
Supplementary Materials for
DreamView: Injecting View-specific Text

Guidance into Text-to-3D Generation

In this supplementary material, we provide the details of the dataset we
rendered and our implementations (Section 1). Additionally, we present more
qualitative text-to-3D generation results in Section 2, including more compar-
isons, more results with general prompts, and combining DreamView-2D with
another 2D-lifting technique. And we also discuss directly applying our injection
module to other text-to-image models for 3D generation and some other ways to
exploit the view-specific guidance. Besides, we discuss two potential ways to re-
duce the users’ burden to write view-specific prompts in Section 3. The dataset,
model, and code will be released at here.

1 More Implementation Details

Rendering Details. Our dataset is rendered from the Objaverse [3] dataset,
which contains more than 800k 3D assets. We follow the following pipeline to
construct our dataset.

1. Rendering: For each 3D asset, we first normalize the object at the center
covered by a bounding box between [−0.5, 0.5]. Then, we random sample a
camera elevation between [0, 30] and adjust the camera distance to ensure
the entire 3D object is visible at any azimuth. Last, we uniformly render 32
images for the 3D object, starting from azimuth=0, and the camera position
is saved at the same time. The illuminant comes from a three-point light
source. The rendered size is set to be 512× 512, and the background of the
rendered image is a gray background. In total, we render ∼435k 3D assets,
resulting in ∼14M rendered images.

2. Captioning: We apply the BLIP-2 [5] captioning model to caption the ren-
dered images. For each image, we generate 5 captions. Then, we use CLIP [11]
to select one caption with the highest CLIP score with the rendered image,
forming the view-specific text.

3. Merging: We use GPT-4 [9] to merge the 32 view-specific text, forming the
overall text. The input of GPT-4 is a sentence templated as “Given a set
of descriptions about the same 3D object, distill these descriptions into one
concise caption. The descriptions are as follows: ‘text’. Avoid describing the
background. The caption should be:”, where the ‘text’ is the used 32 texts.

We show some samples from our dataset in Figure 1. As we can see, the view-
specific text does describe the content visible from its corresponding viewpoint.
For example, only the cape (robe) can be seen in the sample’s first and fourth
image views in the top-right corner, so their texts only describe the cape (robe,

https://github.com/iSEE-Laboratory/DreamView
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a green crocodile made out of paper

A green 3D pixelated model of a rhino-like animal with a pink nose.

a green and pink cow in minecraft

a green chair in minecraft

a green crocodile in minecraft

Low poly 3D model of Batman with a cape.

a 3d model of a white bag on a gray background

a 3d model of a man in a cape

a low poly 3d model of a man wearing a cape

a 3d model of a white robe

A 3D model of a pair of small speakers.

a 3d model of a metal door with a smiley face on it

a dark brown square notebook on a grey background

a brown leather notebook on a grey background

a pair of speakers on a gray background

a teddy bear wearing a top hat and a bowknot

3D model of a brown teddy bear wearing a top hat and a bowknot from Five Nights at Freddy's.

a teddy bear wearing a top hat and a bowknot

a brown teddy bear wearing a top hat

a 3d model of a teddy bear with a top hat

Fig. 1: Samples from our dataset. We render 32 views for each 3D object in the Ob-
javerse [3] dataset and 4 orthogonal image views are shown in this figure. The text
beside the image is its corresponding view-specific text and the text below the image
is the overall text.

bag). Moreover, the overall text integrates text descriptions from other view-
points, thus providing a more comprehensive description, e.g., the “Batman”
and “from Five Nights at Freddy’s” in the top-right and bottom-right samples.

DreamView-2D.

1. Training: We use a combined dataset consisting of our rendered dataset and
a subset of the 2D LAION dataset [13]. In each training iteration, we select
3D data with a 70% probability and 2D data with a 30% probability. For each
3D object, we randomly select 4 orthogonal image views, and their captions
are suffixed with “3D asset” if the raw captions do not contain the word ‘3D’
to distinguish from 2D data. We use 16 V100 to train the model. The batch
size is 256 (4 objects, each object has 4 image views, across 16 GPUs), and
the gradient is accumulated from 8 batches, forming a total batch size of
2,048. We use the AdamW [8] optimizer, and the learning rate is set to 1e−4.
The image size is 256 × 256. We randomly drop the text condition with a



3

10% probability. The margin is randomly sampled from -0.1 to 0.1 for each
training iteration. We use SD-v2.1 as the model initialization, and the base
network architecture is mostly the same as those used in [10,14,16,17].

2. Inference: We adopt the DDIM [15] sampler with 50 sampling steps and a
classifier-free guidance (CFG) scale of 7.5 for the text-to-image generation.
By default, we generate 4 views simultaneously in inference and adopt a
margin of -0.025.

DreamView-3D. We implement DreamView-3D by building upon threestu-
dio [4] and substituting Stable Diffusion [12] in DreamFusion [10] with our text-
to-image model (DreamView-2D) for text-to-3D generation. To represent the 3D
content, we employ the implicit-volume approach (Mip-Nerf [1]) and optimize
it for 10,000 steps using the AdamW optimizer [8] with a learning rate of 0.01.
The optimization takes about 55 minutes on an A100 GPU. During the first
8,000 optimization steps, SDS’s maximum and minimum time steps are linearly
decreased from 0.98 to 0.5 and 0.02, respectively. The CFG scale is set to 50,
and we use a rescaling factor of 0.5 for the CFG rescaling. Initially, the rendering
resolution and batch size are set to 64×64 and 8 for the first 5,000 steps and are
then changed to 256×256 and 4. After 5,000 steps, we enable soft shading [6]. In
most cases, we divide the azimuth angle of the camera position into four intervals:
[10, 170] is the front side, (170, 190) is the right side, [190, 350] is the back side,
and the remaining part is the left side. We use “ugly, bad anatomy, blurry, pixe-
lated obscure, unnatural colors, poor lighting, dull, and unclear, cropped, lowres,
low quality, artifacts, duplicate, morbid, mutilated, poorly drawn face, deformed,
dehydrated, bad proportions” as the negative text prompt. The margin of the
DreamView-2D is set to be -0.025.

2 More Evaluations

2.1 Comparisons with Others on Text-to-3D Generation

In Figures 2 to 4, we compared the 3D generation results of 7 different methods
under 3 text prompts containing customized content. We start from azimuth=0
degrees and show a total of 8 views at 45-degree intervals. These results demon-
strate that other methods either suffer from the 3D inconsistent problem, e.g.,
multi-face and multi-foot problems, or cannot accurately generate specified con-
tent based on the text. In contrast, our method can include both 3D consistency
and viewpoint customization capabilities.
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Fig. 2: 3D generation results of “An open MAC book showing the logo of Superman
on the screen”. View-specific text: -Front: “An open MAC book showing the logo of
Superman on the screen”. -Back: “Back and side view of an open MAC book with an
apple logo”. -Side: “Side view of an open MAC book”. Note that the view-specific texts
for the right and left are the same.
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Fig. 3: 3D generation results of “A penguin wearing a scarf, carrying a crossbody bag
on the back, 8K, HD, 3d render, best quality”. View-specific text: -Front: “A penguin
wearing a scarf, 8K, HD, 3d render, best quality”. -Back: “A penguin carrying a cross-
body bag on the back, 8K, HD, 3d render, best quality”. -Side: “A penguin wearing a
scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality”. Note
that the view-specific texts for the right and left are the same.
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Fig. 4: 3D generation results of “An astronaut riding a horse, wearing a white space
suit, carrying a red backpack on the back”. View-specific text: -Front: “A horse and an
astronaut with a white space suit is riding the horse”. -Back: “A red backpack is carried
on the astronaut’s back”. -Side: “A red backpack, a horse, an astronaut with a white
space suit”. Note that the view-specific texts for the right and left are the same.
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SD-XL

SyncDreamer

Zero-1-to-3 XL

DreamView-3D

- A penguin wearing a scarf and carrying a crossbody bag on the back

Fig. 5: Comparisons between DreamView-3D and image-to-3D methods. The reference
image for performing image-to-3D is generated by SD-XL with the overall text.

2.2 Discussion with Image-to-3D Generation

In addition to text-to-3D generation, another stream of methods synthesizes 3D
assets via lifting 2D images. We compare ours with them in Figure 5, where the
reference image is generated by SD-XL using the overall text prompt. According
to the results, although SD-XL can generate the concepts of the penguin, scarf,
and crossbody bag, the crossbody bag is still overlooked when the generated
image is lifted to a 3D object via Zero-1-to-3 XL [2] and SyncDreamer [7]. More
importantly, these methods accept a single image for generating 3D assets, which
inherently contradicts the diversity of appearance across viewpoints, making such
singe-image-to-3D methods difficult to achieve customizable 3D generation.
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A ceramic lion

A DSLR photo of a bear dressed in medieval armor

A crocodile playing a drum set

A cute steampunk elephant

A zoomed out DSLR photo of a panda throwing wads of cash into the air

An opulent couch from the palace of Versailles

A DSLR photo of a pair of headphones sitting on a desk

Fig. 6: 3D generation results of our DreamView with general prompts, i.e., only the
overall text is used.

2.3 More Results with General Prompts

We also show more generation results with general prompts in Figure 6, where
the used overall text prompts are from the prompt library 1. The results demon-
strate that our model can also work with general prompts and generate highly
consistent 3D objects with high fidelity.

1 Prompt Library

https://github.com/threestudio-project/threestudio/blob/main/load/prompt_library.json
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- Overall: A T-shirt with a sun on the front and some letters on the back
- Front: A T-shirt with a sun on it
- Side: A T-shirt
- Back: A T-shirt with some letters
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- Overall: A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Front: A penguin wearing a scarf, 8K, HD, 3d render, best quality
- Side: A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Back: A penguin carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
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- Overall: A chimpanzee dressed like Henry VIII king of England, 8K, HD 

Fig. 7: 3D generation results via SDS guidance [10] and SJC guidance [16]. The first
two cases adopt view-specific texts, and the last case merely uses the overall text.

2.4 Combing DreamView-2D with SJC Guidance

In the main manuscript, we mainly build our DreamView-3D upon the SDS
guidance proposed in DreamFusion [10]. Now, we adopt the SJC [16] guidance
to lift our DreamView-2D to conduct text-to-3D generation, where the results are
shown in Figure 7. The results demonstrate that DreamView-2D can work with
other 2D-lifting techniques, such as SJC, not limited to SDS, and the properties
of customization and consistency are still preserved. Besides, DreamView-2D
is expected to be combined with VSD [17] to further improve the generation
quality, which will be reserved for future work.
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- Overall: A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Front: A penguin wearing a scarf, 8K, HD, 3d render, best quality
- Side: A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Back: A penguin carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
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Fig. 8: 3D generation results of directly applying our adaptive injection module to
DreamFusion and MVDream. The scarf is presented correctly for DreamFusion and
MVDream with the injection module, but they still fail to generate the crossbody bag.

2.5 Applying the Injection Module to Other Text-to-image Models

We directly apply our proposed adaptive guidance injection module to the text-
to-image models used in DreamFusion [10] and MVDream [14] to verify if the
injection module can introduce customization ability to them.

The results in Figure 8 show that when the injection module is directly ap-
plied to DreamFusion, the scarf can be successfully presented while still failing
to generate the crossbody bag. A similar phenomenon also occurs when applying
the injection module to MVDream. Overall, our injection module can be directly
integrated with these models and enables them to achieve some viewpoint cus-
tomization without view customization training, verifying the universality of the
injection method. However, their customization capability is not as ideal as our
DreamView.
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- Overall: A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Front: A penguin wearing a scarf, 8K, HD, 3d render, best quality
- Side: A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Back: A penguin carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
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- Overall: Captain America holding a hammer on one hand and a shield on the other hand, 8K, HD, 3d render, best quality
- Front: Captain America holding a hammer on one hand and a shield on the other hand, 8K, HD, 3d render, best quality
- Right: The shield of Captain America is holding by Captain America, 8K, HD, 3d render, best quality
- Back: The back of Captain America holding a hammer on one hand and a shield on the other hand, 8K, HD, 3d render, best quality
- Left: A hammer is holding by Captain America, 8K, HD, 3d render, best quality

Fig. 9: Comparisons between adaptive injection and another two injection methods.

2.6 Other Ways to Use View-specific Text Guidance

We propose an adaptive way to use the view-specific and overall text guidance
in DreamView. Except for adaptively injecting view-specific text guidance, we
explore two other ways to inject them, termed concatenating and alternating
injection. The former concatenates the text embeddings of the overall text and
view-specific text to form the condition for all diffusion U-Net blocks. The latter
alternately injects the overall text and view-specific text into the U-Net block.
Specifically, it injects the view-specific text embedding to a U-Net block whose
Layer ID can not be divided by 2. Otherwise, the overall text embedding is in-
jected. In brief, these two injection methods inject the overall and view-specific
text in a pre-defined static way. Compared with them, the adaptive injection
module used in DreamView determines which guidance should be used in the
current U-Net block according to the similarities between the text-image em-
bedding, which is a dynamic process.
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The comparisons are shown in Figure 9. According to the results, concate-
nating injection fails to fully customize the 3D content, e.g., the crossbody bag
and the hammer. Besides, the alternating injection performs well in generating
the penguin. However, it fails to generate the hammer in the second case, where
we also observe slight 3D inconsistency, i.e., the multi-face problem and some
noise.

In conclusion, our adaptive injection module, which utilizes two kinds of
guidance in a dynamic way, can achieve a better balance between consistency
and customization than the concatenating and alternating injection methods
that inject the overall and view-specific text in a static way.

3 Reducing the Burden of Writing Prompts

All the text prompts used in DreamView, including the overall text and four
view-specific prompts, are hand-written by default. Although such a way can
ensure the accuracy of the description as much as possible, it undoubtedly brings
additional burdens to users. Here, we discuss two potential ways to help users
lower the burden of providing view-specific text prompts: (1) Appending the
direction description text to the overall text to generate view-specific texts; (2)
Asking Large Language Models (LLMs) for generating view-specific texts. We
take the “penguin” case as an example and discuss them as follows.

Way 1: We append the direction description text, e.g., ‘from the front view’
and ‘from the back view’, etc., to the overall text to generate view-specific text,
which is inspired by the view-dependent conditioning in DreamFusion [10] that
initially designed for alleviating the 3D inconsistent problem. The results are
shown in the second row of Figure 10, where the crossbody bag is not successfully
presented. We conjecture this is because the model has rarely learned the concept
of direction description during its training. A possible solution is to add direction
descriptions to the texts in the training set and retrain the model, but this may
incur some annotation costs, which will be further explored in the future.

Way 2: We ask GPT-4 [9] to generate view-specific texts in a one-shot way,
where the used text prompt template is:

The input is an overall text description of a 3D object from the global level.
Please output its descriptions from the front, right, back, and left view based on
this overall description, and return the result in a JSON format. I will give you
an example:

Input: ‘An Iron man carrying the shield of Captain America on the back’.
Output: {‘Front’: ‘An Iron man’, ‘Right’: ‘An Iron man with a shield on the

back’, ‘Back’: ‘The shield of Captain America is on the Iron man’s back’, ‘Left’:
‘An Iron man with a shield on the back’}

Now, what is the output of ‘A Penguin wearing a scarf, carrying a crossbody
bag on the back, 8K, HD, 3D render, best quality’? Note: do not delete the text
describing quality, eg, 8K, HD, and so on.
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- Overall: A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Front: A penguin wearing a scarf, 8K, HD, 3d render, best quality
- Side: A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Back: A penguin carrying a crossbody bag on the back, 8K, HD, 3d render, best quality

- Overall: A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Front: From the front view, A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Side: From the side view, A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Back: From the back view, A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality

- Overall: A penguin wearing a scarf, carrying a crossbody bag on the back, 8K, HD, 3d render, best quality
- Front: A penguin wearing a scarf, 8K, HD, 3d render, best quality
- Side: A penguin with a crossbody bag on the back, 8K, HD, 3d render, best quality
- Back: A penguin carrying a crossbody bag on the back, 8K, HD, 3d render, best quality

Fig. 10: First row: 3D generation results of hand-written text prompts. Second row:
3D generation results of direction description text prompts. Last row: 3D generation
results of text prompts given by GPT-4 [9].

Table 1: Comparisons on hand-written and GPT-given prompts.

How to obtain CLIP Score (↑) Inception
View-specific text Overall Text View Text Score (↑)

Hand-written 31.1 32.1 14.5
GPT3.5-given 31.4 31.6 14.8

The output text prompts and the 3D generation results are shown in the last
row of Figure 10. The text prompts given by GPT-4 can successfully generate
the penguin with a scarf and a crossbody bag, suggesting that using LLMs to
generate view-specific texts may become a potential way to reduce user burden.
Besides, Table 1 is the quantitative result of text-to-image generation on the
validation set between hand-written and GPT3.5-given prompts, showing that
the GPT-given prompts are quantitatively on par with hand-written prompts.

A quick verification of prompts. We here provide a quick verification of
whether the used prompts can achieve satisfactory customization. In practice,
users can refine their prompts according to the text-to-image generation results,
as the quality of 3D generation is highly correlated with image generation. Since
the image generation is much faster than the 3D generation (3 seconds vs. 55
minutes), the prompt refinement process will not take long.
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