the deterministic weights of G.
The joint distribution of ϕ and z is defined as:

(ϕ, z) ∼ p(ϕ, z) = p(ϕ | z)p(z). (12)

Considering the powerful fitting capability of CNN, conventional Laplacian
prior with scale σx and Gaussian prior with variance σz are to mitigate the
overfitting phenomenon. These priors are defined as:

p(ϕ | z) = L(∇G (z;ϕ) | 0, σx1), (13)
p(z) ∼ N (z | 0, σz1). (14)
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Algorithm 1 MCEM Inference Algorithm
Input: Observed LR image y, hyper-paramter settings.
Output: the estimated HR image x̃.
1: while not converged do
2: E-Step: Sample the latent variable z from Eq. (16)
3: M-Step Update parameter Γ and ϕ based on Eq. (18)
4: end while
5: x̃ = G(z;ϕ)

where z denotes the first coefficient matrix used to emphasize texture informa-
tion. We incorporate instance normalization layers on G and skip connection
structure in the frequency domain like [25] to alleviate overfitting in a dataset-
free setting. The details of G can be found in the supplementary material.

4 MCEM Inference Algorithm

In this section, we utilize the MCEM inference algorithm to solve the pro-
posed probabilistic BISR model in Sec. 3.2. First, we remodel BISR according to
the preview equation. Then, in the E-step, we adopt Langevin dynamics (LD) as
a Monte Carlo sampler to search for the optimal distribution of z and maximize
the Evidence Lower Bound (ELBO) with respect to the model parameters in
the M-step. According to Eqs. (7) to (14), we re-model BISR with an additional
inference of parameters:

max
Γ ,ϕ

p(Γ ,ϕ | y) = log

∫
p(y | Γ ,ϕ, z)p(Γ | y)p(ϕ | z)p(z)dz + const. (15)

E-Step: In the E-Step, we fix the parameters in Eq. (15) and search for the opti-
mal distribution of z. We denote it as p(z | y,Γ old,ϕold), where {Γ old,ϕold} rep-
resents the current parameters. z can be approximately sampled using Stochastic
Gradient Langevin Dynamics (SGLD) for τ = 1, 2, . . . , nz.

zτ+1 = zτ + α
∂

∂z
log p(zτ | y,Γ old,ϕold) +

√
2αζ, (16)

where α denotes the step size satisfying Robbins-Monro condition, ζ ∼ N (0,1)
represents Gaussian white noise used to prevent trapping into local modes.

The posterior of z can be calculated according to Eqs. (8), (13) and (14) as:

p(z | y,Γ old,ϕold) =
1

2σ2
t

∥y −Doldxold∥22 +
1

2σx
∥∇xold∥

+
1

2σ2
f

∥F (y)−F (Doldxold)∥22 +
1

2σ2
z

∥z∥22 ,
(17)

where Dold denotes the degradation operator determined by Γ old, and xold de-
notes the HR image generated by G (z;ϕold).
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M-Step: The M-step aims to maximize the Evidence Lower Bound (ELBO) w.r.t.
the model parameters. Fixing the sampled latent variable z in the E-step, the
objective function for optimizing model parameters Γ and ϕ can be formulated
based on Eqs. (8), (10) and (13) as:

max
Γ ,ϕ

Q(Γ ,ϕ) ⇒ min
Γ ,ϕ

E(Γ ,ϕ)
1

2σt
2
∥y −Dx∥22 +

1

2σγ
2

h×w∑
i=1

∥θi∥22

+
1

2σf
2
∥F (y)−F (Dx)∥22 +

1

2σx
∥∇x∥+ 1

2σγ
2

h×w∑
i=1

2∑
l=1

∥σi,l∥22 .

σt
2 =

σ2
y

a ln(1 +W down
ND

) + b
(18)

where a, b and σy are are hyper-parameters empirically set to 45000, 8000 and
1, respectively. W down

ND
denotes the last layer coefficient matrix after sampling.

Eq. (18) can be solved via ADAM optimizer. The whole MCEM Inference Algo-
rithm is illustrated in Algorithm 1.

5 Experiments

In the rest of this paper, we refer to our Spatially-Variant Degradation Model
for dataset-free Super-Resolution as SVDSR.

5.1 Experimental Settings

Parameter Settings: Throughout the experiments, we set the number of atom
degradation kernels ND as 5. For the membership functions, a median filter with
a square window size of 15 is utilized to extract the texture information from the
image, and the shape parameter of the membership function σg is empirically
set to 0.5. For simplicity, the variance σf of the frequency domain in likelihood
is set to 2. A generation network G with 3-layer encoder-decoder structure U-net
is employed to predict the HR image, and the Laplace distribution prior with a
variance σx of 2.5 and a Gaussian distribution prior with a variance σz of 1 are
used to alleviate the occurrence of overfitting. Since the real degradation kernels
are unknown in the BISR task, we empirically use a Gaussian distribution with
a variance σγ of 1.5 to simulate their distribution. The hyperparameters α and
nz for z sampling are set to 1.5 and 5. For the sake of fairness in comparison,
the learning rates for γ and ϕ are set to 2 × 10−3 and 5 × 10−3, respectively,
which are the same as BSRDM [41]. The maximum iteration number of the EM
algorithm is capped at 5,000.

Comparison Methods: To evaluate our model, we compare it against five meth-
ods, namely RCAN [44], ZSSR [33], DoubleDIP [18], DIPFKP [21] and BSRDM [41].
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Table 1: Quantitative comparison on various datasets. The gray results indicate unfair
comparisons. (The degradation models of ZSSR and RCAN both assume bicubic down-
sampling, while ZSSR-NB operates in a non-blind setting with access to the ground
truth of the degradation kernel.) The best results of fair method comparison are high-
lighted in bold.

Method Scale Set5 Set14 Urban100 Manga109 DIV2K100

Factor PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

RCAN [44] ×2 26.75 / 0.81 24.77 / 0.70 22.46 / 0.66 23.56 / 0.78 26.05 / 0.74
ZSSR [33] ×2 26.72 / 0.81 24.46 / 0.70 22.47 / 0.66 23.53 / 0.78 26.03 / 0.74
ZSSR-NB [33] ×2 33.40 / 0.91 30.08 / 0.85 27.67 / 0.83 32.19 / 0.91 31.24 / 0.87
DoubleDIP [31] ×2 18.57 / 0.48 18.90 / 0.44 17.18 / 0.41 18.44 / 0.58 20.40 / 0.50
DIPFKP [21] ×2 28.76 / 0.86 26.38 / 0.75 24.60 / 0.72 27.75 / 0.85 27.19 / 0.75
BSRDM [41] ×2 32.76 / 0.91 28.65 / 0.81 25.46 / 0.76 28.49 / 0.87 28.32 / 0.78
Our ×2 33.51 / 0.92 29.61 / 0.83 26.40 / 0.79 29.89 / 0.89 29.46 / 0.82

RCAN [44] ×3 23.12 / 0.68 21.71 / 0.55 19.71 / 0.51 20.13 / 0.64 23.05 / 0.61
ZSSR [33] ×3 23.02 / 0.68 21.54 / 0.55 19.93 / 0.52 20.21 / 0.65 23.14 / 0.62
ZSSR-NB [33] ×3 26.88 / 0.78 24.19 / 0.66 22.43 / 0.63 24.05 / 0.75 26.11 / 0.71
DoubleDIP [31] ×3 17.39 / 0.42 18.22 / 0.41 16.96 / 0.40 18.19 / 0.56 20.10 / 0.50
DIPFKP [21] ×3 25.47 / 0.82 25.06 / 0.72 23.51 / 0.69 26.54 / 0.83 26.16 / 0.72
BSRDM [41] ×3 30.96 / 0.88 27.67 / 0.77 24.66 / 0.72 27.44 / 0.85 27.67 / 0.76
Our ×3 31.37 / 0.89 28.14 / 0.79 25.26 / 0.75 28.50 / 0.87 28.51 / 0.79

RCAN [44] ×4 20.59 / 0.57 19.91 / 0.47 17.82 / 0.41 17.90 / 0.55 21.18 / 0.54
ZSSR [33] ×4 20.63 / 0.57 20.02 / 0.48 18.39 / 0.43 18.29 / 0.56 21.45 / 0.55
ZSSR-NB [33] ×4 23.24 / 0.62 23.19 / 0.60 21.89 / 0.59 23.60 / 0.72 25.81 / 0.69
DoubleDIP [31] ×4 17.53 / 0.43 18.24 / 0.41 17.25 / 0.40 17.49 / 0.53 20.05 / 0.50
DIPFKP [21] ×4 24.32 / 0.81 23.93 / 0.68 22.56 / 0.66 24.86 / 0.79 25.16 / 0.70
BSRDM [41] ×4 29.02 / 0.85 26.63 / 0.73 23.47 / 0.68 25.77 / 0.81 26.74 / 0.72
Our ×4 29.29 / 0.85 26.81 / 0.73 23.90 / 0.70 26.44 / 0.83 27.34 / 0.75

RCAN is a residual channel attention networks with residual in residual (RIR)
structure. LARPAR [19] is not used for comparison due to its degradation ker-
nel and downsampling methods are different compared to common dataset-free
methods. ZSSR is a zero-shot method that exploits the patch recurrence within
the same image scale, as well as across different scales in a single image. Since
the degradation models of ZSSR and RCAN are both assumed to be a bicubic
downsampler, it is unfair to compare with their methods on datasets generated
using Gaussian degradation kernels. In addition to testing the above methods
in the BISR, we also test the effect of ZSSR in the non-blind case. The ground
truth of the degradation kernel is provided by us. By incorporating the non-
blind method, different models can be better evaluated. DoubleDIP, DIPFKP,
and BSRDM are the same type of comparison methods as our method, which
propose different degradation models to better reconstruct image details. Among
them, the degradation model of BSRDM is spatially-invariant and BSRDM is
known as a state-of-the-art (SOTA) method in Dataset-free BISR. All the code
used for comparison comes from their official website.

5.2 Evaluation on Synthetic Data

We adopt five widely-used datasets to synthesize degradation images for
evaluation, including Set5 [3], Set14 [42], Urban100 [9], Manga109 [26] and
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Bilinear ZSSR-NB DoubleDIP DIPFKP BSRDM Our GT

Fig. 2: Visualization of the synthetic images. Each row, from top to bottom, contains
super resolved images from Urban100, DIV2K100 and Manga109, under the scale factor
of 2, 3 and 4, respectively.

DIV2K100 [1]. The LR image is first randomly blurred by six degradation kernels,
and then downsampled with scale factors 2, 3, and 4 respectively. In addition,
1% Gaussian noise is also added to the LR image to better simulate degrada-
tion images in real scenes. The six degradation kernels used are sourced from
BSRDM, which includes two isotropic Gaussian kernels with different widths and
four isotropic Gaussian kernels. To address GPU memory limitations, all images
larger than 1024 × 1024 are cropped below the center. The results are evalu-
ated by the peak signal-to-noise ratio (PSNR, measured in dB) and structural
similarity index (SSIM) [39]. PSNR and SSIM are evaluated on the Y channel
of the transformed YCbCr color space using MATLAB. The PSNR and SSIM
of different methods under different datasets are shown in Tab. 1.

It is evident that our proposed method SVDSR outperforms the SOTA
method BSRDM in 2× SR„ and also has certain advantages in 4×SR. This
is because compared with the spatially-invariant degradation model, the pro-
posed spatially-variant degradation model fully utilizes the physical information
in the image, but at 4×SR, due to the excessive loss of texture information in the
image, the superiority of the SVDSR decreases to a certain extent. The perfor-
mance of Data-driven SR methods RCAN and ZSSR significantly degrades when
the degradation kernel deviates from their bicubic degradation assumptions. In
addition, SVDSR remains competitive with the non-blind methods ZSSR-NB,
which strongly demonstrates the effectiveness of the proposed spatially-variant
degradation model in estimating the degradation kernel. The superior perfor-
mance on the natural image dataset DIV2K100 and the cartoon image dataset
Manga109 shows the good adaptability of SVDSR on different images.

Fig. 2 compares the visual effects with varying scale factors. It is obvious
that our method can achieve favorable results in photos under different scenar-
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(a) (b) (c)

Fig. 3: (a) Visualization of the coefficient matrices and the corresponding learned
atom degradation kernels of the image Baby under the scale factor of 2 in Set 5. (b)
Visualization of the synthetic images with the spatially-invariant degradation model
(top) and spatially-variant degradation model (bottom). (c) Convergence curves.

Bilinear RCAN ZSSR DoubleDIP DIPFKP BSRDM Our

Fig. 4: Visualization of the RealSRSet under scale factor of 2(top) and 4(bottom).

ios, especially in areas with complex details. This is attributed to the substantial
differences in degradation kernel information between flat areas and densely tex-
tured areas in the image. Our proposed SVDSR leverages each pixel in the image
to estimate its own degradation kernel, utilizing the texture information of the
region in which the pixel is located. This approach enhances our ability to model
image degradation, resulting in superior performance in BISR. Fig. 3(a) shows
the derived coefficient matrices and the corresponding learned atom degradation
kernels exported from the baby image. It can be seen that the derived coeffi-
cient matrices well reflect the texture information of the image and the detail
reconstruction effect under the spatially-variant model in Fig. 3(b) is remark-
able. Moreover, there are significant differences in the shape of atom degradation
kernels in different regions, which is exactly the same phenomenon observed in
LARPAR [19]. Fig. 3(c) demonstrates the convergence on different datasets.

5.3 Evaluation on Real Data

To further demonstrate the applicability of our method to real images, we
evaluated data-driven and dataset-free methods using a small dataset called
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RealSRSet [43], which consists of 20 real images. As ground truth for real-world
images is unavailable, we performed visual comparisons only on the HR images
generated by different methods. A subset of estimated HR images is depicted
in Fig. 4. It is evident that our proposed method outperforms other dataset-
free methods significantly in terms of detail restoration and is comparable to
data-driven methods. Given that the SOTA method BSRDM also incorporates
denoising during BISR, detailed areas such as the tiger’s hair exhibit varying
degrees of blurring in BISR for real images.

5.4 Comparison on Model Size and Runtime

We further compare different models in terms of running time and memory.
The comparison results are shown in Tab. 2. All tests were conducted on the
GeForce RTX 3090 GPU. We test the running time of SR with scale factors of 2,
3, and 4 for 256 × 256 images. For the sake of fairness, only four methods based
on traditional degradation models are considered, namely ZSSR, DoubleDIP,
DIPFKP, and BSRDM. It can be seen that even though SVDSR estimates its
own degradation kernel for each pixel, its time and memory consumption do not
exceed BSRDM significantly. This suggests that our model has greater potential
for practical utilization than these methods in real-world scenarios.

5.5 Ablation Studies and Analysis

Ablation Studies To assess the efficiency of each module in our proposed
method, we construct three baselines on Set 14 under the scale factor of 2 to
analyze the effectiveness of the innovative likelihood and image prior in SVDSR.

– Case1: Likelihood only contains the spatial domain, and the frequency domain
term is removed.

– Case2: The results of the encoder in the generation network is directly concate-
nated with the input of the corresponding decoder, instead of using FFT(Fast
Fourier Transform) and IFFT(Inverse Fast Fourier Transform).

– Case3: Instance layer in the network is removed to verify the Instance layer’s
alleviating effect on the overfitting phenomenon of the generation network.

As shown in Tab. 3, when the skip structure of the G and the likelihood func-
tion in the frequency domain are removed, the PSNR index of the data results
is reduced to some extent. After removing the instance layer used to alleviate
the overfitting phenomenon of the generation net, the results of our model are
significantly diminished. This study demonstrates that our proposed novel like-
lihood function, and image prior all contribute to improving the performance of
our method and are applicable to other network architectures.
Analysis of The Atom Kernel Dictionary We investigated the impact of
the number of atom degradation kernels on SVDSR. We found that the optimal
number of atom degradation kernel varies for different images, but it is usually
a single digit. This indicates that the 72 pre-defined atom kernel used in the
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Table 2: Comparison of different methods on model size, run-
time and iterations for 2× BISR..

Methods ZSSR DoubleDIP DIPFKP BSRDM SVDSR
Time 63s 220s 68s 30s 33s

Parameters 225k 2396k 2396k 762k 850k
Iterations 3000 2500 1000 5000 5000

Table 3: PSNR of
different case.

Case 1 29.61
Case 2 29.52
Case 3 29.28

Table 4: The impact of the number of atom blur ker-
nels(PSNR).

Number ND=1 ND=3 ND=5 ND=7 ND=9 NB
Set5 33.19 33.29 33.51 33.43 33.27 34.44
Set14 29.13 29.40 29.61 29.58 29.59 30.32

Urban100 25.90 26.11 26.40 26.21 26.20 27.14
Manga109 29.23 29.53 29.89 29.67 29.74 31.13
DIV2K100 29.05 29.30 29.46 29.52 29.54 30.06

Table 5: The impact of
hyperparameter.

σx σy

0.25 27.06 0.1 29.56
25 29.74 10 28.30
σγ σf

0.15 29.53 0.2 29.39
15 29.60 20 29.63

previous method [19, 45] are redundant. Due to the good consistency of image
characteristics in the set5, the experiment was conducted on set 5 under the
scale factor of 2. Tab. 4 shows the effect of SVDSR with different number ND of
atom degradation kernels and non-blind setting. When ND=1, SVDSR is equiv-
alent to the spatially-invariant degradation model. The effectiveness of SVDSR
improves initially as ND increases. However, as ND exceeds 5, the performance
of SVDSR starts to decline. Tab. 5 demonstrates the impact of hyperparame-
ters. We follow BSRDM for hyperparameter settings for fairness. We can even
achieve better results in other parameter settings, e.g., σf = 20, σx=25. The
visual representation and hyper-parameter analysis of membership function can
be found in the supplementary material.

6 Conclusion and Limitations

This paper introduces a fuzzy degradation model to deal with the ambiguity
of dataset-free Blind Image Super-Resolution (BISR) solutions in different re-
gions. We present the degradation kernel of each pixel as a linear combination of
a learnable dictionary consisting of a small number of fuzzy atom kernels. The
coefficients of these atom degradation kernels are derived using membership func-
tions, allowing us to capture the uncertainty and variability in the degradation
process. We propose a Probabilistic BISR framework with customized likelihood
and prior terms. The Monte Carlo EM algorithm, which iteratively estimates
the degradation kernels of each pixel while considering the probabilistic nature
of the problem is employed. Extensive experiments show the superiority of our
method. Color distortion is a challenge faced by most SR methods due to strong
noise in several images. Similarly, our method also encounters this problem, and
our future goal is to achieve better denoising while preserving more details.
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