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Abstract. Spectral super-resolution that aims to recover hyperspectral
image (HSI) from easily obtainable RGB image has drawn increasing
interest in the field of computational photography. The crucial aspect of
spectral super-resolution lies in exploiting the correlation within HSIs.
However, two types of bottlenecks in existing Transformers limit per-
formance improvement and practical applications. First, existing Trans-
formers often separately emphasize either spatial-wise or spectral-wise
correlation, disrupting the 3D features of HSI and hindering the exploita-
tion of unified spatial-spectral correlation. Second, existing self-attention
mechanism always establishes full-rank correlation matrix by learning the
correlation between pairs of tokens, leading to its inability to describe
linear dependence widely existing in HSI among multiple tokens. To ad-
dress these issues, we propose an Exhaustive Correlation Transformer
(ECT) for spectral super-resolution. First, we propose a Spectral-wise
Discontinuous 3D (SD3D) splitting strategy, which models unified local-
nonlocal spatial-spectral correlation by integrating spatial-wise contin-
uous splitting strategy and spectral-wise discontinuous splitting strat-
egy. Second, we propose a Dynamic Low-Rank Mapping (DLRM) model,
which captures linear dependence among multiple tokens through a dy-
namically calculated low-rank dependence map. By integrating unified
spatial-spectral attention and linear dependence, our ECT can model ex-
haustive correlation within HSI. The experimental results on both sim-
ulated and real data indicate that our method achieves SOTA.

Keywords: Spectral super-resolution · Exhaustive correlation · Spatial-
Spectral attention · Linear dependence

1 Introduction

Hyperspectral image (HSI) consists of multiple channels, with each channel
representing the response in a specific spectral band. In comparison to the 3-
channel RGB image, HSI excels in capturing detailed spectral information from
a scene. Owing to this advantage, HSI finds extensive applications in image
classification [12, 23, 35], object detection [29], face recognition [55], and more.
⋆ Corresponding Author: Lizhi Wang (wanglizhi@bnu.edu.cn)
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Fig. 1: Comparisons of MRAE, inference la-
tency, and parameters on the NTIRE 2022
dataset are presented. The circle radius rep-
resents the number of parameters.

However, acquiring 3D HSI with 2D
sensors is challenging due to the
mismatch of dimensions. Traditional
scanning-based methods typically re-
quire multiple exposures to capture
a full HSI, which is disadvantageous
for dynamic and rapidly changing
scenes.

To address this issue, researchers
have designed snapshot compres-
sive imaging (SCI) systems with
customized optical modulation and
reconstruction algorithms, enabling
snapshot acquisition of HSI [8,26,42,
46, 49]. However, these methods are
often expensive and bulky in system implementation. Consequently, the task
of HSI reconstruction from the easily obtainable RGB image [22, 52], known as
spectral super-resolution, has emerged as a popular solution with the advantages
of being cheap and lightweight.

The crucial aspect of spectral super-resolution lies in exploiting correlations
within HSI. Early research utilizes sparse coding [3] or low-rank representa-
tion [47] for spectral super-resolution. However, these methods often suffer from
limited expressive power and generalization ability, thus failing to achieve satis-
factory results. With the increasing computing power, learning-based methods
have made significant progress in recent years and have become the mainstream
solution for spectral super-resolution. Currently, Transformers [9, 39] have at-
tained the state-of-the-art performance for spectral super-resolution by leverag-
ing spectral-wise correlation through a spectral-wise self-attention mechanism.
However, two types of bottlenecks exist that limit performance improvement
and practical applications. First, existing Transformers predominantly focus on
spectral-wise correlation while overlooking spatial-wise correlation in spectral
super-resolution. Some works in other tasks [15, 31, 40] attempt to model both
spectral-wise and spatial-wise correlations together but often utilize separate net-
work modules. The neglect and separation undermine the 3D nature of HSI and
hinder the exploitation of unified spectral-spatial correlation. Second, existing
spectral-wise self-attention mechanism always captures the full-rank correlation
matrix by learning the correlation between pairs of spectral bands, i.e. tokens, in
the Transformer. These characteristics result in the inability to establish linear
dependence widely existing in HSI among multiple tokens.

In this paper, we propose an Exhaustive Correlation Transformer (ECT) to
model the unified spatial-spectral correlation and linear dependence, both of
which we believe are crucial for spectral super-resolution. The first motivation
behind our method stems from the spatial-spectral similarity in HSI. Thus, we
propose a Spectral-wise Discontinuous 3D (SD3D) splitting strategy to simulta-
neously model unified attention along the spectral and spatial dimensions. The
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SD3D splitting strategy contains continuous splitting in the spatial dimension
and discontinuous splitting in the spectral dimension, allowing for an effective
focus on spectral-wise non-local features without disrupting the continuous struc-
ture in the spatial dimension. The second motivation behind our methods arises
from the information redundancy in HSI and its low-rank characteristic [16,53].
Thus, we propose a Dynamic Low-Rank Mapping (DLRM) module to capture
the linear dependence among multiple tokens. The DLRM module simultane-
ously interacts among multiple tokens and maps them into a low-rank space,
thereby learning a low-rank dependence map. By integrating unified spatial-
spectral attention and linear dependence, our ECT can model the exhaustive
correlation within HSI and achieves SOTA in extensive experiments on simu-
lated and real data, with the lowest error achieved under the smallest number of
parameters and the lowest inference latency. Codes and pretrained models will
be available at https://github.com/HW-VMCL/ECT_SSR.

Our contributions are summarized as follows:
– We propose an Exhaustive Correlation Transformer (ECT) to model uni-

fied spatial-spectral correlation and linear dependence for spectral super-
resolution, which achieves SOTA performance.

– We propose a Spectral-wise Discontinuous 3D (SD3D) splitting strategy to
exploit the unified spatial-spectral correlation within HSI by concurrently
adopting spatial-wise continuous and spectral-wise discontinuous splitting.

– We propose a Dynamic Low-Rank Mapping (DLRM) module to model the
linear dependence within HSI by dynamically calculating a low-rank depen-
dence map among multiple tokens.

2 Related Work

2.1 Spectral Reconstruction

HSI acquisition is typically carried out using push-broom cameras, which is time-
consuming and challenging to capture dynamic or rapidly changing scenes. To
address this issue, coded aperture snapshot spectral imaging (CASSI) systems
have been widely used, generating 2D measurements [33, 49], which are then
processed through a series of reconstruction algorithms [7,10,11,41,42,46,50] to
obtain HSI.

However, CASSI systems are often expensive. Reconstructing HSIs from RGB
images is a cost-effective alternative. Arad et al. [3] employ sparse coding for
spectral super-resolution, while Aeschbacher et al. [1] use shallow learning mod-
els and achieve improved results. Due to the presence of substantial redundant
information in HSI, a low-rank prior is critical for spectral reconstruction. There
are several spectral reconstruction works [16–18, 47, 53, 54] inspired by the low-
rank prior. Recently, Three spectral super-resolution challenges [3–5] are held
and significantly inspire the research. With the development of deep learning,
convolutional neural networks are widely used in the spectral super-resolution
task. Shi et al. [36] propose a convolutional neural network for spectral super-
resolution, which win the NTIRE 2018 Challenge on Spectral Reconstruction

https://github.com/HW-VMCL/ECT_SSR
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Fig. 2: The macro design of Exhaustive Correlation Transformer (ECT).

from RGB Images. Li et al. [24, 25] introduce the channel attention mechanism
into the convolutional neural network to improve the performance. Thanks to
dynamic weights and long-range correlation modeling, Cai et al. [9] are the first
to introduce Transformers into the field of spectral super-resolution for modeling
spectral-wise correlation and win first place in the NTIRE 2022 challenge [5].
Wang et al. [39] further improve the modeling ability of spectral-wise correla-
tion and achieve SOTA performance recently. Though recent methods based on
Transformer achieve remarkable performance improvements, they only focus on
modeling spectral-wise correlation while ignoring spatial-wise correlation. More-
over, both of them neglect the critical low-rank characteristic of HSI.

2.2 Transformer Model

In the field of NLP, to capture long-range dependencies and enable parallel
processing, Vaswani et al. [38] introduced the Transformer model based on the
self-attention mechanism. Thanks to its capability to capture long-range depen-
dencies, global receptive fields, and dynamic weight computation, Dosovitskiy
et al. [21] applied the Transformer to image classification, achieving outstand-
ing results. The Transformer architecture has found widespread use in high-level
computer vision tasks such as image classification [2,14,27,32,48], semantic seg-
mentation [34, 37, 45], and object detection [13, 19]. Furthermore, in low-level
computer vision tasks, Transformer-based models have also demonstrated re-
markable performance in tasks like image super-resolution [15,28,30,58], derain-
ing [43, 44, 51], and denoising [28, 30, 43, 51, 56]. Transformers that leverage the
self-attention mechanism can capture long-range correlations between Trans-
former tokens through dot-product similarity calculations and adaptively fuse
tokens based on these correlations, offering strong expressive power.

From the perspective of feature maps, token splitting occurs in the spa-
tial [21, 32] or spectral dimensions [2, 9, 51], allowing for modeling the relation-
ships between pixels or patches or between channels. While there are some ef-
forts to combine these two types of Transformers to model spatial and spectral
correlations [15, 31, 40], most of these works directly treat spatial and spectral
Transformers as separate modules, which destroys the 3D nature and can not
fully exploit the unified correlations.
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Fig. 3: Micro Design of ECT. (a) Exhaustive Self-Attention Block (ESAB). (b) Feed
Forward Network (FFN). (c) Exhaustive Self-Attention (ESA). Key designs in ESA
are the Spectral-wise Discontinuous 3D (SD3D) splitting and alignment strategies, the
Dynamic Low-Rank Mapping (DLRM) model, and the Unified Spatial-Spectral self-
Attention (USSA) model.

3 Method

In this paper, we propose an Exhaustive Correlation Transformer (ECT), which
can model unified spatial-spectral attention and linear dependence simultane-
ously. In this section, we first introduce the macro design of ECT. Then, we
delve into the micro design within ECT.

3.1 Macro Design

We propose an Exhaustive Correlation Transformer (ECT) for spectral super-
resolution. The overall network employs a multi-stage U-shaped architecture,
as shown in Figure 2. For a 3-channel RGB input, it is expanded to 31 chan-
nels using a 3×3 convolution and then processed through Ns U-shaped modules.
Each U-shaped module consists of Embedding, Encoder, Bottleneck, Decoder,
and Mapping components. Embedding and Mapping are implemented with 3×3
convolutions, expanding the channel dimensions to 32 on the input side and re-
ducing them back to 31 on the output side. The main components of the Encoder
and Decoder are the Cross Exhaustive Self-Attention Blocks (ESABC), utilizing
4×4 convolutions with a stride of 2 for downsampling and 2×2 transpose convo-
lutions with a stride of 2 for upsampling. The Bottleneck includes a layer of Inter
Exhaustive Self-Attention Block (ESABI). ESABC is employed to model the cor-
relations between tokens, while ESABI is used to model the correlations within
tokens. ESABC can model spatial-wise non-local and global-aware spectral-wise
local correlation, while ESABI can model spatial-wise local and spectral-wise
non-local correlation. The spatial resolution of the feature map becomes 1/4
after downsampling, while the channel doubles. The number of attention heads
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Fig. 4: Detailed design of the Dynamic Low-Rank Mapping (DLRM) module.

scales with the channel changes. Residual connections exist between the Encoder
and Decoder, retaining more input information for reconstruction. Furthermore,
a long-range residual connection is added to stabilize the training.

3.2 Micro Design

Since the main difference between ESABC and ESABI lies in the subsequent
processing, whether it is for correlations between tokens or within tokens, let
us focus on ESABC to illustrate the micro design. Furthermore, from this point
onward, we will no longer distinguish between ESABC and ESABI in the math-
ematical notation below.

As depicted in Figure 3, an Exhaustive Self-Attention Block (ESAB) com-
prises Exhaustive Self-Attention (ESA), Layer Norm, and a Feed-Forward Net-
work. The key process in ESA is summarized as follows: Firstly, the Spectral-wise
Discontinuous 3D (SD3D) splitting strategy is applied to generate tokens, facili-
tating the exploitation of unified spatial-spectral correlation. Following that, the
Low-Rank Dependence Map is generated through the Dynamic Low-Rank Map-
ping (DLRM) module to model linear dependence among multiple tokens. The
Full-Rank Attention Map is generated through the Unified Spatial-Spectral self-
Attention (USSA) module to model the independent correlation between pairs
of tokens. Next, we introduce the implementation details of ESA.

First, the feature map undergoes two layers of grouped convolutions to learn
dynamic positional encoding, which is added to the feature map to model the
position of each token. Then, the feature map is linearly transformed into a
hidden space. A Spectral-wise Discontinuous 3D (SD3D) splitting operation is
performed to generate Q, K, and V . SD3D splitting strategy contains continuous
splitting in the spatial dimension and discontinuous splitting in the spectral
dimension, which allows for a more effective focus on spectral-wise non-local
features without disrupting the continuous structure in the spatial dimension.
The original feature map has dimensions H ×W ×C, after the SD3D splitting,
the number of tokens, denoted as n, becomes C×s/c, and the dimension of each
token, denoted as d, becomes H×W ×c/s2, where s and c are hyperparameters.
To simplify the expression, the multi-head attention mechanism is omitted here.
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Then, the Unified Spatial-Spectral self-Attention (USSA) is applied to cap-
ture independent full-rank correlations between pairs of tokens. The calculation
of the Full-Rank Attention Map in USSA is expressed by

USSA(Q,K) = σ

(
τ

KT ×Q

||K|| · ||Q||

)
, (1)

where σ denotes softmax and τ is a learnable parameter. Q = WQX, K = WKX,
and V = WV X. L2 normalization is performed within each Token to stabilize the
training, and then the expressive power is improved by the learnable parameter
τ . It is worth noting that the L2 normalization and learnable parameter τ are
designed by [2] to accommodate variable token sizes, which have been followed
by abundant spectral-wise self-attention based methods [8, 9, 39, 51]. We align
with these designs in this paper. Since the dimension of tokens d is greater than
the number of tokens n in this scenario and the Softmax after the dot product,
there is a lower risk of rank reduction in the attention maps, as discussed in [6].
Typically, the learned attention maps have a full rank or nearly full rank. From
the optimization point of view, since the linear correlation is different in different
HSIs, the loss can only be minimized when the attention mechanism learns full-
rank or nearly full-rank attention maps. The experiments confirm this point as
well, we found through statistics that the vast majority of attention maps are full
rank. Furthermore, the scaled dot-product attention is calculated independently
between paired tokens and cannot capture the linear dependence among multiple
tokens.
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Fig. 5: Comparison of the Attention Map
in Self-Attention (SA) and the Dependence
Map in DLRM.

To address the limitation of self-
attention in modeling linear depen-
dence within HSI, we propose a Dy-
namic Low-Rank Mapping (DLRM)
module. The details of DLRM are il-
lustrated in Figure 4. Initially, the to-
kens from the multi-head Q (K) are
restored in a 3D manner and sub-
sequently spatially pooled, reducing
the spatial dimensions of the tokens
from h/s × w/s to 2 × 2. Following
this step, the tokens are flattened in
a 3D fashion to form a two-dimensional matrix. Finally, interactions take place
among various heads and tokens through a 1d convolution, yielding a feature QF

(KF ) with dimensions n×k, where k is a hyperparameter and k < n. The matri-
ces QF and KF then undergo a Softmax function, followed by transposition and
multiplication to generate a dynamic n× n matrix, which is a low-rank matrix
with a rank no greater than k. The calculation of the Low-Rank Dependence
Map in DLRM is expressed by

DLRM(Q,K) = σ(KF )
T × σ(QF ). (2)

The difference between the Attention Map in self-attention and the Depen-
dence Map in DLRM is illustrated in Figure 5. As shown in the figure, the
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Table 1: The experimental results on the NTIRE 2022 [5] dataset, NTIRE 2020 Real
World Track [4] dataset, and ICVL [3] dataset are as follows, with bold indicating the
first place and underlined indicating the second place.

Method NTIRE 2022 NTIRE 2020 ICVL Params
(M)

FLOPs
(G)

Latency
(ms)MRAE RMSE MRAE RMSE MRAE RMSE

HSCNN+ [36] 0.3814 0.0588 0.0684 0.0182 0.2322 0.0424 4.65 304.45 201

HR Net [57] 0.3476 0.0550 0.0682 0.0179 0.1139 0.0313 31.70 163.81 85

AWAN [25] 0.2191 0.0349 0.0668 0.0175 0.1040 0.0252 4.04 270.61 312

Restormer [51] 0.1833 0.0274 0.0645 0.0157 0.0945 0.0230 15.11 93.77 178

DRCR [24] 0.1823 0.0288 0.0664 0.0171 0.0763 0.0164 9.48 586.61 300

MST++ [9] 0.1645 0.0248 0.0624 0.0155 0.0691 0.0144 1.62 22.29 112

HySAT [39] 0.1599 0.0246 0.0589 0.0142 0.0654 0.0154 1.40 21.08 126

ECT (Ours) 0.1564 0.0236 0.0588 0.0142 0.0635 0.0142 1.19 16.75 82

calculation of the correlation in self-attention is token-to-token, with each row
of the correlation matrix independently calculated. Each element in the matrix
is solely associated with two tokens. In contrast, DLRM first facilitates infor-
mation exchange among various tokens and attention heads. Therefore, each
element in the Dependence Map gathers information from multiple tokens. Con-
sequently, each element in the Dependence Map aggregates information from
multiple tokens. Moreover, the Dependence Map can implicitly model the linear
correlations among multiple tokens due to the low-rank nature. In summary, the
Dependence Map can effectively capture the linear dependence among multiple
tokens, which is absent in the Attention Map.

Then the correlations learned by USSA and DLRM are used for token fusion.
First, V is multiplied by the Full-Rank Attention Map learned by USSA. Fol-
lowing this, V undergoes a linear transformation with the learnable parameter
W and is subsequently multiplied by the Low-Rank Dependence Map learned
by DLRM. The overall arithmetic process of ESA can be summarized by

ESA(X) = DLRM(Q,K)×W ×USSA(Q,K)× V. (3)

After the token fusion, a Spectral-wise Discontinuous 3D (SD3D) alignment
is performed to restore the feature map to its original shape. Finally, channel
shuffling is applied to fully explore spectral-wise non-local features.

4 Experiments

4.1 Dataset

For spectral super-resolution experiments on simulated data, we utilized open-
source datasets, including NTIRE 2022 [5], NTIRE 2020 Real World Track [4],
and ICVL [3]. To further validate the generalization ability of the algorithm, we
conduct spectral super-resolution experiments on real RGB data.
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Fig. 6: The MRAE heatmaps, including 400 nm, 500 nm, 600 nm, and 700 nm bands
on ARAD_0944 from the NTIRE 2022 validation data.

The NTIRE 2022 dataset is currently the most complex dataset for spectral
super-resolution. It is captured using the Specim IQ camera and includes a wide
variety of scenes and colors. The dataset contains a total of 950 available images,
including 900 training images and 50 validation images. The spatial resolution
of the images is 482× 512, and they consist of 31 spectral channels sampled at
10nm intervals, covering the wavelength range from 400nm to 700nm.

The NTIRE 2020 dataset comprises 460 available images, including 450 train-
ing images and 10 validation images. The spatial and spectral resolutions of these
images are consistent with the NTIRE 2022 dataset.

The ICVL dataset comprises 203 available HSI images. The spatial resolution
is 1392×1300, and the spectral resolution is consistent with the NTIRE datasets.
We randomly select 20 images for the validation and others for the training.

For the real data experiments, there is no available real dataset and most ex-
isting spectral super-resolution methods focus on fitting simulated data. Hence,
we capture several real RGB images using FLIR Blackfly S BFS-U3-31S4 and
obtained the spectral curves of the flattened regions for validation using Specim
IQ. We use HSI from the NTIRE 2022 training set and simulate RGB images to
create paired training data. We built the data simulation pipeline by referring
to the data simulation methods used in NTIRE 2020 and NTIRE 2022.

4.2 Implementation Details

For the hyperparameters in the network structure, we set the SD3D Splitting
scale c = 4, s = 2 and low-rank factor k = 12 for ESABC. For ESABI, we set
the SD3D Splitting scale c = 16, s = 4 and low-rank factor k = 8. The number
of network stages Ns is set to 2.

For the evaluation metrics, following the NTIRE challenges, we use the Mean
Relative Absolute Error (MRAE) and Root Mean Squared Error (RMSE) met-
rics to evaluate the performance of each network. We primarily use MRAE as
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Fig. 7: The MRAE heatmaps, including 400 nm, 500 nm, 600 nm, and 700 nm bands
on ARAD_0940 from the NTIRE 2022 validation data.

the main metric and also adopt it as the training objective. RMSE is used as
an auxiliary metric. We further evaluate Spectral Angle Mapper (SAM) on real
data and Peak Signal-to-Noise Ratio (PSNR) for CASSI-based spectral recon-
struction method.

For the network training details, we utilize a batch size of 40 and employ
a learning rate schedule that follows the cosine annealing scheme, decreasing
from 4e−4 to 1e−6 over 3e5 iterations. We choose the AdamW optimizer with
parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8 and weight decay is set to 1e−4.
RGB images are first split into 128×128 patches and undergo random rotations
and flips for data augmentation before being input into the network. The codes
and pretrained models will be made publicly available.

4.3 Results on Simulated Data

Quantitative Results On NTIRE 2022 [5], NTIRE 2020 [4], and ICVL [3]
datasets, we compared ECT with various neural networks, as presented in Ta-
ble 1. HSCNN+ is the champion in the NTIRE 2018 Clean Track and Real
World Track. HR Net and AWAN are the champions in the NTIRE 2020 Clean
track and Real World track, respectively. MST++ and DRCR are the first and
third place in NTIRE 2022, respectively. Restormer is an advanced algorithm
in image reconstruction that has a core design similar to MST++. HySAT is
the SOTA spectral super-resolution method published recently. Among all the
methods, ECT achieves the lowest MRAE with the lowest computational costs
and the smallest number of parameters. We further test the inference latency
of all models with the same input size 512 × 512 × 3 on the same 3090 GPU.
We select the average inference latency over 30 runs when the inference latency
is stabilized. The results demonstrate the superior performance of our method
and highlight the significance of modeling unified spatial-spectral correlation and
linear dependence.
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Table 2: Experimental results on real data.

Method Outdoor Scene Indoor Scene
MRAE RMSE SAM MRAE RMSE SAM

DRCR 0.2143 0.0070 0.1896 0.2499 0.0104 0.2340
MST++ 0.2622 0.0084 0.2245 0.2257 0.0091 0.2055
HySAT 0.2135 0.0070 0.1868 0.2202 0.0088 0.1974
ECT 0.2012 0.0065 0.1730 0.2114 0.0082 0.1831

Table 3: Ablation study of Ns.

Ns MRAE RMSE Params Latency

1 0.1648 0.0243 0.60 M 41 ms
2 0.1564 0.0236 1.19 M 82 ms
3 0.1542 0.0231 1.78 M 124 ms

Qualitative Results We showcase the visual effects of the MRAE heatmaps in
Figure 6, Figure 7, and Figure 8. We also present a comparison of spectral curves
in small regions among the Ground Truth and various reconstruction algorithms
in Figure 9. The visual results indicate that ECT exhibits the best reconstruction
performance across different wavelengths.The reconstruction effect of ECT in the
spatial direction is also superior, which further confirms the effectiveness of our
approach.

4.4 Results on Real Data

To further investigate the generalization ability of ECT, we conduct some ex-
periments on real RGB data. We choose flattened regions for validation to avoid
the influence of misalignment. We capture RGB images of a color chart both
indoors under halogen lights and outdoors under sunlight, along with corre-
sponding HSIs. We evaluated the algorithms using the average error of the 18
color patches on the color chart. We further evaluate Spectral Angle Mapper
(SAM) on real data. The quantitative and qualitative results of ECT compared
with three advanced spectral super-resolution methods MST++ [9], DRCR [24]
and HySAT [39] are shown in Table 2 and Figure 10. The experimental results on
real data demonstrate the advanced performance and the strong generalization
ability of ECT.
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Fig. 9: Comparison of reconstructed spectral curves and MRAE in the small regions.
The images in the first line are the official RGB of ARAD_0944, ARAD_0940 and
ARAD_0903 from the NTIRE 2022 validation data. The spectral curves with the red
and green axes correspond to the red and green boxes in the corresponding figure.

Table 4: Ablation study of SD3D split-
ting strategy and the DLRM module.

SD3D DLRM MRAE RMSE Params FLOPs

% % 0.1761 0.0266 0.55 M 7.84 G
! % 0.1700 0.0255 0.58 M 8.24 G
% ! 0.1733 0.0261 0.56 M 8.27 G
! ! 0.1648 0.0243 0.60 M 8.69 G

Table 5: Ablation study of the token
splitting strategy.

Splitting MRAE RMSE Params FLOPs

Spectral-wise 0.1740 0.0257 0.59 M 8.69 G
Spatial-wise 0.1937 0.0285 0.94 M 14.35 G

SD3D 0.1648 0.0243 0.60 M 8.69 G

4.5 Ablation Study

To fully explore the effects and the working mechanics of the whole architecture,
Spectral-wise Discontinuous 3D (SD3D) splitting strategy, and the Dynamic
Low-Rank Mapping (DLRM) module, we introduce some ablation studies here.
All ablation studies are conducted on the NTIRE 2022 dataset.

Ablation Study of the Network Stage Ns We conduct an ablation study
on the number of stages (Ns) in the network, and the results are shown in
Table 3. We primarily set Ns = 2 balancing performance and inference latency.
All ablation studies below are conducted using a 1-stage structure for efficiency.
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Fig. 10: Comparison of reconstructed spectral curves and MRAE in the small regions.
Each region is normalized to remove the influence of brightness. The images in the first
line are the real RGBs captured outdoors and indoors.

Table 6: Ablation study of the continuity
in SD3D splitting strategy.

Spatial-wise Spectral-wise MRAE↓ RMSE↓

Continuous Continuous 0.1769 0.0263
Continuous Discontinuous 0.1648 0.0243

Discontinuous Discontinuous 0.1739 0.0263

Table 7: Ablation study of the low-rank
factor k.

Factor k MRAE RMSE Params FLOPs

8 0.1689 0.0260 0.60 M 8.69 G
12 0.1648 0.0243 0.60 M 8.69 G
16 0.1671 0.0249 0.60 M 8.69 G
32 0.1701 0.0259 0.62 M 8.69 G

Ablation Study of SD3D Splitting and DLRM The Spectral-wise Dis-
continuous 3D (SD3D) splitting strategy and the Dynamic Low-Rank Mapping
(DLRM) are our two significant contributions. The SD3D splitting strategy is
used to model unified spatial-spectral correlation, while DLRM is employed to
capture linear dependence. We test the performance improvement of SD3D and
DLRM compared to MST++ [9] without these two structures. The experimental
results, as shown in Table 4, demonstrate that both the SD3D splitting strategy
and DLRM can lead to improvements. When used together, they achieve even
greater performance improvements. The results indicate the effectiveness of our
two key designs.

Ablation Study of SD3D Splitting Strategy First, We compare our SD3D
splitting strategy with traditional spatial-wise and spectral-wise splitting strate-
gies. The results shown in Table 5 demonstrate the effectiveness of our method.
Moreover, the key characteristic of the SD3D splitting strategy lies in its spatial-
wise continuity and spectral-wise discontinuity splitting approach. Discontinuous
splitting allows for a greater focus on non-local information, while continuous
splitting helps preserve the local structure. We conducted an ablation study
on the continuity and discontinuity in both spectral and spatial directions, as



14 Hongyuan Wang et al.

Table 8: Comparison with the SOTA method of CASSI-based spectral reconstruction.

Method NTIRE 2022 NTIRE 2020 ICVL Params
(M)

FLOPs
(G)MRAE RMSE PSNR MRAE RMSE PSNR MRAE RMSE PSNR

PADUT 0.1850 0.0271 33.04 0.0624 0.0158 37.07 0.0798 0.0193 36.77 1.71 20.29
ECT 0.1564 0.0236 34.81 0.0588 0.0142 37.71 0.0635 0.0142 38.50 1.19 16.75

shown in Table 6. Experiments indicate that spectral super-resolution benefits
from non-local features in the spectral direction, and adverse effects arise when
disrupting spatial continuity.

Ablation Study of Low-Rank Factor k The critical parameter in the DLRM
module is the number of feature QF (KF ) columns, denoted as k. The rank of the
Low-Rank Dependence Map in DLRM is not greater than k. The experimental
results for different values of k in ESABC are shown in Table 7. When k = 32,
it means k = n, which does not constrain the dependence map to be low-rank.
The experimental results highlight the importance of the low-rank characteristic
of the dependence map.

5 Discussion

Recently, spectral reconstruction algorithms based on CASSI have received wide
interest. We find that performance improvements brought by recent advanced
CASSI-based spectral reconstruction algorithms [7,20,26] are typically reflected
in sharper spatial reconstructions. However, spatial details reconstruction is not
a necessary challenge in the spectral super-resolution task. Therefore, recent
algorithms used to improve CASSI-based spectral reconstruction have difficulty
enhancing the performance of spectral super-resolution. We retrain the SOTA
algorithm for CASSI-based spectral reconstruction PADUT [26] for the spectral
super-resolution task. The experimental results shown in Table 8 demonstrate
that our ECT achieves significantly better performance.

6 Conclusion

In this paper, we analyze the limitations of existing spectral super-resolution
Transformers in modeling unified spatial-spectral correlation and linear depen-
dence. We propose an Exhaustive Correlation Transformer (ECT) to model these
correlations for spectral super-resolution. Specifically, we propose a Spectral-wise
Discontinuous 3D (SD3D) splitting strategy to model unified spatial-spectral
correlation and a Dynamic Low-Rank Mapping (DLRM) module to capture lin-
ear dependence. Experimental results demonstrate that our approach achieves
state-of-the-art performance on both simulated and real data.

Acknowledgements: This work was supported in part by the National Natural
Science Foundation of China under Grant 62322204, Grant 62131003, Grant
62072038.
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