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Abstract. Offline signature verification (OSV) is a frequently utilized
technology in forensics. This paper proposes a new model, DetailSem-
Net, for OSV. Unlike previous methods that rely on holistic features
for pair comparisons, our approach underscores the significance of fine-
grained differences for robust OSV. We propose to match local struc-
tures between two signature images, significantly boosting verification
accuracy. Furthermore, we observe that without specific architectural
modifications, transformer-based backbones might naturally obscure lo-
cal details, adversely impacting OSV performance. To address this, we
introduce a Detail-Semantics Integrator, leveraging feature disentan-
glement and re-entanglement. This integrator is specifically designed to
enhance intricate details while simultaneously expanding discriminative
semantics, thereby augmenting the efficacy of local structural matching.
We evaluate our method against leading benchmarks in offline signa-
ture verification. Our model consistently outperforms recent methods,
achieving state-of-the-art results with clear margins. The emphasis on
local structure matching not only improves performance but also en-
hances the model’s interpretability, supporting our findings. Addition-
ally, our model demonstrates remarkable generalization capabilities in
cross-dataset testing scenarios. The combination of generalizability and
interpretability significantly bolsters the potential of DetailSemNet for
real-world applications.

Keywords: Offline Signature Verification · Feature Disentanglement ·
Local Matching

1 Introduction

Handwritten offline signature verification (OSV) is a pivotal biometric tech-
nology, especially in sectors like banking and commerce. The core goal of this
technology is to authenticate a signature by comparing it against a known orig-
inal. This comparison involves analyzing a test signature alongside a reference
signature, allowing the system to determine whether the test image is a forgery
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Fig. 1: Three samples from the ChiSig
dataset. Signature (a) originates from a dif-
ferent individual than signatures (b) and
(c). At first glance, these signatures ap-
pear remarkably similar when viewed holis-
tically. However, detailed analysis at the
patch level reveals distinct differences be-
tween them, which are aspects frequently
overlooked in previous methodologies.
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Fig. 2: We employ filters to extract
Low-frequency (LF), low-plus-middle fre-
quency (LMF), and low-plus-high fre-
quency (LHF) images. Our model captures
both semantic pattern (low-frequency)
and stroke structure and style detail
(high-frequency) for improved verification.
Leveraging high-frequency data enhances
performance, unlike the baseline trans-
former model, which solely relies on low-
frequency patterns and does not benefit
from high-frequency features.

or genuine. Such critical assessments of authenticity are vital in maintaining
security and trust in various applications [40].

Signature verification is challenging due to several factors. First, people have
unique ways of signing. Second, there’s often not enough detailed information
about how each signature stroke is made. Finally, sophisticated forgeries can be
hard to distinguish from genuine signatures. The essence of signature verification
lies in comparing the similarity of the subtle stylistic characteristics concealed
within the reference signature and the testing one rather than focusing on the
specific contents of the signatures [40].

Traditional approaches for OSV heavily rely on manual handcrafted fea-
ture engineering [7, 13]. In recent years, numerous deep-learning methods have
been proposed [40]. These deep-learning methods have demonstrated significant
advancements in verification performance when compared to traditional hand-
crafted features. However, some key issues still need to be well addressed by pre-
vious deep-learning methods. Despite the importance of the reasoning process
that considers the similarity between global features from the holistic signature
image. They lack the incorporation of structural comparison among local patch
features to measure similarity. A global representation destroys image struc-
tures and leads to the loss of local information. Local features (stroke structure
and style) offer discriminative and transferable information for offline signature
verification (Fig. 1). Hence, a desirable metric-based OSV should possess the ca-
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Fig. 3: Conventional OSV method vs. Our proposed method: The left figure shows the
traditional approach, lacking detailed feature information and relying solely on global
similarity for comparison. On the right, our method, called DetailSemNet, employs
the Detail-Semantics Integrator to divide features into Semantic and Detail compo-
nents. The Semantic component acquires contextual information through the Seman-
ticsAttend Branch, while the Detail component is processed via the SalientConv and
DetailConv Branches. Integrating these outputs yields feature representations contain-
ing both detailed and semantic information. Additionally, the model utilizes Structural
Matching techniques to emphasize detailed information alongside global similarity.

pability to leverage local discriminative representations for metric learning while
minimizing the influence originating from irrelevant regions.

To address the issues mentioned above, we propose a new model DetailSem-
Net for offline signature verification. In this model, Structural Matching is
proposed to align local patch tokens. This mechanism enhances the model’s
ability to capture local discriminative features, thereby significantly improv-
ing its identification capabilities. While integrating Structural Matching di-
rectly into DetailSemNet has been observed to strengthen performance, we noted
a crucial limitation in attention/transformer-based models, where they often
lose detailed information during the token feature extraction process. Our pre-
liminary analysis, illustrated in Fig. 2, supports this observation. Traditional
transformer-based models primarily focus on low-frequency patterns, neglecting
the high-frequency information crucial for distinguishing between similar sig-
natures. Consequently, when tested with images rich in high-frequency details,
the Equal Error Rate (EER) performance shows negligible improvement. This
observation suggests a performance improvement gap that deserves further ex-
ploration.

To this end, as shown in Fig. 3, we deliberately designed multi-branch net-
works to extract the Detail and Semantics components and handle them sepa-
rately during the feature extraction process. This approach allows us to retain
more detailed information, resulting in the model exhibiting improved discrimi-
native capabilities. Compared with the conventional transformer-based method,
as shown in Fig. 2, our approach can well use high-frequency information to
enhance system performance. Below, we summarize our contributions.

1. Our method introduces Structural Matching, a novel technique designed
to optimize the matching of local embeddings. Combined with global distance
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Fig. 4: In our DetailSemNet, the Detail-Semantics Integrator splits features into
two components: Semantic and Detail. The Semantic component is sent to the Seman-
ticsAttend Branch to gather context information, while the Detail component goes
through the SalientConv Branch and DetailConv Branch. The outputs of these three
branches are then fused, creating features that incorporate both detailed and semantic
information. In addition to global similarity, the model also performs structural match-
ing on the features, allowing it to pay more attention to detailed information.

measures, it enables a more comprehensive assessment of similarity in offline
signature verification, enhancing the model’s accuracy and reliability.

2. We propose the Detail-Semantics Integrator, an innovative network that
ensures the detail and Semantics features are extracted. This integrator sig-
nificantly improves the model’s feature extraction capabilities and achieves a
finer understanding of the signature data, making it particularly well-suited
for the OSV task.

3. Our proposed method exhibits superior performance compared to existing
methods. This superiority is evident both in single-dataset testing scenar-
ios and cross-dataset evaluations. Such performance highlights the model’s
generalization ability.

2 Related works

2.1 Offline Signature Verification (OSV)

Offline signature verification has been a subject of study for many years, as
evidenced by Dey et al. [6]. More recently, a shift has been observed where
deep-learning methods surpass manually-designed feature methods in perfor-
mance [7, 13]. For instance, Wei et al. [40] improved feature extraction for veri-
fication using gray-inverted images and attention modules. Li et al. [16] innova-
tively integrated sequential representations into static signature images, creating
a unified framework for offline verification. Further, Li et al. [17] leveraged an
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adversarial network to enhance signature verification capabilities. The use of a
dual-channel Network to measure image dissimilarity was introduced by Li et
al. [15]. Lately, Lu et al. [24] proposed a network which assesses pairs of im-
ages using a cycling method to make observations. Additionally, Li et al. [18,19]
marked a significant milestone by being the first to introduce a transformer
framework in this domain.

Distinguishing our work from these prior efforts, we present a novel approach
to offline signature verification by directly utilizing local patch tokens to learn a
distance metric and explicitly find the patch matching between an image pair,
thereby harnessing their potential to enhance the verification process.

2.2 Local Matching

Developing an effective Local Matching method for OSV is challenging. The Hun-
garian algorithm [12] efficiently solves the Assignment Problem but may not suit
signature verification due to its strict one-to-one assignment constraint. Signa-
tures often vary and do not align perfectly. Various distance metrics measure
similarity between sets: the Hausdorff distance (HD) [10] is sensitive to outliers,
the Chamfer distance (CD) [41] sums squared distances between nearest neigh-
bors, and the Earth Mover’s distance (EMD) [41, 45] finds the least costly way
to align sets. While EMD is more detail-sensitive than CD, it is also computa-
tionally complex [22], requiring a balance between efficiency and capturing the
nuances of signature variations.

2.3 Backbone Designs and Their Properties

The field of visual data processing has evolved from Convolutional Neural Net-
works (CNNs) to Vision Transformer models (ViTs). However, recent studies,
like Raghu et al. [31] and Bai et al. [2], have explored the strengths and limita-
tions of ViTs compared to CNNs. A key finding is that while ViTs are adept at
global information aggregation through self-attention, they might not leverage
local image structures as effectively as CNNs and reduce the ability to model
local fine-grained details [20, 25,30,36].

To address this, new ViT architectures have been introduced. PVT [38]
adopts a pyramid-like structure for diverse resolution feature maps, enhancing its
utility in dense prediction tasks. Swin [23] focuses on local window self-attention.
DAT [42] incorporates a deformable attention mechanism, offering flexible adapt-
ability for local feature representation. BiFormer [49] uses a Bi-Level Routing
Attention mechanism, focusing on semantically rich regions for fine-grained at-
tention. These advancements underscore the importance of detailed feature ex-
traction and semantic learning, which are vital for Offline Signature Verification
(OSV) tasks. Inspired by these insights, we proposed DetailSemNet to combine
the advantages of CNNs and ViTs, making it particularly effective for OSV.
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3 Method

Our model, as illustrated in Fig. 4a, processes a pair of input images, R (Refer-
ence) and Q (Query), for signature verification. These images undergo prepro-
cessing to convert them into binary images of dimensions H×W×1 coupled with
a foreground map, which is then used as inputs for the model. The images are
segmented into patches (i.e., tokenized) and fed into the feature extraction back-
bone, which consists of four stages. Each stage involves a Patch Embedding layer
followed by several layers of the proposed Detail-Semantics Integrator (DSI)
module (see Sec. 3.2 and Fig. 4b). The backbone’s output comprises two sets of
token features, fR and fQ, which are utilized to compute two types of distances,
disglobal and disstruct. First, as shown in Eq. (1), we calculate the global L2 dis-
tance disglobal using the global embeddings embedRglobal and embedQglobal, derived
by averaging the feature set fR and set fQ accordingly. Second, our Structural
Matching technique is applied to ascertain a local structural distance disstruct,
computed from the local embeddings embedRlocal and embedQlocal as outlined in
Eq. (5). The process for calculating disstruct is detailed in Sec. 3.1.

disglobal = L2(embedRglobal, embedQglobal) (1)

In the evaluation phase, we utilize the combined distance, defined in Eq. (2), as
the similarity measurement of R and Q and make a final verification decision by
thresholding.

dis = λ0 × disglobal + disstruct, (2)

where λ0 is a hyperparameter, used to adjust the weighting between the two
distances.

3.1 Local Structural Matching

To implement Structural Matching, we focus on utilizing features from image re-
gions containing drawn strokes for local similarity measurement and filtering out
the background tokens according to the foreground map. This step is particu-
larly beneficial due to the sparsity of signature images, where some local patches
are uninformative. In addition, we mask out the background tokens after our
feature extraction backbone to reduce the information loss.

To extract the foreground map, we first resize the input image from H×W×1
to h×w to match the size of the extracted token feature sets (i.e., fR and fQ).
Following this, we apply global thresholding to binarize the resized image and
achieve the foreground map, Mask, which delineates the relevant regions con-
taining strokes. It’s important to note that a more sophisticated text region
segmentation technique can be employed when the input images have cluttered
backgrounds. Later, this Mask is applied to filter out irrelevant tokens from the
entire token set, leaving us with significant tokens. These tokens are subsequently
processed through a linear layer to generate the local embeddings embedlocal,
which are crucial for calculating the local structural distance disstruct. Specif-
ically, we define the corresponding masks of R and Q as MaskR and MaskQ.



Elevating Signature Verification through Detail-Semantic Integration 7

The local embeddings of R and Q and their structural distance disstruct can be
calculated by

embedRlocal = linear(MaskR(fR)), (3)

embedQlocal = linear(MaskQ(fQ)), and (4)

disstruct = SM(embedRlocal, embedQlocal). (5)

In Eq. (5), to effectively match local structures, or tokens, we developed the
function SM to quantify the similarity between two sets of local embeddings,
embedRlocal = {r0, r1, ..., rN−1} and embedQlocal = {q0, q1, ..., qM−1}, where N and
M represent the number of embeddings remaining after masking. To determine
the local distance disstruct, we initially calculate the cosine distance between
pairs of local embeddings by

dij = 1− rTi qj
∥ri∥∥qj∥

, 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ M − 1. (6)

This calculation forms the basis of the ground distance matrix D = (dij) ∈
RN×M , which is used for token matching.

The matching relationship between the tokens within the two local embed-
ding sets is essential to obtain disstruct. To represent the matching relationship,
we introduce a flow matrix F = [fij ] ∈ RN×M , where each element fij indicates
the ratio of the matching assignment from ri to qj . Note that ri can match
to multiple qj . Once the optimal flow matrix F∗ = [f∗

ij ] (i.e., representing the
ideal matching relationships) is determined, we can then compute a more accu-
rate similarity measure. As defined in Eq. (7), this is achieved by performing an
element-wise multiplication of the ground distance matrix D = (dij) with the
optimal flow matrix F∗ = [f∗

ij ], followed by summing up these products and nor-
malizing the result. The outcome of this process is a refined similarity measure
that more accurately reflects the proper correspondence between the two sets of
local tokens.

disstruct =

∑N−1
i=0

∑M−1
j=0 dijf

∗
ij∑N−1

i=0

∑M−1
j=0 f∗

ij

. (7)

Here, we conceptualize the problem of determining the optimal matching
flow, F∗ = [f∗

ij ], as the process of minimizing the Earth Mover’s Distance
(EMD) [34], whose details would be provided in the supplementary. The EMD
framework allows us to assign different weights to each local embedding, given
the total weights of all tokens sum up to 1. In this context, the weight of each
local embedding represents its significance in the matching process. Our exper-
iments find that a simple uniform weight can also achieve good results. How-
ever, if we have the prior information, we can adjust the weights for further
improvement. Next, to discover the optimal matching flow, we reformulate the
EMD optimization problem as a linear programming challenge and utilize the
Sinkhorn algorithm [4] for problem-solving. The Sinkhorn algorithm smoothens
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the EMD calculation through entropic regularization, making it possible to solve
this linear programming problem effectively. Once the optimal matching flow,
F∗ = [f∗

ij ], has been calculated, we can calculate disstruct by Eq. (7).

3.2 Detail-Semantics Integrator

Although transformer-based models have been widely adopted, several studies
have discussed how the Multi-head Self-Attention module (MSA) indiscrimi-
nately suppresses high-frequency signals, leading to significant information loss.
These discussions include approaches such as [2, 28, 37, 48]. This is not advan-
tageous for tasks like OSV. Addressing this, as depicted in Fig. 4b, we have
developed the Detail-Semantics Integrator (DSI), a novel feature enhance-
ment technique tailored for feature maps. The DSI begins by decomposing the
input feature X into two parts: the Semantic Feature Sem[X] and Detailed Fea-
ture Det[X]. To maintain computational efficiency, we compute Sem[X] by per-
forming local average pooling on X, which effectively captures lower-frequency
parts. Conversely, Det[X], representing higher-frequency parts, is computed by
X − Sem[X]. Later, after a 1-by-1 projection layer, Sem[X]proj undergoes pro-
cessing in the SemanticsAttend Branch SemAtt, using an attention-based mod-
ule to extract semantic features YSem. On the other hand, Det[X]proj is pro-
cessed through a convolution-based module Conv to extract fine-grain details
YDet from local features. The steps are as follows:

YSem = SemAtt(Sem[X]proj) and (8)

YDet = Conv(Det[X]proj). (9)

Moreover, the convolution-based module is strategically divided into the Salient-
Conv branch and the DetailConv Branch. The SalientConv branch integrates
both maximum filter and convolution layers, where the maximum filter is partic-
ularly effective in retaining salient features and helps to highlight the prominent
aspects of the signature images. Conversely, the DetailConv branch, consisting
of two successive convolution layers, is tailored to draw out finer details. Unlike
attention mechanisms, convolutions excel at detecting intricate high-frequency
details, making them ideal for processing the Det[.] part of the input. For feature
decomposition, the projected detailed features Det[X]proj are divided equally
along the channel direction, with each part directed to either SalientConv or
DetailConv for specialized processing. The detailed steps are as follows:

Det1[X], Det2[X] = split(Det[X]proj). (10)

YDet1 = SalientConv(Det1[X]). (11)

YDet2 = DetailConv(Det2[X]). (12)
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In the final stage of DSI (Fig. 4b), the outputs from the SemAtt, SalientConv,
and DetailConv branches are concatenated along the channel dimension to
form a unified feature representation, followed by a Residual Convolution layer
(Convfuse). This layer further integrates the concatenated features to ensure a
seamless blend of detailed and semantic information. Moreover, consistent with
the architecture of most transformer-based models, DSI incorporates a Feed-
Forward Network (FFN) and Layer Normalization (LN) to enhance the model’s
processing capabilities. In Sec. 4.5, we demonstrate through experiments that
this particular design of DetailSemNet is highly effective for OSV tasks.

3.3 Loss Function

The output of our signature verification model is dis (Eq. (2)), which denotes
the distance between two input signature images. To train the model, we employ
a double-margin contrastive loss [8, 24], defined as follows:

LossDM = y{max(0, dis−m)}2 + (1− y){max(0, n− dis)}2. (13)

Here, the supervised label y is assigned a value of 1 for positive (genuine-genuine)
signature pairs and 0 for negative (genuine-forged) signature pairs. The param-
eters n and m represent the margin values used in the loss calculation. Impor-
tantly, m is constrained to be less than n to ensure the loss function behaves as
intended.

4 Experiments

We evaluated our approach using four challenging datasets, each representing a
different language. These include the CEDAR Dataset [11] (English), BHSig-B
Dataset [27] (Bengali), BHSig-H Dataset [27] (Hindi), and ChiSig Dataset4 [44]
(Chinese). To further test the robustness of our model, we conducted cross-
language experiments. These involved training the model on a dataset and sub-
sequently testing it on a dataset in a different language. Our model was trained
on an NVIDIA GeForce RTX 2080Ti GPU. The initial model pre-trained weights
were derived from the ImageNet1K dataset [5].

We performed comprehensive comparisons with several existing methods [16,
18,40] using a variety of metrics. These metrics include the False Rejection Rate
(FRR), False Acceptance Rate (FAR), Equal Error Rate (EER), Area Under the
Curve (AUC), and Accuracy (Acc). Furthermore, we utilize the Equal Error Rate
(EER) to identify the point where FRR and FAR are equal. This equilibrium
point informs the threshold used to calculate Accuracy (Acc) and facilitates the
verification decision-making process.

4 The latest ChiSig Dataset, unlike the others, has not been previously utilized for
Offline Signature Verification (OSV) tasks. Therefore, it was specifically used in our
ablation study to underscore the efficacy of our method.
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Table 1: Signature verification comparison on BHSig-H(%) and BHSig-B(%).

Method BHSig-H BHSig-B
FAR FRR Acc ↑ EER ↓ FAR FRR Acc ↑ EER ↓

SigNet [6] 15.36 15.36 84.64 15.36 13.89 13.89 86.11 13.89
IDN [40] 4.93 8.99 93.04 6.96 4.12 5.24 95.32 4.68
DeepHsv [15] - - 86.66 13.34 - - 88.08 11.92
SDINet [16] 6.24 3.77 95.00 5.11 3.30 7.86 94.42 5.39
CaC [24] 5.97 5.97 94.03 5.97 3.96 3.96 96.04 3.96
AVN [17] 5.46 5.91 94.32 5.65 7.33 5.07 93.80 6.14
TransOSV [18,19] 3.39 3.39 96.61 3.39 9.95 9.95 90.05 9.95
2C2S [33] 8.66 5.16 90.68 9.32 5.37 8.11 93.25 6.75
SURDS [3] 12.01 8.98 89.50 - 19.89 5.42 87.34 -
MA-SCN [46] 5.73 4.86 94.99 5.32 9.96 5.85 92.86 8.18
SigGCN [32] 12.96 11.27 87.88 12.17 4.06 3.95 95.99 4.00
Co-Tuplet [9] 6.76 6.56 - 6.68 5.93 6.20 - 6.12
HybridFE [43] 11.74 11.74 88.26 11.74 8.36 8.36 91.64 8.36
SPD Manifold [50] - - - 15.60 - - - 11.10
Ours 1.07 3.59 98.24 2.07 0.95 4.04 98.19 2.11

4.1 Results on BHSig-B and BHSig-H Datasets

The BHSig260 Dataset [27] includes both the BHSig-B and BHSig-H Datasets.
The BHSig-B Dataset contains signatures from 100 individuals from Bengal,
with each individual contributing 24 genuine signatures and 30 forgeries. For
our model’s training, we utilized the signatures from 50 of these individuals,
while the signatures from the remaining 50 were reserved for testing purposes.
In contrast, the BHSig-H Dataset consists of signatures from 160 individuals,
with each providing 24 genuine signatures and 30 forged signatures. In this case,
our training involved signatures from 100 individuals, with the remaining 60
individuals’ signatures set aside for the testing phase.

Our mode performance was compared with several conventional approaches,
including SigNet [6], IDN [40], DeepHsv [15], SDINet [16], CaC [24], AVN [17],
TransOSV [18,19], 2C2S [33], SURDS [3], MA-SSN [46], SigGCN [32], HybridFE
[43], and SPD Manifold [50]. The evaluation results are detailed in Tab. 1.

Regarding the BHSig-B Dataset, our method demonstrated impressive re-
sults, achieving an Accuracy (Acc) of 98.19%, a False Acceptance Rate (FAR)
of 0.95%, and a False Rejection Rate (FRR) of 4.04%. Additionally, the model
recorded an Equal Error Rate (EER) of 2.11%. Compared to the best available
result from other methods, our approach exhibits a significant performance gain
of 1.85%. Turning to the BHSig-H Dataset, our method continued its strong
performance, achieving an Accuracy of 98.24%, an FAR of 1.07%, and an FRR
of 3.59%. The EER for this dataset was an impressive 2.07%. Compared with
the leading comparative methods, our approach marks a notable performance
improvement of 1.32%.
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4.2 Results on CEDAR Dataset

Table 2: OSV comparison on CEDAR(%).

Method FAR FRR Acc ↑ EER ↓
SigNet [6] - - - 4.63
IDN [40] 5.87 2.17 - 3.62
SDINet [16] 3.42 0.73 - 1.75
CaC [24] 4.34 4.34 95.66 4.43
AVN [17] 3.26 4.42 96.16 3.77
MA-SCN [46] 19.21 18.35 80.75 18.92
MLDF [1] - - - 5.00
Co-Tuplet [9] 3.33 3.55 - 3.51
HybridFE [43] 9.95 9.95 90.05 9.95
SPD Manifold [50] - - - 8.53
Ours 0.36 0.58 99.53 0.58

Within the CEDAR signature
dataset [11], each individual
is represented by 24 genuine
and 24 forged signatures, all
written in English. Aligning
with methodologies from pre-
vious studies, we used the sig-
natures of 50 individuals to
train our model and reserved
the signatures of the remain-
ing 5 individuals for testing.
In this setup, a positive sam-
ple is created by pairing a ref-
erence signature with a gen-
uine signature, while a nega-
tive sample is formed by pair-
ing a reference signature with a forged signature. Thus, each signatory con-
tributes 276 positive and 276 negative pairs for verification.

We conducted a comparative analysis of our model with other conventional
approaches such as SigNet [6], IDN [40], SDINet [16], CaC [24], AVN [17], MA-
SCN [46], MLFD [1], Co-Tuplet [9], HybridFE [43], and SPD Manifold [50].
The results of these comparative analyses on the CEDAR Dataset are detailed
in Tab. 2. Here, our method demonstrated exemplary performance, achieving
an accuracy of 99.53%, a False Acceptance Rate (FAR) of 0.36%, and a False
Rejection Rate (FRR) of 0.58%. Additionally, the model attained an Equal Error
Rate (EER) of 0.58%. Compared to the best results from other methods, our
approach appeared as a top-performing model.

4.3 Verification on Cross-Dataset Scenario

To evaluate the generalization capabilities of our model, we train the model on
a dataset and directly test the model on other datasets with different languages.
The effectiveness of our model in this regard is demonstrated by the test results
presented in Tab. 3. Compared to other methods, our approach consistently
outperforms them, indicating its adaptability and robustness across different
languages without model finetune.

4.4 Ablation Studies

We conducted ablation experiments to evaluate the impact of each module in-
troduced in our proposed method, including Structural Matching (SM), Detail-
Conv Branch (DCB) and SalientConv Branch (SCB). These tests were performed
across four different datasets, and the results are presented in Tab. 4. Through
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Table 3: The zero-shot cross-lingual OSV task (cross-dataset) testing results. (EER%)

Train BHSig-H BHSig-B CEDAR

Test BHSig-B CEDAR BHSig-H CEDAR BHSig-H BHSig-B

SigNet [6] 39.35 40.43 35.43 50.00 44.39 35.85
IDN [40] 25.88 50.00 25.70 50.00 49.64 49.99
CaC [24] 14.66 29.49 30.41 33.71 39.08 38.07
SURDS [3] 27.74 - 32.99 - - -
TransOSV [18,19] 18.66 - 17.17 - - -
Ours 7.46 14.05 15.91 7.32 16.35 8.40

Table 4: Ablation study of Structural Matching (SM), DetailConv Branch (DCB),
and SalientConv Branch (SCB). The table presents the results using the abbreviations
M, D, and S in that order. Four different datasets are tested.

M D S BHSig-H BHSig-B CEDAR ChiSig
EER AUC Acc EER AUC Acc EER AUC Acc EER AUC Acc

× × × 4.70 0.991 95.82 3.37 0.995 97.14 3.41 0.994 96.81 12.47 0.947 88.68
✓ × × 4.67 0.992 95.88 3.29 0.995 97.22 1.99 0.998 98.08 10.69 0.964 89.82
× ✓ × 2.72 0.997 97.70 2.51 0.997 97.44 1.45 0.999 98.77 8.91 0.972 91.73
× × ✓ 2.87 0.997 97.69 2.66 0.997 97.68 1.59 0.998 98.41 8.65 0.977 92.62
× ✓ ✓ 2.62 0.997 97.80 2.50 0.997 97.89 1.74 0.999 98.59 7.00 0.985 93.89
✓ ✓ × 2.51 0.997 97.87 2.19 0.998 98.03 1.09 0.999 98.95 8.65 0.977 91.35
✓ × ✓ 2.72 0.997 97.74 2.19 0.998 98.15 2.10 0.998 98.19 6.36 0.983 93.89
✓ ✓ ✓ 2.07 0.998 98.24 2.11 0.998 98.19 0.58 1.000 99.53 5.85 0.985 94.40

these experiments, we observed a consistent trend of progressive performance
improvement with the sequential incorporation of each proposed modification.

To further understand the impact of our proposed Structural Matching, we
experimented with its integration at various stages within the model. The out-
comes of these tests are detailed in Tab. 5. Notably, the results demonstrate that
integrating Structural Matching towards the end of the process yields the most
favorable performance.

4.5 Comparison of Different Backbones

We also evaluate the performance impact of various transformer backbones on
our model. We conducted training under identical conditions using different
transformer architectures, including PVT [38], Swin [23], SPACH [47], DAT [42],
and BiFormer [49], for comparison. The results, illustrating how each backbone
influenced the model’s performance, are presented in Tab. 6. Compared with
other backbones, our model exhibited better performance, underscoring the ef-
fectiveness of our design.
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Table 5: Apply Structural
Matching to different stages
on the BHSig-H.

stage EER(%) ↓

3 3.47
3 & 4 3.05
4 (Ours) 2.09

Table 6: Comparison of Different Backbones. We
test our results on the BHSig-H and BHSig-B. All
the models are under identical conditions.

Dataset BHSig-H BHSig-B
EER Acc ERR Acc

PVT [38] 4.62 96.06 2.72 97.55
Swin [23] 4.24 96.15 10.27 91.01
SPACH [47] 3.71 96.67 3.30 96.90
DAT [42] 4.94 95.73 20.09 82.77
BiFormer [49] 4.38 96.10 8.66 92.38
Ours 2.07 98.24 2.11 98.19

4.6 Comparing with Verification Tasks

Table 7: Comparison with Re-ID mod-
els on BHSig-H.

Method FAR FRR Acc ↑ EER ↓
BPB [26] 2.73 7.25 96.02 4.42
PAT [35] 4.95 13.32 92.73 7.85
Ours 1.07 3.59 98.24 2.07

Verification Tasks like OSV, Re-ID, and
face verification aim to assess image sim-
ilarity but also face distinct technique
challenges. E.g ., a Re-ID task contends
with pose variations [21], occlusions [35],
or non-discriminative appearance issues
[26]. In contrast, face verification chal-
lenges stem from resolution differences
[14], aging appearance [39], and wearing
accessories [29]. Our method highlights the need for OSV tasks to discern fine-
grained differences in signature pairs, a challenge that is less prominent in other
tasks. We applied state-of-the-art Re-ID models to the OSV task, and the results
are shown in Tab. 7.

4.7 Visualize Matching Results

Visualizing matching flows during inference adds interpretability to our model,
as shown in Fig. 5. The reference image is placed on the left. It queries a specific
patch and then demonstrates how it corresponds to a positive image in the
middle and a negative image on the right.Positive pairs typically show correct
patch correspondences, while negative pairs struggle with mismatches. We also
visualized the impact of Structural Matching in Fig. 6, showing that models
without it have difficulty achieving precise patch matches.

4.8 Impact of High-Frequency Information on Performance

We use low-pass filters to create testing images with varying high-frequency
(HF) content, evaluating both our model and a conventional transformer-based
method. The results in Fig. 7 show the impact of HF details on performance, with
the X-axis indicating the amount of HF information. Higher HF content gen-
erally reduces EERs. For the transformer-based model, EER plateaus at 3.41%



14 Shih et al.

BHSig-H ChiSig

query positive negative

CEDAR

query positive negative

BHSig-B

query positive negative query positive negative

Fig. 5: Illustrating the matching results of our model on signature pairs. The sample
pairs are selected from the four datasets. Our model demonstrates correct matching
results when tested on positive pairs; whereas, when tested on negative pairs, it exhibits
matching at incorrect positions, sometimes even at multiple locations.

wo/ SM w/ SM (Ours)querywo/ SM w/ SM (Ours)query

CEDAR ChiSig

Fig. 6: This figure illustrates the match-
ing results of our model on signature pairs
with or without our Structural Match-
ing (SM). The results demonstrates how
our Structural Matching improves the
model’s ability to capture detailed fea-
tures.

Filter Size

EER

Fig. 7: The X-axis shows the amount
of high-frequency information in the
testing images, with higher values in-
dicating greater inclusion. This graph
illustrates that our approach effi-
ciently leverages high-frequency de-
tails to reduce EER.

beyond a HF threshold of 164, showing a saturation point. In contrast, our model
significantly reduces EER from 6.52% to 0.58%, as HF content increases from
112 to 224.

5 Conclusion

In this paper, we introduce DetailSemNet, a novel model for Offline Signature
Verification (OSV) that emphasizes local patch features in Structural Matching,
a shift from traditional holistic approaches. DetailSemNet also incorporates
the Detail-Semantics Integrator (DSI) to enhance structural matching, effec-
tively capturing detailed and semantic aspects. Our results demonstrate that
DetailSemNet outperforms existing methods in both single-dataset and cross-
dataset scenarios, highlighting its strong generalization capability and potential
for real-world application. These findings indicate the effectiveness of combin-
ing the DSI module with Structural Matching in OSV models, positioning De-
tailSemNet as a significant advancement in forensic technology.
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