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1 Basic Emotion Theories of Body Movement006 006

Darwin was the first to scientifically explore emotions, with his research high-007 007

lighting the significance of body language and posture in expressing emotions [5].008 008

Despite his groundbreaking work, contemporary emotion recognition systems009 009

have largely focused on facial expressions, acoustic cues, and physiological sig-010 010

nals, often overlooking body movement. This oversight fails to recognize body011 011

movement’s pivotal role in non-verbal communication, especially in conveying012 012

emotional information during social interactions [1]. Body movement offer sev-013 013

eral distinct advantages in emotion recognition tasks, making them a valuable014 014

tool for affect detection. Firstly, unlike facial expressions or speech, which may015 015

require high-resolution cameras or microphones for data capture, body move-016 016

ment can be more readily observed and analyzed. This accessibility is crucial017 017

in situations where advanced recording equipment is unavailable or impracti-018 018

cal. Secondly, with the recent success of deep learning on large-scale datasets,019 019

concerns about privacy protection and ethical issues have started to emerge [7].020 020

Body movement, conveying less identifiable information compared to faces or021 021

voices, offers a more privacy-preserving approach to emotion detection. Lastly,022 022

research indicates that individuals attempting to conceal their emotions often023 023

focus on controlling their facial expressions, neglecting their body movement [6].024 024

This discrepancy suggests that body movement could be a more reliable indica-025 025

tor of suppressed or hidden emotions, as they are less likely to be consciously026 026

controlled.027 027

2 Additional Details of UbH-Graph028 028

Universality of UbH-Graph. It is easier to construct our UbH-Graph than029 029

existing handcrafted graph [8] even if ours is composed of more edges than the030 030

existing one. [8]’s graph requires every physically adjacent edges for human joints031 031

as shown in Algorithm 1. On the other hand, our UbH-Graph requires only the032 032

hierarchy-wise node sets as shown in Algorithm 2. It verifies that our UbH-033 033

Graph is more universal than the existing graph in that the requirements of the034 034

UbH-Graph are fewer than those of the existing one.035 035
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Algorithm 1 Upper-body Physically Adjacent Graph
Input: Physically adjacent inward edge set E = {e1, e2, ..., eNE }

AIDE:
E = {(14, 13), (13, 1), (1, 12),
(1, 2), (2, 4), (1, 3), (3, 5),
(13, 6), (6, 8), (8, 10),
(13, 7), (7, 9), (9, 11)}

Output: A;
1: Initialize Adjacency matrix A ∈ R3×N×N to 0
2: Assign value of 1 to all diagonal components of Aid to get identity nodes.
3: for e to E do
4: Centripetal edges: Acp[e]← 1
5: Centrifugal edges: Acf [reverse(e)]← 1
6: end for
7: Initialize degree matrix Λ ∈ R3×N×N to 0
8: for n = 1 to N do
9: Λ← the number of non-zero elements in column n of A

10: end for
11: Normalize adj. matrix with degree matrix: A← Λ− 1

2AΛ− 1
2

12: return A

Class Activation Maps. To show how our model works, the activation maps of036 036

some skeleton sequences are calculated by class activation map [9], as presented037 037

in Fig. 1, in which the activated joints in several sampled frames are displayed.038 038

From this figure, we can find that the UbH-GCN model successfully concentrates039 039

on the most informative joints.040 040

3 Effectiveness of Four-way Ensemble041 041

Ensemble Coefficients. For most recent models [2–4] have underscored the042 042

necessity of selecting optimal ensemble coefficients. These coefficients, which vary043 043

from one model to another, are integral in determining the contribution of dif-044 044

ferent data streams—namely joint, bone, joint motion, and bone motion—to the045 045

overall model performance. For instance, [2] advocates for ensemble coefficients046 046

of [1.0, 1.0, 0.6, 0.6], signifying an equal emphasis on joint and bone streams while047 047

assigning a lesser weight to motion streams. Similarly, [3] recommend a differ-048 048

ent set of coefficients, [0.7, 0.7, 0.3, 0.3], and [4] suggests [0.6, 0.6, 0.4, 0.4], each049 049

proposing a unique distribution of emphasis across these streams. This variability050 050

in coefficient selection highlights a critical limitation: the lack of universality in051 051

these models, necessitating manual adjustment of coefficients to optimize perfor-052 052

mance. However, our UbH-GCN exclusively utilizes joint and bone streams. By053 053

applying an ensemble strategy that assigns equal importance to all four models054 054

without distinguishing between different types of data streams, we significantly055 055

streamline the model’s operation. This approach not only simplifies the model’s056 056

architecture but also enhances its applicability and efficiency.057 057
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Algorithm 2 Upper-body Hierarchical Adjacent Graph
Input: Hierarchical node sets H = {H1, H2, ..., HNL};

AIDE:
H1 = {14} ,
H2 = {13} ,
H3 = {1, 6, 7} ,
H4 = {2, 3, 12, 8, 9} ,
H5 = {4, 5, 10, 11}

Output: A;
1: Initialize Adjacency matrix A ∈ R(L−1)×3×N×N to 0
2: for l = 1 to L− 1 do
3: Hl and Hl+1, include all nodes of those subsets in the diagonal

components of the adjacency matrix to get identity nodes:
Aid

l [Hl, Hl]← 1, Aid
l [Hl+1, Hl+1]← 1

4: for i = 1 to length(Hl) do
5: for j = 1 to length(Hl+1) do
6: Centripetal edges: Acp

l [Hl+1(j), Hl(i)]← 1

7: Centrifugal edges: Acf
l [Hl+1(i), Hl(j)]← 1

8: Two-hop Centripetal edges: Acp2

l [Hl+1(j), Hl(i)]
← Acp

l [Hl+1(j), Hl(i)]
2 −Acp

l [Hl+1(j), Hl(i)]

9: Two-hop Centrifugal edges: Acf2

l [Hl+1(i), Hl(j)]

← Acf
l [Hl+1(i), Hl(j)]

2 −Acf
l [Hl+1(i), Hl(j)]

10: end for
11: end for
12: Initialize degree matrix Λl ∈ R3×N×N to 0
13: for n = 1 to N do
14: Λl[n, n]← the number of non-zero elements in column n of Al

15: end for
16: Normalize adj. matrix with degree matrix: Al ← Λ

− 1
2

l AlΛ
− 1

2
l

17: end for
18: return A

Additional Experimental Results. As we mentioned in our main paper,058 058

we propose the ensemble method with joint and bone streams without motion059 059

streams. Model with each stream is trained with two different UbH-Graphs,060 060

which have different rooted nodes; nose and hip. In other words, training ways061 061

for our ensemble methods are as follows: (1) joint stream with rooted of nose062 062

node, (2) bone stream with rooted of nose node, (3) joint stream with rooted of063 063

hip node, (4) bone stream with rooted of hip node. Tab. 1 shows every single064 064

experimental result for our four-way ensemble method.065 065

4 Additional Details of Loss Function066 066

The challenge of imbalanced data distribution across various categories is a sig-067 067

nificant hurdle in machine learning, particularly in scenarios where ’tail’ cate-068 068

gories—those with fewer instances—suffer due to their features being compressed069 069
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Fig. 1: Activated joints in 3 sampled frames of UbH-GCN for the sample emotions of
different actions in AIDE Dataset. The red points denote the activated joints, while
blue points represent non-activated joints.

Table 1: Classification accuracy and F1-score with different UbH-Graphs in AIDE
dataset. ‡: 4-ensemble

Rooted Stream Acc. F1 CG-Acc. CG-F1

Nose
Joint 72.74 71.13 74.55 73.62

Bone 74.55 73.01 76.03 74.99

Hip
Joint 74.06 72.78 74.71 74.04

Bone 73.56 72.16 76.19 75.29

Ensemble ‡ 77.50 75.70 78.33 77.19

into a constrained region of the feature space. This compression not only dimin-070 070

ishes the representational capacity of these categories but also biases the model071 071

towards ’head’ categories with abundant samples.072 072

To mitigate this issue and promote a more equitable feature distribution,073 073

an innovative approach involving the introduction of class variation during the074 074

training phase has been used. This method diverges from traditional techniques075 075

by not projecting an instance onto a singular feature point. Instead, it maps076 076

each instance into a small, designated region within the feature space. This077 077

strategic perturbation is meticulously designed to be proportional to the category078 078

scale, resulting in smaller variations being allocated to head categories and larger079 079

variations to tail categories. By expanding the feature space for tail categories,080 080

it facilitates a more nuanced and comprehensive learning of their characteristics,081 081

thereby reducing the dominance of head categories.082 082
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Fig. 2: Confusion matrix for the Ubh-
GCN with Cross Entropy Loss Function
in the AIDE dataset.

Fig. 3: Confusion matrix for the Ubh-
GCN with the new loss function in the
AIDE dataset.

We conduct ablation experiments on the loss function, applying both the083 083

cross-entropy loss function and our novel loss function. The confusion matrices084 084

presented in Fig. 2 and Fig. 3 demonstrate that the method utilizing our new085 085

loss function outperforms the cross-entropy loss function in terms of recognition086 086

accuracy for emotions such as anxiety, peace, and anger. This, to a certain extent,087 087

validates the effectiveness of our approach in addressing the issue of imbalanced088 088

data distribution.089 089
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