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Abstract. Text-to-motion generation requires not only grounding local
actions in language but also seamlessly blending these individual actions
to synthesize diverse and realistic global motions. However, existing mo-
tion generation methods primarily focus on the direct synthesis of global
motions while neglecting the importance of generating and controlling
local actions. In this paper, we propose the local action-guided motion
diffusion model, which facilitates global motion generation by utilizing
local actions as fine-grained control signals. Specifically, we provide an
automated method for reference local action sampling and leverage graph
attention networks to assess the guiding weight of each local action in
the overall motion synthesis. During the diffusion process for synthesiz-
ing global motion, we calculate the local-action gradient to provide con-
ditional guidance. This local-to-global paradigm reduces the complexity
associated with direct global motion generation and promotes motion di-
versity via sampling diverse actions as conditions. Extensive experiments
on two human motion datasets, i.e., HumanML3D and KIT, demonstrate
the effectiveness of our method. Furthermore, our method provides flexi-
bility in seamlessly combining various local actions and continuous guid-
ing weight adjustment, accommodating diverse user preferences, which
may hold potential significance for the community. The project page is
available at https://jpthu17.github.io/GuidedMotion-project/.
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1 Introduction

Human motion generation [2,6,44] is a critical task in computer animation [4,53],
with the primary objective of creating realistic and dynamic motions for virtual
human characters. This technology finds widespread applications in multiple
⋆ Corresponding author: Li Yuan, Chang Liu.
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Fig. 1: Generating motion with diverse local actions. Different local actions
correspond to distinct user preferences. Our method empowers users to combine pre-
ferred local actions freely, generating motions that align with their mental imagery.
Furthermore, the combination of varied local actions enhances the motion diversity.

industries, such as entertainment, gaming, film production, virtual reality, and
robotics. Recent developments in this field have introduced text-driven human
motion generation techniques, enabling the synthesis of diverse human motion
sequences based on natural language descriptions. However, text-driven human
motion generation poses a series of challenges, requiring the alignment of local
actions with language and the seamless integration of these individual actions
to synthesize diverse and realistic global motions.

Existing text-to-motion generation methods [1, 6, 42, 69] primarily focus on
directly synthesizing global motions based on language instructions. Although
these methods have shown promising advancements and achieved high accuracy,
they come with limitations regarding the type of control they support over the
motion results. For example, precisely expressing intricate trajectories, postures,
and long motion sequences involving multiple actions is challenging using text
prompts alone. Typically, generating a motion that faithfully corresponds to our
mental imagery requires numerous iterations of editing a prompt, reviewing the
resulting motion, and then adjusting the prompt accordingly.

In this work, we propose to employ reference local actions as control signals
in the global motion generation process. As illustrated in Fig. 1, an overall mo-
tion comprises a sequence of local actions, such as “walks forward ” and “raises
both arms”. These reference local actions can serve as control signals during the
global motion generation process, facilitating the generation of global motions
with similar characteristics, including movement trajectories and human body
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postures, to those of the local actions. More importantly, local action serves as
a more intuitive control signal than text. Users can seamlessly combine their
preferred local actions, exerting precise control over the resulting global motion
to align with the characteristics of those chosen local actions.

To this end, we introduce GuidedMotion, a local action-guided motion diffu-
sion model designed for controllable text-to-motion generation. Moreover, we
provide an automatic local action sampling method, which deconstructs the
original motion description into multiple local action descriptions and uses a
text-to-motion model to generate the reference local actions. In practical appli-
cations, the same reference local action can be sampled multiple times to suit
diverse user preferences, allowing users to conveniently select their preferred ac-
tion from these choices. Subsequently, we leverage graph attention networks to
estimate the guiding weight of each local motion in the overall motion synthe-
sis. To enhance generation stability, we divide the motion diffusion process for
synthesizing global motion into three stages: (i) In the initial diffusion stage,
we de-noise the Gaussian noise based on the original motion description to pro-
vide a good initial value for the subsequent stage. (ii) In the second diffusion
stage, we apply local-action gradients based on the energy function [72] to offer
conditional guidance for aligning the generated motion with the characteristics
of the reference local actions. (iii) In the final diffusion stage, we fine-tune the
generated results further to conform to the original motion description, rather
than solely adhering to a reference local action.

The proposed GuidedMotion has three distinct advantages: First, compared
to the direct generation of global motion, our local-to-global paradigm, lever-
aging local actions as a prior, simplifies the complexity associated with global
motion generation, especially when generating complex motions with multiple
local actions. Second, through the automatic sampling of diverse local actions,
our method has the capability to generate a variety of motions to suit differ-
ent user preferences. Third, our method provides flexibility in adjusting the
guiding weight of each local action, enabling fine-grained and continuous con-
trol over global motion, e.g ., the control of movement trajectories and human
body postures. Extensive experiments on two datasets for text-to-motion gener-
ation, including HumanML3D [17] and KIT [43], demonstrate the advantages of
GuidedMotion. The main contributions are summarized as follows:

– We propose local action-guided motion synthesis for fine-grained controllable
text-to-motion generation. It allows users to seamlessly combine their pre-
ferred local actions, enabling them to exert control over the resulting global
motion to align with the characteristics of their chosen local actions.

– The proposed local-to-global paradigm, utilizing local actions as a prior, re-
duces the complexity associated with direct global motion generation. Exper-
imental results demonstrate that our method has an advantage in generating
complex motions comprising multiple local actions.

– More encouragingly, our method allows for continuous guiding weight ad-
justment, facilitating the refinement of the results to match the preferences
of users, which may hold potential significance for the community.
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2 Related Work

Diffusion Models. Diffusion models [14, 23, 25, 26, 49, 50, 70], rooted in ther-
modynamics, utilize a stochastic diffusion process to complete the generation
task. In recent years, diffusion models have exhibited potential across diverse
tasks, including image generation [14, 23, 24, 50, 59], natural language genera-
tion [3, 16], and visual tasks [11]. Some other works [30] have applied diffusion
models to cross-modal retrieval [29]. Inspired by the success of diffusion genera-
tive models, some works [33,53,61,65] have explored the application of diffusion
models in human motion tasks [5,8,37]. Although existing text-to-motion gener-
ation methods have shown promising advancements and achieved high accuracy,
they come with limitations regarding the type of control they support over the
motion results. In this paper, we propose to employ reference local actions as
fine-grained control signals in the global motion generation process.
Text-driven Human Motion Generation. The goal of text-driven hu-
man motion generation [13, 20, 73] is to generate human motion based on text
descriptions. Due to the user-friendly and convenient nature of natural lan-
guage [28], text-driven human motion generation has garnered significant at-
tention. Recently, motion generation methods can be classified into three cat-
egories: joint-latent models [2, 42], such as TEMOS [42], which typically learn
a motion variational autoencoder and a text variational autoencoder; the sec-
ond category [10,31,47,68], such as MDM [53], introduces a conditional diffusion
model for human motion generation; and the last category [27,71], such as T2M-
GPT [67], utilizes generative pre-trained transformer for motion generation. In
this work, leveraging the iterative refinement of diffusion models, we employ the
diffusion model method to enhance control over the motion generation process.
Controllable Human Motion Generation. Controllable human motion
generation [33, 60, 63, 66] aims to generate motions following designated control
signals, offering enhanced interactivity and interpretability to humans. Existing
methods predominantly focus on controlling trajectory and key points within the
diffusion process through techniques such as imputation and inpainting. How-
ever, these low-level control signals lack the capability for high-level control over
motions, such as adjusting the amplitude of arms. What is worse, existing meth-
ods lack support for continuous motion adjustment, limiting the ability to refine
motions until they align with the expectations of users. In contrast, our method
employs local actions with high-level semantics as control signals, enabling not
only trajectory control but also manipulation of human body postures.

3 Methodology

In this work, we tackle the challenges associated with controllable text-driven
human motion generation. Concretely, given a motion description and other fine-
grained control signals, such as reference local actions, our goal is to synthesize
a human motion sequence x1:L = {xi}Li=1 of length L.
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Fig. 2: The overall framework of GuidedMotion for controllable text-to-
motion generation. We propose to employ reference local actions as control signals
in the global motion generation process. To automatically obtain these local actions,
we deconstruct the original motion description into multiple local action descriptions
and utilize a text-to-motion model to generate these local actions.

3.1 Automatic Local Action Sampling

Local actions can be accessible from the repository, enabling users to choose
their preferred local action as the control signal for generating the global mo-
tion. Moreover, we provide an automatic local action sampling method, which
deconstructs the original motion description into multiple local action descrip-
tions and utilizes a text-to-motion model to generate these local actions.
Semantic Graph Parsing. As shown in Fig. 2, motion descriptions inher-
ently exhibit hierarchical structures, represented as hierarchical graphs compris-
ing three types of abstract nodes: motions, actions, and specifics. Concretely, the
complete sentence describes the global motion, encompassing multiple actions,
for example, “jogs” and “ looks” in Fig. 2. Each action includes various specifics,
which serve as its attributes, such as the agent and patient of the action.

To obtain actions, action attributes, and the semantic role of each attribute
in relation to the corresponding action, we employ a semantic parser for motion
descriptions based on a semantic role parsing toolkit [9, 31, 48]. In practice, we
extract three types of nodes (motions, actions, and specifics) and twelve types
of edges to represent various associations among the nodes. For further details
about semantic graph parsing, please refer to our supplementary material.
Local Action Sampling. Given the semantic graph, we create a local action
description for each local action by considering each action node and its associ-
ated specific nodes. Subsequently, We employ a text-to-motion generation model,
i.e., MLD [10], to generate local actions based on these local action descriptions.
To further enrich the variety of local actions, the local action descriptions can
be expanded using large language models, such as GPT [7] and LLaMA [54,55].

3.2 Local Action Diffusion Guidance

Following previous works [10, 31], we encode the motion sequence x into the
latent space z utilizing the variational autoencoder [35]. Subsequently, we employ
diffusion models to learn the noise component ϵ at every noise level t.
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Energy Diffusion Guidance. In accordance with score theory [51,52,64], the
core objective of conditional diffusion models [23] is to estimate the score func-
tion ∇zt log p(zt|c), where c is the condition. The reverse process of conditional
diffusion models is formulated as:

zt−1 = (1 +
1

2
βt)zt + βt∇zt log p(zt|c) +

√
βtϵ, (1)

where ϵ is a noise sampled from the standard Gaussian distribution N (0, I).
βt ∈ R is a pre-defined step size which gradually increases. Based on Bayesian
formula p(zt|c) = p(c|zt)p(zt)

p(c) , we rewrite the conditional score function as:

∇zt
log p(zt|c) = ∇zt

log p(zt) +∇zt
log p(c|zt), (2)

where the correction gradient ∇zt
log p(c|zt) holds paramount significance in the

conditional diffusion models. However, the correction gradient ∇zt
log p(c|zt) is

hard to measure directly. Following previous works [64,72], we employ the energy
function [36] to formulate the correction term as:

p(c|zt) =
exp (−E(c, zt))∫

c∈C exp (−E(c, zt))
, (3)

where C denotes the domain of the condition c. With Eq. (3), the correction
gradient can be estimated by the gradient of the energy function E(c, zt), i.e.,
∇zt

log p(c|zt) ∝ −∇zt
E(c, zt). Therefore, the reverse process of conditional

diffusion models can be rewritten as:

zt−1 = z̃t−1 − λt∇zt
E(c, zt), (4)

where z̃t−1 = (1+ 1
2βt)zt+βt∇zt log p(zt)+

√
βtϵ is the original reverse process

of unconditional diffusion models. In essence, λt is the guiding weight, which
represents the learning rate of the correction. When there are multiple conditions
in the reverse process of diffusion models, Eq. (4) is reformulated as:

zt−1 = z̃t−1 −
K∑

k=1

λk
t∇zt

E(ck, zt), (5)

where K represents the number of guidance terms.
In this work, the condition c is the motion latent embeddings of local actions.

The number K of guidance local actions is determined based on semantic parsing
of the input motion description. To achieve the goal of the diffusion guidance,
the energy function E(c, zt) should meet all the following criteria: (i) if zt is a
better match with c, then E(c, zt) is smaller; (ii) If zt perfectly conforms to the
constraint set by c, then E(c, zt) should be zero.

Note that anything satisfying the above conditions can be employed as the
energy function E(c, zt), such as the Gram matrix [32] distance and the em-
bedding distance. For simplicity in implementation, we utilize the ℓ2 distance of
latent embeddings as the energy function in practice.
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Fig. 3: The model architecture of the hierarchical motion diffusion model.
Utilizing the semantic graph as input, the hierarchical diffusion model dissects the text-
to-motion diffusion process into three semantic levels, which correspond to capturing
the overall motion, local actions, and action specifics. To enhance generation stability,
we exclusively implement local action guidance at the action level.

Guiding Weight Estimation. As illustrated in Fig. 3, the interactions among
different levels in the semantic graph elucidate the characteristics of local actions
and how these local actions contribute to the overall motion. Drawing inspira-
tion from this insight, we employ graph attention networks [57] (GAT) to model
the guiding weights in the local action-guided motion diffusion model.

We leverage the text encoder of CLIP [45] to initialize the representation of
graph nodes. To represent the global motion node vm, we utilize the [CLS] token
to encapsulate the overall motion within the description. For the action node va,
we adopt the token corresponding to the verb as the representation. In the case
of the specific node vs, we employ mean-pooling over tokens of each word in the
attribute phrase to represent every action detail of the motion.

Given the initialized nodes v = {vm,va,vs}, we utilize a shared projection
matrix W ∈ RD×D, where D represents the dimension of node representation.
This matrix transforms v into higher-level embeddings h = {hm,ha,hs}. For
each pair {hi,hj} of connected nodes, we concatenate the node hi ∈ RD with
its neighbor node hj ∈ RD, creating the input data h̃ij = [hi,hj ] ∈ R2D of the
graph attention module, which is formulated as:

h̃ij = [hi,hj ] = [Wvi,Wvj ]. (6)

The semantic graph comprises multiple types of edges. To avoid over-fitting
to infrequent edge types, we employ a shared transformation matrix M ∈ R2D×1

that applies to all edge types, and a relationship embedding matrix Mr ∈ R2D×N

that is specific for different edges to represent multi-relational weights, where N
denotes the number of edge types. The attention coefficient ẽij is formulated as:

eij = σ(M⊤h̃ij) + σ(RijM
⊤
r h̃ij),

ẽij =
exp(eij)∑

k∈Ni
exp(eik)

,
(7)
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where σ refers to a nonlinear function, i.e. LeakyReLU [39] with a negative input
slope set to 0.2. Rij ∈ R1×N denotes a one-hot vector denoting the type of edge
between node i and j. Ni is the set of neighborhood nodes of node i. Finally, we
use the attention coefficient ẽ as the guiding weight λ, which is formulated as:

λk
t = ρtẽ

k, ẽk ∈
{
(u,vm)

∣∣u ∈ {va
k}Kk=1

}
, (8)

where ρt is a predefined parameter used to amplify or reduce the guiding strength.
ẽk is the attention coefficient corresponding to the kth reference local action.

3.3 Hierarchical Motion Diffusion Model

To enhance generation stability, we decompose the diffusion process into three
semantic levels and build three transformer-based denoising networks, which
correspond to motions, actions, and specifics. The motion level provides a good
initial value for the subsequent semantic levels. Subsequently, we exclusively
implement local action guidance at the action level. Finally, at the specific level,
we further refine the generated results to match the original motion description,
rather than solely adhering to a reference local action.
Motion Variational Autoencoder. Following previous works [42, 67], we
encode the motion into the latent space using a motion variational autoen-
coder [35] (VAE). Specifically, we construct the motion encoder and decoder
based on the transformer [41, 56]. For the motion encoder, we utilize Q learn-
able query tokens along with the motion sequence x1:L = {xi}Li=1 as inputs to
generate motion latent embeddings z ∈ RQ×D′

, where D′ is the dimension of
latent representation. For the motion decoder, we input the latent embeddings
z ∈ RQ×D′

and the motion query tokens to generate a human motion sequence.
Corresponding to the three-level structure of the hierarchical motion diffu-

sion model, we encode human motion sequences independently into three latent
representation spaces: zm ∈ RQm×D′

, za ∈ RQa×D′
, and zs ∈ RQs×D′

. To gen-
erate motion progressively from coarse to fine, we gradually increase the number
of learnable query tokens, i.e., Qm ≤ Qa ≤ Qs.
Hierarchical Motion Diffusion. We utilize the semantic graph as the input
for the hierarchical diffusion model. The node embeddings V are formulated as:

Vi = σ′( ∑
j∈Ni

ẽijhj

)
+ vi, (9)

where σ′ is a nonlinear function. Following graph attention networks [57] (GAT),
we adopt ELU [12] as the nonlinear function σ′ and apply skip connection [21,46]
to mitigate over-smoothing [62] in graph networks.

To improve generation stability, we partition the diffusion process into three
semantic levels, aligning with motions, actions, and specifics. In the motion level
model ϕm, We employ the global motion node Vm as input to predict the noise
component ϵm. The training objective for the motion level is formulated as:

LM = Ez,ϵ,t

[
∥ϵm − ϕm(zm, tm,Vm)∥22

]
. (10)
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“A person is walking in a stumbling motion and puts up one of his hands.”

Real Motion Ours MDM (ICLR23) MLD (CVPR23) MotionDiffuse (TPAMI24) 

“A person is sitting on the ground, scratches their head and looks around.”

“A person runs forward and jumps over something, then turns around and jumps back over it.”

T2M-GPT (CVPR23) 

Fig. 4: Qualitative comparisons. The darker colors indicate the later in time. The
motions generated by our method closely align with the descriptions, outperforming
others that exhibit degraded motions or improper semantics.

In the action level model ϕa, we concatenate the action node Va, the motion
node Vm, and the generated result zm from the motion level as the input. The
training objective for the action level is formulated as:

LA = Ez,ϵ,t

[
∥ϵa − ϕa(z

a, ta, [Vm,Va, zm])∥22
]
. (11)

In the specific level model ϕs, we utilize the results generated by the action
level and nodes across all semantic levels to predict the noise component. The
training objective for the specific level is formulated as:

LS = Ez,ϵ,t

[
∥ϵs − ϕs(z

s, ts, [Vm,Va,Vs, za])∥22
]
. (12)

Finally, the total training objective is denoted as L = LM + LA + LS . The
output at the specific level is considered the final result, and the motion decoder
is employed to decode the latent representation into the motion sequence.

4 Experiments

Experimental Settings. Datasets. We compare the proposed method with
other methods on two commonly used public benchmarks: HumanML3D [17]
and KIT [43]. HumanML3D [17] originates from and textually reannotates
the HumanAct12 [19] and AMASS [40] datasets. HumanML3D comprises 14,616
human motions and 44,970 text descriptions. KIT [43] contains 3,911 human
motion sequences and 6,278 textual annotations.
Metrics. Following previous works, we use the following five metrics to mea-
sure the performance of the model. (1) R-Precision. In the feature space of the
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Table 1: Comparisons to current state-of-the-art methods on the Hu-
manML3D test set. “↑” denotes that higher is better. “↓” denotes that lower is
better. “→” denotes that results are better if the metric is closer to the real motion.
We repeat all the evaluations 20 times and report the average with a 95% confidence
interval. Bold and underlined indicate the best and second-best results, respectively.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

Real Motion 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Hier [15] ICCV21 0.301±.002 0.425±.002 0.552±.004 6.532±.024 5.012±.018 8.332±.042 -
TEMOS [42] ECCV22 0.424±.002 0.612±.002 0.722±.002 3.734±.028 3.703±.008 8.973±.071 0.368±.018

TM2T [18] ECCV22 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076 2.424±.093

T2M [17] CVPR22 0.457±.002 0.639±.003 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

MotionDiffuse [68] TPAMI24 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

MDM [53] ICLR23 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MLD [10] CVPR23 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

Fg-T2M [58] ICCV23 0.492±.002 0.683±.003 0.783±.002 0.243±.019 3.109±.007 9.278±.072 1.614±.049

MotionGPT [27] NeurIPS23 0.492±.003 0.681±.003 0.778±.002 0.232±.008 3.096±.008 9.528±.071 2.008±.084

T2M-GPT [67] CVPR23 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

GraphMotion [31] NeurIPS23 0.504±.003 0.699±.002 0.785±.002 0.116±.007 3.070±.008 9.692±.067 2.766±.096

ReMoDiffuse [69] ICCV23 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 9.018±.075 1.795±.043

GuidedMotion (Ours) 0.503±.002 0.691±.002 0.788±.002 0.057±.006 3.040±.012 9.864±.077 2.473±.096

pre-trained network introduced by T2M [17], motion-retrieval precision is deter-
mined by the matching accuracy of the top 1/2/3 text descriptions with a motion
sequence and 32 text descriptions. (2) Frechet Inception Distance (FID).
We measure the distribution distance between generated and real motion us-
ing FID [22] on the extracted motion features [17]. (3) Multimodal Dis-
tance (MM-Dist). We calculate the average Euclidean distances between each
text feature and the corresponding generated motion feature. (4) Diversity. All
generated motions are randomly sampled into two equal-sized subsets. Motion
features [17] are then extracted, and the average Euclidean distances between the
two subsets represent diversity. (5) Multimodality (MModality). For each
text description, we generate 20 motion sequences, creating 10 pairs of motions.
The average Euclidean distance between motion features is calculated for each
pair. The result is the average across all text descriptions.

Implementation details. For text representation, we employ a frozen text en-
coder from the CLIP-ViT-L-14 [45] model. The dimension of node representation
D is set to 768. The dimension of latent embedding D′ is set to 256. We set the
token sizes Qm to 2, Qa to 4, and Qs to 8. The predefined parameter ρ in
Eq. (8) is set to 0.01. All our models are trained using the AdamW [34,38] opti-
mizer with a fixed learning rate of 1e-4. Training is performed on 4 Tesla V100
GPUs, with 128 samples on each GPU, resulting in a total batch size of 512.
We keep running a similar number of iterations on different datasets. For the
HumanML3D dataset, the model is trained for 6,000 epochs during the motion
variational autoencoder stage and 3,000 epochs during the diffusion stage. In the
case of the KIT dataset, the model is trained for 30,000 epochs during the motion
variational autoencoder stage and 15,000 epochs during the diffusion stage.
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Table 2: Comparisons to other methods on the KIT test set. We repeat all
the evaluations 20 times and report the average with a 95% confidence interval. Bold
and underlined indicate the best and second-best results, respectively.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

Real Motion 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

Hier [15] ICCV21 0.255±.006 0.432±.007 0.531±.007 5.203±.107 4.986±.027 9.563±.072 2.090±.083

TEMOS [42] ECCV22 0.353±.006 0.561±.007 0.687±.005 3.717±.051 3.417±.019 10.84±.100 0.532±.034

TM2T [18] ECCV22 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 9.473±.117 3.292±.081

T2M [17] CVPR22 0.370±.005 0.569±.007 0.693±.007 2.770±.109 3.401±.008 10.91±.119 1.482±.065

MotionDiffuse [68] TPAMI24 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

Fg-T2M [58] ICCV23 0.418±.005 0.626±.004 0.745±.004 0.571±.047 3.114±.015 10.93±.083 1.019±.029

T2M-GPT [67] CVPR23 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.92±.108 1.570±.039

MDM [53] ICLR23 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.85±.109 1.907±.214

MLD [10] CVPR23 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071

GraphMotion [31] NeurIPS23 0.429±.007 0.648±.006 0.769±.006 0.313±.013 3.076±.022 11.12±.135 3.627±.113

ReMoDiffuse [69] ICCV23 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 10.80±.105 1.239±.028

GuidedMotion (Ours) 0.430±.006 0.652±.005 0.768±.005 0.213±.017 3.034±.021 10.99±.101 4.138±.145

Table 3: Comparisons to other methods on the complex motion subset. We
filter the HumanML3D test set containing at least 3 local actions and 150 frames or
more in length as a new test set to verify the ability to generate complex motions.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

Real Motion 0.456±.002 0.640±.002 0.740±.002 0.002±.000 3.245±.009 8.738±.064 -

MDM [53] ICLR23 0.300±.008 0.473±.006 0.581±.011 0.579±.057 5.437±.041 8.987±.101 2.808±.063

MLD [10] CVPR23 0.417±.006 0.603±.005 0.710±.006 0.783±.069 3.243±.013 9.235±.164 2.642±.118

T2M-GPT [67] CVPR23 0.431±.003 0.612±.003 0.712±.002 0.314±.004 3.448±.011 9.277±.081 2.125±.011

GuidedMotion (Ours) 0.451±.003 0.635±.003 0.732±.002 0.144±.008 3.447±.011 9.284±.057 2.503±.113

Comparisons to State-of-the-Art. We provide qualitative motion results in
Fig. 4. Compared to other methods, our method generates motions that match
the text descriptions better and are more realistic. Moreover, we compare the
proposed GuidedMotion with other methods on two benchmarks. Tab. 1 shows
the results on the HumanML3D test set. Tab. 2 presents the results on the KIT
test set. Across both benchmarks, the proposed GuidedMotion, which allows for
continuous refinement of motion results, achieves performance comparable to
existing state-of-the-art methods that lack fine-grained control.
Evaluation on Complex Motion Generation. We analyze the distribu-
tion of the number of local actions in each motion in Fig. 5. As shown in Fig. 5,
motions typically consist of multiple local actions. However, generating complex
motions, characterized by many local actions, poses a challenge. Compared with
the direct generation of complex motion, our local-to-global paradigm, utilizing
local actions as a prior, simplifies the intricacies involved in generating complex
motions. To demonstrate the advantages of the proposed local-to-global genera-
tion paradigm in generating complex motions, we create a new test set from the
HumanML3D test set, consisting of motions with at least 3 local actions and
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Table 4: Ablation study of each part
on the HumanML3D test set.

Motion Action Specific Local Action R-Precision FID ↓Level Level Level Guidance Top-3 ↑
✓ 0.760±.003 0.186±.011

✓ ✓ 0.771±.003 0.133±.009

✓ ✓ ✓ 0.778±.002 0.119±.009

✓ ✓ ✓ 0.769±.004 0.107±.009

✓ ✓ ✓ ✓ 0.788±.002 0.057±.006

Table 5: Evaluation of the motion
VAE models on the motion part on
the HumanML3D test set.

Methods Token Size R-Precision FID ↓Top-3 ↑
Real Motion - 0.797±.002 0.002±.000

Motion Level 2 0.791±.003 1.906±.003

Action Level 4 0.793±.003 0.068±.002

Specific Level 8 0.800±.004 0.019±.003

Table 6: Effect of diffusion steps on
the HumanML3D test set. We use
DDIM in practice and set Tm, T a, and
T s to 50 for optimal performance.

Methods Diffusion Steps FID ↓
Tm T a T s

1000 diffusion steps with DDPM [23]
MDM [53] ICLR23 1000 ✘ ✘ 0.544±.044

MotionDiffuse [68] TPAMI24 1000 ✘ ✘ 0.630±.001

50 diffusion steps with DDIM [50]
MLD [10] CVPR23 50 ✘ ✘ 0.473±.013

GuidedMotion (Ours) 20 15 15 0.136±.007

GuidedMotion (Ours) 15 20 15 0.120±.006

GuidedMotion (Ours) 15 15 20 0.117±.006

150 diffusion steps with DDIM [50]
MLD [10] CVPR23 150 ✘ ✘ 0.457±.011

GuidedMotion (Ours) 50 50 50 0.057±.006

300 diffusion steps with DDIM [50]
MLD [10] CVPR23 300 ✘ ✘ 0.403±.011

GuidedMotion (Ours) 100 100 100 0.062±.007

HumanML3D dataset

D
en

si
ty

0.269

0.352

0.201

0.090
0.042 0.020 0.008 0.005 0.004

KIT dataset

D
en

si
ty

0.519

0.250

0.124

0.036 0.013 0.004

Fig. 5: The distribution of the number of local actions in each motion. Mo-
tions typically consist of multiple local actions rather than just one local action.

lasting 150 frames or more. As shown in Tab. 3, our method maintains genera-
tion quality even for complex motions and is superior to other methods on most
metrics. These results demonstrate the benefits of the proposed local-to-global
paradigm in generating complex motions comprising multiple local actions.
Ablative Analysis. Analysis of each part of our method. To explore the im-
pact of each part of our method, we provide the ablation results in Tab. 4. In the
proposed hierarchical motion diffusion model, the high semantic layer generates
results based on the results from the low semantic layer. As shown in Tab. 4,
higher semantic levels, such as the specific level, exhibit superior performance.
Moreover, the proposed local action guidance significantly enhances the quality
of the generated motion, providing conclusive evidence for the effectiveness of
the proposed method. We observe that the performance in the “R-Precision Top-
3” metric at the specific level, without local action guidance, is lower compared
to the action level. This is likely due to the specific level refining results based
on the action details. When two motion descriptions share overlapping action
details, the model may produce similar features in the generated motions, thus
adversely affecting R-Precision. Despite this, since the specific level can enhance
the quality (FID) of motion generation, we still recommend its utilization.
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Motion level Action level Specific level

“A man walks in a circular motion and then stops right before completing the circle.”

Local Action 

Diffusion Guidance Refining

Fig. 6: Qualitative comparison of different hierarchical levels. The output at
the higher level (e.g ., specific level) contains more action details.

Analysis of the motion VAE models. In Tab. 5, we show the evaluation of
the motion VAE models on the HumanML3D test set. Among the three levels,
the performance of the specific level is the best, which indicates that increasing
the token size enhances the reconstruction ability of the motion VAE models.
Therefore, we take the output at the specific level as the final result and use the
motion decoder to decode the latent representation into the motion sequence.
Analysis of the diffusion steps. In Tab. 6, we provide the ablation results of the
total number of diffusion steps on the HumanML3D test set. We observe that
the number of diffusion steps at the higher level, such as the specific level, has
a more pronounced impact on quantitative results. Simultaneously, the number
of diffusion steps at the action level determines the control ability of the local
action guidance to the global motion. Therefore, we recommend allocating a
sufficient number of diffusion steps to each level. As illustrated in Tab. 6, the
performance is similar when the total number of diffusion steps is set to 150 and
300, prompting us to adopt a setting of 150 steps in practice.
Qualitative Analysis. Visualization of different hierarchies. The results in
Fig. 6 show that the output at the higher level (e.g ., specific level) contains more
action details. Specifically, the motion level generates only coarse-grained overall
motion. The action level generates local actions with guidance but lacks action
specifics. The specific level generates more action specifics than the action level.
Visualization of adjusting the guiding weight of each local action. The strength
of our local action-guided motion generation lies in its capacity to fine-tune the
generation process of motion diffusion models. In contrast to existing methods
confined to producing a singular style of motion, our method offers flexibility in
adjusting the guiding weight λ of action guidance. This affords precise control
over how each local action influences the overall motion, catering to diverse user
preferences. As illustrated in Fig. 7, we can manipulate the movement trajecto-
ries by varying the guiding weight of the local action. For example, increasing
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Local Action Global Motion

Motion Description: “ A person walks aimlessly and slowly in an imperfect circle around the room, lethargically 

swaying their arms with each step.”

strengthenA person walks … the room.

strengthenA … swaying their arms … step.

Fig. 7: The proposed GuidedMotion controls the generation process of mo-
tion diffusion models. Our method provides flexibility in adjusting the guiding
weight λ of each local action, enabling fine-grained control over global motion.

the guiding weight of “walks aimlessly and slowly in an imperfect circle around
the room” results in the human body walking in a tighter circle. Furthermore,
we can refine the human body postures throughout the motion. For instance,
by amplifying the guiding weight of “ lethargically swaying their arms with each
step,” the body exhibits more pronounced arm movements.

5 Conclusion

In this paper, we introduce GuidedMotion, a local action-guided motion diffusion
model designed to enhance the controllability of text-driven human motion gen-
eration by employing local actions as fine-grained control signals. Our method
empowers users to combine preferred local actions freely, generating motions that
align with their mental imagery. Extensive experiments demonstrate that our
method achieves superior controllability than the existing state-of-the-art meth-
ods. Furthermore, our method supports continuous guiding weight adjustment,
allowing for the refinement of the motion results to align with user preferences.
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