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Abstract. While RGBD-based methods for category-level object pose
estimation hold promise, their reliance on depth data limits their ap-
plicability in diverse scenarios. In response, recent efforts have turned
to RGB-based methods; however, they face significant challenges stem-
ming from the absence of depth information. On one hand, the lack of
depth exacerbates the difficulty in handling intra-class shape variation,
resulting in increased uncertainty in shape predictions. On the other
hand, RGB-only inputs introduce inherent scale ambiguity, rendering
the estimation of object size and translation an ill-posed problem. To
tackle these challenges, we propose LaPose, a novel framework that
models the object shape as the Laplacian mixture model for Pose es-
timation. By representing each point as a probabilistic distribution, we
explicitly quantify the shape uncertainty. LaPose leverages both a gen-
eralized 3D information stream and a specialized feature stream to in-
dependently predict the Laplacian distribution for each point, capturing
different aspects of object geometry. These two distributions are then
integrated as a Laplacian mixture model to establish the 2D-3D corre-
spondences, which are utilized to solve the pose via the PnP module. In
order to mitigate scale ambiguity, we introduce a scale-agnostic represen-
tation for object size and translation, enhancing training efficiency and
overall robustness. Extensive experiments on the NOCS datasets vali-
date the effectiveness of LaPose, yielding state-of-the-art performance in
RGB-based category-level object pose estimation. Codes are released at
https://github.com/lolrudy/LaPose.

Keywords: Category-level Object Pose Estimation · 3D Object Detec-
tion · PnP Algorithm

1 Introduction

The task of category-level object pose estimation involves predicting the 9DoF
pose, including 3D rotation, 3D translation, and 3D metric size, for unseen ob-
jects from a given set of categories. This field has garnered increasing research

https://github.com/lolrudy/LaPose
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Fig. 1: Two main challenges of RGB-based category-level object pose estimation. (A)
The lack of depth information exacerbates the difficulty in handling intra-class shape
variation. The length of the camera lens is uncertain in the front view. (B) The RGB-
only inputs introduce scale ambiguity. Laptops of various sizes have identical appear-
ance in the image.

interest for its wide applications in robotics [9], augmented reality (AR), vir-
tual reality (VR) [42], and 3D understanding [36]. While RGBD-based meth-
ods [2, 4, 5, 11, 29–31, 33, 44, 48, 56–58] demonstrate promising results, most of
them heavily rely on depth sensors, which restricts their applicability in general
scenarios [24,49].

Therefore, RGB-based category-level object pose estimation methods [6, 12,
24, 49] have been proposed as alternatives suitable for deployment on embed-
ded devices such as AR headsets and mobile phones [49]. However, as shown
in Fig. 1, the absence of depth information presents two significant challenges:
firstly, the lack of depth complicates the prediction of object shape and exac-
erbates the difficulty in handling intra-class shape variation; secondly, relying
solely on the RGB input introduces inherent scale ambiguity, rendering the es-
timation of translation and size an ill-posed problem.

To address these challenges, two lines of solutions are proposed by recent
methods. On one hand, MSOS [24] and OLD-Net [12] estimate the metric depth
and Normalized Object Coordinate Space (NOCS) coordinates [48] to establish
3D-3D correspondences and solve the pose via the Umeyama algorithm [45]. On
the other hand, DMSR [49] utilizes object normal and relative depth predicted
by pretrained DPT models [40] as additional inputs to estimate the NOCS co-
ordinate map as well as the object metric scale, and then solves the pose using
the PnP algorithm [25].

However, these methods encounter limitations in two key aspects. Firstly, as
depicted in Fig. 1 (A), the absence of depth information raises challenges in accu-
rately measuring the object shape. The shape uncertainty is particularly evident
in certain areas of the image (such as the camera lens in Fig. 1 (A)), complicating
the establishment of precise correspondences. All these methods [12,24,49] treat
the predicted correspondences of each pixel equally and rely on RANSAC to
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filter outliers, which slows down the prediction process and undermines robust-
ness. Secondly, MSOS [24] and OLD-Net [12] do not consider scale ambiguity.
In contrast, DMSR [49] utilizes the same features to predict the NOCS map and
the metric scale. However, inferring the metric scale from a single RGB image is
inherently ill-posed, potentially leading to unstable training of other components
and inferior results.

To tackle these problems, we propose LaPose by modelling object shape as
Laplacian mixture model for RGB-based category-level object Pose estimation.
As shown in Fig. 1, the shape uncertainty of each pixel varies due to the lack
of depth. In comparison to predicting NOCS map deterministically as the pre-
vious methods, modeling the NOCS coordinate as the probabilistic distribution
introduces additional information of its variance, which explicitly measures the
shape uncertainty of each point.

In order to provide a more comprehensive understanding of the object shape,
we employ the Laplacian Mixture Model (LMM), which combines two inde-
pendent Laplacian distributions inferred from different sources of information.
We choose the Laplacian distribution due to its superior ability to handle out-
liers compared to other distributions such as Gaussian [8]. We utilize two par-
allel information streams to capture different aspects of the object geometry
and independently predict the Laplacian distribution of the NOCS map. To
extract a generalizable category-agnostic 3D feature, we leverage DINOv2 as
the generalized 3D information stream. Several studies [1, 7, 54] have demon-
strated DINOv2’s capability of encapsulating 3D information. Specifically, it
can extract SE(3)-consistent local features to establish semantic correspondences
across objects of varying shapes and poses [7]. However, as DINOv2 is trained
in a category-agnostic manner, it is inferior to extract category-specific features.
To complement this, we train another backbone [35] dedicated to capturing
category-specific information as the specialized feature stream.

After estimating the Laplacian mixture model, we establish the 2D-3D corre-
spondences and solve the pose utilizing the PnP module constructed by a convo-
lutional network similar to [47]. The PnP module benefits from LMM in two key
aspects: firstly, it can dynamically aggregate diverse object geometry informa-
tion captured by the dual information branch; secondly, it can identify the shape
uncertainty in different areas and filter out erroneous correspondences, thereby
enhancing overall robustness. This novel integration of LMM facilitates more
informed decision-making during pose estimation, contributing to the model’s
reliability in challenging scenarios.

Moreover, to address the challenge of inherent scale ambiguity in pose pre-
diction, we propose a scale-agnostic representation for both translation and size.
By decoupling the pose prediction from the metric scale, our method enhances
training efficiency by cutting off the propagation of errors resulting from scale
ambiguity to pose estimation. Moreover, this approach leads to more informative
evaluation metrics, providing deeper insights into the performance of the pose
estimation methods across various object scales.

In summary, our contributions are three-fold:
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– We introduce the Laplacian Mixture Model (LMM) to effectively model the
object shape, explicitly quantifying shape uncertainty for each point and
addressing intra-class shape variation.

– We propose a dual-stream framework to estimate the parameters of LMM,
which essentially harnesses a generalized 3D information stream and a spe-
cialized feature stream to capture diverse aspects of object geometry.

– We propose a scale-agnostic 9DoF pose representation, improving training
efficiency and providing informative evaluation metrics.

LaPose achieves state-of-the-art performance on NOCS datasets [48], with
extensive experiments conducted to demonstrate the effectiveness of our design
choices.

2 Related Work

2.1 Instance-level Object Pose Estimation

Instance-level object pose estimation methods aim to predict the 6DoF object
pose using either RGB or RGBD data. For RGB-based methods, some directly
regress object poses from input image [20,23,26,51], while others establish 2D-3D
correspondences through keypoint detection or pixel-wise 3D coordinate estima-
tion and then employ PnP algorithms to solve the pose [3, 17, 38, 39, 41, 43, 53].
While direct methods tend to be faster, correspondence-based methods offer
higher accuracy at the expense of increased computational complexity. Recent
works [10,27,47] aim to address these trade-offs by combining the advantages of
both approaches, pursuing end-to-end architecture and real-time performance.
As for RGBD-based methods, [15, 16, 19, 21, 32, 46, 50] leverage both the RGB
image and observed depth to predict 6D poses. Despite achieving promising per-
formance on common datasets, the practical applications of instance-level pose
estimation are hindered, as they can only handle a small number of objects and
require accurate CAD models of the target objects.

2.2 Category-level object pose estimation

Category-level object pose estimation is essential for real-world applications as it
eliminates the need for precise CAD models for individual object instances. The
concept of Normalized Object Coordinate Space (NOCS) [48] offers a unified
coordinate representation for object instances within a category. While some
subsequent methods [4, 13, 28, 29, 44] estimate the pose by predicting NOCS
coordinates for each point and establishing 3D-3D correspondences, [5, 11, 30,
31, 56, 57] directly regress the 9DoF pose for efficiency. While these methods
demonstrate promising results, their applicability is constrained by their heavy
reliance on the observed depth.

As for RGB-only methods, challenges arise due to the inherent difficulty in
recovering 3D information from a single RGB image and the presence of scale
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ambiguity. Recent efforts have aimed to overcome these limitations. Exemplar-
ily, Chen et al . [6] introduces an analysis-by-synthesis framework by combin-
ing gradient-based fitting with neural image synthesis. MSOS [24] and OLD-
Net [12] predict the pose via Umeyama algorithm [45] from the 3D-3D correspon-
dences established by NOCS coordinates prediction and metric depth estimation.
DMSR [49] uses object normals and relative depths estimated by pretrained DPT
model [40] as additional inputs and estimates the pose from the 2D-3D corre-
spondences via PnP algorithm [25]. While these methods represent significant
advancements in RGB-based category-level pose estimation, the robustness and
accuracy remain to be enhanced.

3 Method

In this paper, our goal is to solve the problem of RGB-based category-level object
pose estimation. Specifically, given an RGB image containing objects from a
predefined set of categories, our objective is to detect all instances of objects
present in the scene and accurately estimate their 9DoF poses. The 9DoF pose
includes the 3DoF rotation R ∈ SO(3), the 3DoF translation t ∈ R3 and 3DoF
size s ∈ R3.

To this end, we present LaPose, a novel approach that models object shape
using the Laplacian mixture model for Pose estimation (Fig. 2). We first adopt
an off-the-shelf object detector MaskRCNN [14] to crop the object of inter-
est as input. Then we estimate the parameters of LMM by employing two in-
formation streams to predict two Laplacian distributions Laplace(µdino, σ

2
dino),

Laplace(µconv, σ
2
conv) of the NOCS coordinate map independently(Sec. 3.1). The

estimated LMM is then utilized for pose estimation through LMM-based PnP
solving (Sec. 3.2). Finally, the scale-agnostic pose {R, tnorm, snorm} is calculated
by the PnP module (Sec. 3.3). The overview of LaPose is shown in Fig. 2 and
we detail each component in the following sections.

3.1 Dual-Stream LMM Modeling

Generalized 3D information stream. DINOv2 [37], as an outstanding foun-
dation model, has demonstrated the ability to establish zero-shot semantic corre-
spondences across images and extract rich 3D information from images [1,7,54].
Specifically, DINOv2 can provide SE(3)-consistent patch-wise local features [7],
which aligns with the SE(3)-invariant nature of NOCS coordinates, thereby fa-
cilitating the learning process of the NOCS map. Hence, we integrate pretrained
DINOv2 into our framework as the generalized 3D information stream to pre-
dict the Laplacian distribution of the NOCS map, enabling the extraction of
category-agnostic 3D feature Fdino.

Specialized feature stream. However, solely depending on DINOv2 is in-
sufficient, as we observed in the experiments (Tab. 4 (C)). We argue that the
category-agnostic training approach leaves DINOv2 lacking in category-specific
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Fig. 2: Method overview. i) Given an RGB image, we adopt a detector to crop the
object of interest. The input image is then processed by ii) generalized 3D information
stream supported by DINOv2 and iii) specialized feature stream utilizing a convo-
lutional network to extract features Fdino,Fconv. iv) The Laplacian mixture model
of the NOCS coordinate map is obtained by combining the Laplacian distributions
Laplace(µdino, σ

2
dino) and Laplace(µconv, σ

2
conv) predicted by both streams. The sub-

sequent PnP module Φ solves the translation and rotation from 2D-3D correspon-
dences established by the Laplacian mixture model. v) Meanwhile, the size head takes
Fdino,Fconv as input and predicts the object size. vi) Finally, the scale-agnostic 9DoF
pose parameters are obtained.

knowledge essential for pose estimation. This observation underscores the need
for complementary approaches to enrich the information regarding object geom-
etry. Therefore, in addition to leveraging the generalized 3D information stream,
we further train a convolutional network [35] to extract category-specific features
Fconv.

Estimating Parameters of LMM. In order to estimate a single Laplacian
distribution Laplace(µ, σ2), we utilize Fdino and Fconv to estimate the pixel-
wise mean µ and variance σ2 independently. We employ the Laplacian aleatoric
uncertainty loss from [8,22] to learn both µ and σ2 simultaneously,

L3D−dino =
λ1

σ2
dino

||Mvis · (C3D
gt − µdino)||1 +Mvis · log(σ2

dino),

L3D−conv =
λ2

σ2
conv

||Mvis · (C3D
gt − µconv)||1 +Mvis · log(σ2

conv),

(1)

where || · ||1 denotes the L1 distance function, Mvis is the visible mask, · denotes
element-wise multiplication, C3D

gt is the ground-truth NOCS map and λ1, λ2 are
pre-defined hyper-parameters.
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When the NOCS coordinate error of µ is large, the L1-distance term domi-
nates and σ2 is forced to be large to reduce this term; when the coordinate error
is small, σ2 is encouraged to be small to reduce the logarithm term. Therefore,
σ2
dino, σ

2
conv are learned in a self-supervised manner.

Finally, the LMM is obtained by combining both estimated distributions
Laplace(µdino, σ

2
dino) and Laplace(µconv, σ

2
conv).

3.2 LMM-based PnP Solving

We use the estimated LMM to establish 2D-3D correspondences for PnP solving.
We define the optimization goal with L1 re-projection error as follows,

Pout = argmin
P∈SE(3)

1

N

N∑
i=1

Exi∼ηi(||π(KPxi)− ui||1), (2)

where ui is a 2D object point and N is the total number of object points. ηi is
the estimated NOCS coordinate distribution corresponding to ui and xi is the
3D NOCS point sampled from the distribution. π is the projection function and
K is the camera intrinsic matrix. P is an arbitrary pose in the SE(3) space.

Since directly solving Eq. (2) is intractable, we adopt a convolutional network
Φ as the PnP module similar to [47] for approximating Eq. (2), which enables
end-to-end training and efficient inference. Φ takes µdino, σ2

dino, µconv, σ2
conv

and the 2D pixel coordinate map C2D as input and predicts the scale-agnostic
parameters of rotation Rout and translation tout as

Rout, tout = Φ(µdino, σ
2
dino, µconv, σ

2
conv,C

2D). (3)

The scale-agnostic pose representation Rout, tout will be detailed in Sec. 3.3.
It is notable that the PnP module derives two key benefits from LMM model-

ing: Firstly, it dynamically aggregates diverse object geometry information cap-
tured by the dual information branches. Secondly, it effectively discerns shape
uncertainty across different regions, facilitating the filtering of erroneous cor-
respondences and enhancing overall robustness. The integration of LMM facil-
itates more informed decision-making during pose estimation, contributing to
the model’s reliability in challenging scenarios.

Meanwhile, since the NOCS maps might not contain full information of ob-
ject size, we employ a separate size head to predict the scale-agnostic object
size parameter sout (Sec. 3.3) from the concatenation of global features of both
backbones.

3.3 Scale-Agnostic Pose Representations

As shown in Fig. 3 (A), the object metric scale cannot be determined solely
from a single RGB image. For instance, consider two scenarios: a larger object
positioned further away from the camera and a smaller object located closer to
the camera. Despite their contrasting sizes, these objects may appear identical
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Fig. 3: (A) Illustration of scale ambiguity: Objects of various scales exhibit identical
appearances in the image. We propose Scale-Agnostic Pose representation (SAP) by
normalizing the scale such that the diagonal length of the object tight bounding box is
1. (B) Average Precision on 3D IoU under different thresholds with or without SAP.

in the image, leading to scale ambiguity. The lack of depth information makes
predicting object translation and size solely depending on visual appearance an
ill-posed problem. Therefore, we propose a scale-agnostic pose representation,
wherein we normalize the object to fit within a tight bounding box with a diago-
nal length equal to 1. Fig. 3 (B) shows that adopting the proposed Scale-Agnostic
Pose representation (SAP) boosts the performance significantly.

Specifically, for an object with size s = {sx, sy, sz}, the normalized size is

snorm =
{sx

d
,
sy
d
,
sz
d

}
, (4)

where d =
√
s2x + s2y + s2z is the original diagonal length of the object’s tight

bounding box. We compute the average normalized size of the category savg
beforehand and predict the delta value sout = snorm − savg.

Corresponding to the object size, the translation t = {tx, ty, tz} is also nor-
malized with d,

tnorm =

{
tx
d
,
ty
d
,
tz
d

}
= {t(norm)

x , t(norm)
y , t(norm)

z }. (5)

As in previous RGB-based works [26,27,47], we separate the 3D translation
into two components: the 2D location (ox, oy) of the projected object center and
the object’s normalized distance t

(norm)
z from the camera.
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Since the input image is cropped and resized based on the detection results,
we regress the detection-invariant translation parameters tout = [δx, δy, δz],

δx = (ox − cx)/wbox

δy = (oy − cy)/hbox

δz = t
(norm)
z sbox/sin

, (6)

where wbox and hbox represent the width and height of the detected 2D bounding
box respectively, sbox = max(wbox, hbox) denotes its size, and (cx, cy) indicates
its center. Additionally, sin = max(win, hin) denotes the size of the resized input
image.

During inference, (ox, oy, t
(norm)
z ) is recovered by
ox = δxwbox + cx

oy = δyhbox + cy

t
(norm)
z = δzsin/sbox

. (7)

The normalized 3D translation is calculated via back-projection given the camera
intrinsic matrix K,

tnorm = K−1t(norm)
z [ox, oy, 1]. (8)

Regarding rotation R, we adopt the same representation method as described
in [57]. We predict the two rotation vectors along the x and y axes Rout = [rx, ry]
(rx, ry ∈ R3), which correspond to the first two columns of the rotation matrix. In
cases involving objects with rotational symmetry such as bowl and can, which
exhibit symmetry around a particular axis, the rotation vector rx introduces
ambiguity. Consequently, only the rotation vector ry is supervised during training
in such scenarios.

In order to predict the object pose with absolute scale, we train a MobileNet
[18] to predict the diagonal length d of the object’s tight 3D bounding box
independently.

3.4 Overall Training Objective

The overall training objective L is defined as

L = λposeLpose + λ3D(L3D−dino + L3D−coor), (9)

where Lpose includes all loss functions to supervise the learning of scale-invariant
9DoF pose parameters (see Sup. Mat. for details), L3D−dino,L3D−coor are intro-
duced in Sec. 3.2.

4 Experiments

Datasets. We evaluate the performance of LaPose on the synthetic NOCS-
CAMERA25 dataset [48] and the real-world NOCS-REAL275 dataset [48] for
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RGB-based category-level pose estimation. NOCS-CAMERA25 comprises 300K
synthetic images featuring objects rendered onto virtual backgrounds. Of these,
25K images are reserved for testing. The dataset encompasses objects from six
categories: bottle, bowl, camera, can, laptop, and mug. NOCS-REAL275 presents
a more challenging real-world dataset, featuring 13 diverse scenes. Seven scenes,
totaling 4.3K images, are designated for training, while the remaining six scenes,
containing 2.7K images, are reserved for testing. REAL275 includes objects from
the same categories as in CAMERA25.

Metrics. In order to remove scale ambiguity in the evaluation metrics, we use
the proposed scale-agnostic pose representation to compute scale-agnostic evalu-
ation metrics. Therefore, we use the scale-normalized pose to compute the mean
average precision of the Normalized 3D Intersection over Union (NIoU) metric at
thresholds 25%, 50%, and 75%. Additionally, we introduce 10◦0.2d and 10◦0.5d
metrics, where an object pose is deemed correct if both its rotation error and
normalized translation error fall below the specified threshold. Specifically, the
normalized translation error is presented as the ratio of the diagonal length d of
the tight object bounding box. Moreover, we present 0.2d, 0.5d, and 10◦ metrics
to assess translation and rotation individually. Furthermore, we report results
under previously utilized metrics which considers the absolute object scale. Fol-
lowing [12,24,49], we provide the mean Average Precision of IoU25, IoU50, IoU75,
10◦10cm and 10cm. Since we identified errors in the previous evaluation script
given by [48] (see Sup. Mat.), we have re-evaluated all competitors using the
corrected code.

Implementation Details. For the evaluation on REAL275, we train LaPose
using the combination of CAMERA25 and REAL275 as [48]. For the evaluation
on CAMERA25, we only use the training data of CAMERA25 as in [12, 49].
We employ the MaskRCNN [14] as the detector and use detection results gen-
erated by [30] for fair comparison. All experiments are performed on a single
NVIDIA RTX 3090 GPU. We adopt Ranger optimizer [34,52,55] with the initial
learning rate of 10−3 and the batch size of 32. The learning rate is annealed
at 72% of the training phase using a cosine schedule. We set hyper-parameters
{λ1, λ2, λpose, λ3D} as {15, 15, 1, 0.1}. We adopt Dynamic Zoom-In [27] during
training to make the pose estimation robust to detection errors. We train a sin-
gle model for all 6 categories for 100 epochs for Ours, while Ours (M) is a
multi-model version where a separate model is trained for each category for 150
epochs. The inference speed of LaPose is around 10 FPS.

4.1 Comparison With State-of-the-Art Methods

Tab. 1 and Tab. 2 present a comprehensive comparison between LaPose and
state-of-the-art methods, including MSOS [24], OLD-Net [12] and DMSR [49]
on NOCS-REAL275 under scale-agnostic and absolute-scale evaluation metrics
respectively.
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Table 1: Comparison with state-of-the-art methods on NOCS-REAL275 using scale-
agnostic evaluation metrics.

Method NIoU25 NIoU50 NIoU75 10◦0.2d 10◦0.5d 0.2d 0.5d 10◦

MSOS [24] 36.9 9.7 0.7 3.3 15.3 10.6 50.8 17.0
OLD-Net [12] 31.5 6.2 0.1 2.8 12.2 9.0 44.0 14.8
DMSR [49] 57.2 38.4 9.7 26.0 44.9 35.8 67.2 36.9

Ours 70.7 47.9 15.8 37.4 57.4 46.9 78.8 60.7
Ours (M) 66.4 48.8 20.5 39.7 55.4 48.6 74.9 60.2

Table 2: Comparison with state-of-the-art methods on NOCS-REAL275 using evalu-
ation metrics with absolute object scale.

Method IoU25 IoU50 IoU75 10◦10cm 10cm

MSOS [24] 33.2 13.6 1.0 11.8 43.4
OLD-Net [12] 26.4 7.7 0.4 8.6 31.4
DMSR [49] 37.4 16.3 3.2 25.2 40.0

Ours 41.2 17.5 2.6 30.5 44.4
Ours (M) 40.2 18.3 4.1 27.7 43.7

In terms of scale-agnostic evaluation metrics (Tab. 1), LaPose consistently
outperforms all competitors by a significant margin across all metrics, demon-
strating the effectiveness of our design. Specifically, LaPose (Ours) surpasses the
second-best method DMSR in NIoU25 and 10◦0.5d by 13.5% and 12.5%, respec-
tively. Ours (M) exceeds DMSR under the strictest metric NIoU75 and 10◦0.2d
by 10.8% and 13.7%, respectively. In comparison to OLD-Net, Ours achieves an
accuracy of 37.4% in 10◦0.2d, which is 34.6% greater than OLD-Net’s 2.8%.

As for evaluation metrics considering the absolute object scale (Tab. 2), Ours
(M) also outperforms other competitors under all metrics. Specifically, it sur-
passes the second-best DMSR by 3.2% under IoU25, 2.0% under IoU50 and
0.9% in IoU75. Moreover, Ours exceeds DMSR and OLD-Net under 10◦10cm by
5.3% and 21.9%, respectively.

As shown in Fig. 5, LaPose performs better than DMSR in handling category
with large shape variation such as camera, thanks to our LMM shape modeling.
Fig. 6 also proves that our method surpasses DMSR by a large margin in han-
dling category camera (green lines in Fig. 6). Additionally, it is noteworthy that
LaPose exhibits superior ability in predicting rotations, achieving significantly
higher accuracy under small thresholds (as observed in the middle of Fig.6).

Fig. 4 proves the efficacy of our LMM modeling approach. In the area where
the NOCS prediction error is high, the variance is also correspondingly higher
compared to other areas. This observation demonstrates how our LMM model-
ing effectively guides the PnP module to prioritize regions with lower variance
and more accurate NOCS predictions. Consequently, this capability enables La-
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Fig. 4: Visualization of the predicted Laplacian distribution means µ and variances
σ2. In regions where NOCS errors are pronounced, the variance σ2 tends to be higher.

Table 3: Comparison with state-of-the-art methods on NOCS-CAMERA25 using
scale-agnostic evaluation metrics.

Method NIoU25 NIoU50 NIoU75 10◦0.2d 10◦0.5d 10◦ 0.2d 0.5d

MSOS [24] 35.1 9.9 0.8 5.9 31.6 48.6 8.9 47.2
OLD-Net [12] 50.4 14.5 0.5 11.3 39.9 53.3 17.2 60.5
DMSR [49] 74.4 46.0 11.1 38.6 68.1 74.4 42.8 79.9

Ours 75.3 49.4 14.1 42.4 73.1 80.0 45.4 81.2

Pose to efficiently address shape uncertainty arising from the absence of depth
information and intra-class shape variations.

As shown in Tab. 3, on NOCS-CAMERA25 dataset, LaPose also achieves
state-of-the-art performance. Specifically, we surpass DMSR by 3.0% and 3.8%
on the strictest metrics NIoU75 and 10◦0.2d respectively. As for metric NIoU50

and 10◦0.5d, the performance gap between LaPose and DMSR is 3.4% and 5.0%.
In comparison to OLD-Net, LaPose achieves an accuracy of 80.0% in 10◦ and
45.4% in 0.2d, which is 26.7% and 28.2% higher than OLD-Net respectively.
These results underscore the efficacy of LaPose across diverse scenarios.

4.2 Ablation Studies

Effect of scale-agnostic pose representation: In Tab. 4 (B), we estimate
the metric scale and feed the scaled object coordinates to the PnP module to pre-
dict the absolute-scale pose. In comparison to Tab. 4 (A), where scale-agnostic
pose representation is employed, the performance under all metrics drops signif-
icantly, underscoring the efficacy of our proposed scale-agnostic pose represen-
tation. Similar trends are also evident in Fig. 3 (B).

Choice of the feature: Comparing Tab. 4 (C) to (A) reveals that using only
DINOv2 features leads to inferior results. Additionally, by comparing Tab. 4
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(a) (b)

(c) (d)

(f)(e)

Fig. 5: Qualitative results of LaPose (green line) and DMSR (blue line) on NOCS-
REAL275. Images (a)-(f) demonstrate 2D segmentation results.

(D) to (A) and (C), it is evident that the utilization of both feature streams
for predicting NOCS maps enhances performance across all metrics compared
to solely relying on a single stream. Specifically, utilizing two feature streams
(Tab. 4 (D)) leads to improvements of 4.6% in NIoU25 and 6.7% in 10◦0.5d
respectively, when compared to only using Fconv (Tab. 4 (A)).

Modelling object shape as a probabilistic distribution: By comparing
Tab. 4 (E) to (A), we can see that modeling NOCS coordinates as the Laplacian
distribution brings 5.2% and 5.1% improvements on NIoU25 and 10◦0.5d metrics
respectively. These improvements are attributed to the predicted variance maps,
which guide the PnP module to identify erroneous NOCS predictions. However,
modeling object shape as a Gaussian distribution by using Gaussian aleatoric
uncertainty loss as proposed in [22], does not yield positive influences (see Tab. 4
(F)). Comparing Tab. 4 (G) and (D), we observe improvements in NIoU50 by
5.8% and 10◦0.2d by 4.9%. The main reason is that the LMM modeling can
capture diverse aspects of object geometry.

5 Conclusion

In this paper, we propose LaPose, a novel framework that models the object
shape as the Laplacian Mixture Model (LMM) for RGB-based category-level
object pose estimation. Specifically, we integrate two independent Laplacian
distributions derived from two different feature streams. We establish 2D-3D
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Ours

DMSR

Fig. 6: The Average Precision (AP) under different thresholds on scale-agnostic 3D
IoU, rotation, and translation of DMSR and Ours. Best viewed in color and zoom-in.

Table 4: Ablation studies on NOCS-REAL275. Fconv and Fdino denote the seman-
tic feature extracted by the convolutional network and DINOv2. σ2 denotes whether
variances are predicted and fed into the PnP module. If σ2 is used, the modeling dis-
tribution is either Gaussian (Gaus.) or Laplacian (Lap.). SAP denotes whether the
scale-agnostic pose representation is used.

No. Fconv Fdino σ2 SAP NIoU25 NIoU50 10◦0.2d 10◦0.5d

A ✓ ✓ 60.3 39.7 29.0 46.1
B ✓ 37.8 17.6 10.5 33.2
C ✓ ✓ 61.7 26.9 16.9 38.5
D ✓ ✓ ✓ 64.9 42.1 32.5 52.8
E ✓ Lap. ✓ 65.5 43.4 33.6 51.2
F ✓ Gaus. ✓ 59.1 37.6 28.3 44.7
G ✓ ✓ Lap. ✓ 70.7 47.9 37.4 57.4

correspondences using the estimated LMM and solve the pose via a PnP mod-
ule. Our proposed scale-agnostic pose representation effectively addresses scale
ambiguity and ensures stable and efficient training. Extensive experiments on
NOCS datasets demonstrate that LaPose achieves state-of-the-art performance.
Looking ahead, we plan to extend LaPose to applications in robotic manipula-
tion. Limitations are discussed in Sup. Mat.
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