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Abstract. Emotion recognition plays a crucial role in enhancing the
safety and enjoyment of assistive driving experiences. By enabling intelli-
gent systems to perceive and understand human emotions, we can signifi-
cantly improve human-machine interactions. Current research in emotion
recognition emphasizes facial expressions, speech and physiological sig-
nals, often overlooking body movement’s expressive potential. Existing
most methods, reliant on full-body poses and graph convolutional net-
works with predetermined adjacency matrices, face challenges in driving
scenarios, including limited visibility, restricted movement and imbal-
anced data distribution, which affect model generalization and accuracy.
To overcome these limitations, we introduce an innovative emotion recog-
nition method tailored for assistive driving. Our method leverages upper-
body skeleton sequences, overcoming the constraints of full-body pose
capture in driving scenario. Our architecture employs an upper-body hi-
erarchical graph (UbH-Graph) to dynamically capture upper-body move-
ment and emotion relationships. We uniquely incorporate class-specific
variations during training, balancing feature distribution and enhanc-
ing emotion recognition. Our method outperforms existing multimodal
approaches on the assistive driving dataset and demonstrates robust-
ness and adaptability on the daily action dataset. Code is available at
https://github.com/jerry-wjh/UbH-GCN.

Keywords: Emotion recognition · Assistive driving · Graph convolu-
tional network · Upper-body movement · Imbalanced data distribution

1 Introduction

With the rapid advancement of artificial intelligence, autonomous driving has
become a significant hotspot. Li et al. [21] demonstrated extreme driver emo-
tions, such as anger, have long been one of the leading causes of road accidents
worldwide. In the intelligent cockpit, accurately perceiving, understanding, and
managing driver’s anger through various interactive strategies can effectively
minimize the risk of accidents caused by such emotions, thereby improving road
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traffic safety [20]. This highlights the need for advanced emotion recognition
methods that can identify and address driver’s emotions, ultimately enhancing
the safety and efficiency of autonomous driving systems.

Over recent decades, much of the work in emotion recognition has focused on
vocal expressions, facial expressions, and electroencephalograms (EEG). How-
ever, body movement, one of the most fundamental and natural non-verbal
channels in the process of emotional communication [24], has not received equal
attention. Recognizing emotions through body movement offers several advan-
tages. First, compared to verbal language and text, body movement exhibits
greater universality and cross-cultural consistency [15,32]. Second, compared to
facial expressions, body movement is more likely to express a person’s genuine
emotions, as gestures are more difficult to suppress without training [28]. Third,
compared to EEG, body movement provides a more direct and less interfering
method of data collection, preserving the natural behaviour of the subjects [26].

Skeleton sequences, one of the input data types used in emotion recognition
methods based on body movement, are considered an intuitive and effective
way to represent body movement [23]. Additionally, skeleton sequences include
rich spatial and temporal information about body movement [25], allowing us
to explore the complex mapping relationship between emotions and full-body
motions. With the development of advanced posture estimation algorithms [7,8,
19,36], we can easily and precisely extract joint coordinates and rotation angles,
further promoting research in emotion recognition based on skeleton sequences.

Previous studies have primarily focused on analyzing full-body movement
[6, 17, 33] for emotion recognition. However, visibility is limited to the driver’s
upper body in the semi-enclosed spaces of cockpits, presenting a unique challenge
for movement analysis. Besides, current graph convolutional network (GCN)
methodologies [28, 29], which leverage skeleton data for the analysis of body
movement and gesture, are limited by their reliance on handcrafted graphs.
These graphs primarily focus on the relationships between physically connected
(PC) edges in the human skeleton, failing to account for the relationships be-
tween distant joint nodes. While graphs focusing on PC edges between joints
have semantic significance, their exclusive reliance on these connections leads to
a long-range dependency problem. Moreover, some datasets collected from real-
istic environment exhibit imbalanced data distribution, where a small number
of categories dominate the majority of the samples.

Motivated by these limitations, we propose Upper-body Hierarchical Graph
Convolutional Network (UbH-GCN) with Upper-body Hierarchical Graph (UbH-
Graph). Our approach is designed to overcome the challenges inherent in pre-
vious GCN-based emotion recognition methods, particularly those arising from
restricted visibility of upper-body movement within the cockpit environment.
The framework of our proposed methods is shown in Fig. 1. UbH-Graph contains
both meaningful adjacent and distant joint nodes by connecting all the nodes
in neighboring hierarchy node sets and identifies the connectivity between those
nodes for large receptive field. The architecture is crucial for accurately discern-
ing the subtle dynamics of human emotion recognition, reliant on the analysis
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of synchronized movement across different body parts. Notably, certain body
parts, such as the hands and the head, although not physically linked, are inter-
connected through ’invisible edges’. These ’invisible edges’ denote non-physical
yet impactful relationships, pivotal for conveying emotions via coordinated body
movement. The existing ensemble method uses two-stream data composed of the
joint and bone streams [28], which are the original joint coordinates and spatial
differential between joint coordinates, respectively. We have introduced a novel
ensemble method which effectively employs two distinct UbH-Graphs, focusing
on joint and bone stream. By leveraging UbH-Graphs in this manner, our method
significantly enhances the accuracy of emotion recognition. Additionally, we ad-
dress the challenge of data imbalance prevalent in naturalistic datasets through
the adoption of a specialized loss function. This function, as outlined in [35],
dynamically adjusts the weights of samples from various categories, which re-
duces the disparity between categories in the feature space. It ensures that our
UbH-GCN can make precise recognitions across a broader spectrum of emotions,
including those less frequently represented in the dataset.

The experimental evaluations conducted on relevant datasets have under-
scored the effectiveness of our proposed UbH-GCN method. The main contribu-
tions of this work are summarized below:

• We propose UbH-Graph to address the inherent limitations of previous GCN-
based methods. Our approach enables the detection of relationships between
both adjacent and distant joint nodes, a crucial advancement for accurate
recognition of human emotions.

• We introduce a novel four-way ensemble method, employing two distinct
UbH-Graphs. This method effectively overcomes the challenges faced by
models relying solely on motion data, significantly enhancing the accuracy
of emotion recognition.

• We use a special loss function added to UbH-GCN, tackling the issue of
imbalanced data distribution, a common problem in naturalistic datasets.

• Our UbH-GCN outperforms the state-of-the-arts on the assistive driving
dataset and demonstrates adaptability on the daily actions dataset.

2 Related Work

Emotion recognition has become a cornerstone in the advancement of human-
computer interaction, drawing considerable interest from researchers aiming to
improve user experiences and the develop intelligent systems. The ability of
this technology to automatically recognise emotions is crucial to improving the
quality of human-computer interaction.

Traditional Approaches and Their Limitations. Historically, the field has
seen a reliance on traditional methodologies for emotion recognition through the
analysis of body movement and posture. Studies such as those by De et al. [5], Li
et al. [18], and Garber et al. [11] have laid the groundwork using techniques that,
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while foundational, often depend on manually crafted features which may not
capture the full spectrum of emotional expressions conveyed through body move-
ments. These approaches, while pioneering, exhibit limitations in their ability to
adapt and generalize across diverse datasets and scenarios.

Advancements through CNNs and RNNs. Recent research has pivoted
towards leveraging convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). Works by Avola et al. [1], Shen et al. [27], and Ilyas et al. [14]
represent significant strides in this direction, employing deep learning models
to automatically learn features directly from data. These methodologies have
shown promise in enhancing the accuracy of emotion recognition. However, they
often require extensive computational resources and large labeled datasets for
training, posing challenges for scalability and efficiency.

The Emergence of GCN-based Approaches. A novel and less explored
avenue within emotion recognition is the application of graph convolutional net-
work (GCN)-based approaches. Shi et al. [28] have demonstrated the potential of
GCNs in outperforming traditional and deep learning-based methods by lever-
aging the structural information of the human body. The approaches construct
graphs that model the relationships among body joints, offering a more nu-
anced understanding of bodily expressions of emotion. Despite their advantages,
existing GCN-based methods predominantly focus on handcrafted graphs that
emphasize only adjacent, physically connected joints. This focus neglects the
significant interactions between more distant joint nodes, limiting the compre-
hensiveness of emotion recognition.

3 Methodology

In Sec. 3.2, we detail UbH-Graph with fully connected (FC) edges to solve the
problems of the conventional graph [3,37] with physically connected (PC) edges.
In Sec. 3.4, we introduced how to mitigate the imbalance data distribution
present in naturalistic datasets. In Sec. 3.3, we replace the widely used four-
stream ensemble method [3, 30] with a new four-way ensemble without motion
data streams. Finally, we introduce UbH-GCN, which uses these proposed meth-
ods.

3.1 PRELIMINARY TECHNIQUES

Notations. The spatio-temporal graph for human skeleton is represented by
G(V, E), where V and E denote the joint and edge groups, respectively. V =
{v1, v2, ..., vN} is the set of N vertices. E is the edge set, which is formulated
as an adjacency matrix A ∈ RN×N and its element aij reflects the correlation
strength between vi and vj . Physically connected edges and fully-connected edges
used in Sec. 3.2 are denoted as PC-edges and FC-edges, respectively.
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Fig. 1: The pipeline of UbH-GCN. Firstly, the AlphaPose algorithm is employed
to extract human skeletal representations from in-vehicle images. Secondly, according
to our method, all joint nodes between adjacent hierarchical node sets are connected
to generate the UbH-Graph. Subsequently, these graph data undergo preprocessing
methods before being inputted into our UbH-GCN approach. Ultimately, the model is
capable of distinguishing and outputting five categories of emotions: peace, happiness,
weariness, anxiety and anger.

Data Preprocessing. Data preprocessing is essential for skeleton-based emo-
tion recognition. In this work, the input features after various preprocessing are
mainly divided into two classes: 1) joint positions, 2) bone features. Suppose that
the original coordinate set of an skeleton sequence is X =

{
x ∈ RCin×Tin×Vin

}
,

where Cin, Tin, Vin denote the input coordinates, frames, and joints, respectively.
Then the relative position set is obtained as the normalized position features,
i.e., R = {ri|i = 1, 2, ..., Vin}, where

ri = x[:, :, i]− x[:, :, c], (1)

and c represents the index of the center spine joint. Next, the input of joint
positions is formed by the concatenation of X and R. Moreover, the input of
bone features consists of the bone lengths L = {li|i = 1, 2, ..., Vin}. The lengths
of each bone are calculated by

li = x[:, :, i]− x[:, :, iadj ] (2)

where iadj means the adjacent joint of the ith joint.

Graph Convolutional Networks. Skeleton sequences are represented by X ∈
R

d×T×V , where T and V are the time step and the number of joints, respectively.
GCN’s operation with input feature map Fin ∈ RC×T×V is as follows:
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Fig. 2: UbH-Graph. The human skeleton graph is decomposed into a rooted tree,
where PC edges are included in hierarchy sets. Edges between all nodes in the same
semantic space are obtained by connecting all the nodes in adjacent hierarchy edge
sets. Blue and orange lines stand for PC and FC edges, respectively.

Fout =
∑

s∈S
ÂsFinΘs, (3)

where S =
{
sid, scf , scp, scf2 , scp2

}
denotes graph subsets, and sid, scf , scp, scf2 ,

scp2 indicate identity, centrifugal, centripetal, 2-hop centrifugal and 2-hop cen-
tripetal joint subsets, respectively. Θs denotes the pointwise convolution op-
eration. The normalized adjacency matrix Â is initialized as Λ− 1

2AΛ− 1
2 ∈

R
Ns×V×V , where Λ is a diagonal matrix for normalization.

3.2 Upper-body Hierarchical Graph

Transformation into an N-ary tree. To decompose the upper-body skeleton
graph into an N-ary tree, we need to determine a root node that allows nodes
from different body parts to coexist in the same set. For example, the left wrist
joint and the right wrist joint, or the wrist joint and the ear joint, can exist in the
same node set. Once the root node is established, we can convert the skeleton
graph into an N-ary tree. This hierarchical structure of the tree allows nodes
from different body parts to be categorized, thus extracting the hierarchical
information of the graph. Finally, this defines the directed adjacency matrix−→
A ∈ RNL×V×V .

−→
A = [E(H1 → H2), ..., E(HNH−1 → HNH

)] , (4)

where Hk denotes the k-th level node set, and E(Hk → Hk+1) represents the
set of edges from Hk to Hk+1. NL and NH represent the number of levels in the
hierarchical structure and the number of edges on the border of the hierarchical
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structure, respectively. Specifically, NL = NH − 1. However,
−→
A only includes di-

rected centripetal edges. To ensure consistency with existing methods, all reverse
edges from the leaf nodes in Fig. 2 to the root node should be included in the
adjacency matrix to cover centripetal edges. In addition, the identity matrix for
each set of level nodes should be considered to obtain the characteristics of the
nodes themselves. Thus, the adjacency matrix

←→
A ∈ RNL×NS×V×V is defined as

follows:

←→
A = [E1, E2, ..., ENL

] , (5)

Ek = E
(
Hk

⋃
Hk+1, Hk → Hk+1, Hk+1 → Hk, Hk

2→ Hk+1, Hk+1
2→ Hk

)
,

(6)
where Ek denotes the concatenation of the five edge subsets of S = {sid, scp, scf ,
scp2 , scf2} and sid, scp, scf , scp2 , scf2 indicate the identity, centripetal, centrifu-
gal, 2-hop centripetal and 2-hop centrifugal edge subsets, respectively. Through
this construction policy, we create a skeleton graph with bidirectional and iden-
tity edges.

Fully Connected Edges. UbH-Graph has a different number of edges in its
edge set compared to traditional graphs, but the edges themselves are the same.
In order to identify the relationships between major long-distance joint nodes,
especially those between nodes in different body parts, we connect all nodes
between adjacent level node sets.

The graph in [37] only includes the connectivity of PC edges and doesn’t con-
tain long-distance relationships, which makes the receptive field of this sparse
graph very small. By applying our FC edges to the rooted tree, the graph be-
comes denser, expanding the receptive field compared to before and making
long-distance connections more meaningful. To enhance training adaptability
and stability, we normalize the adjacency matrix with the degree matrix and
treat all elements in the matrix as learnable parameters.

UbH-Graph Convolution. UbH-GCN architecture includes five parallel con-
volutional layers, which are specifically designed to extract correlations between
human body joints. To reduce computational complexity, all five branch opera-
tions utilize linear transformations. For these branches, we employs the same way
as Chen et al. [3], performing subset-wise GCN operations on hierarchical edge
sets, each containing five subsets of edges. Additionally, we merge the results from
the branch that operates with Asid into the results of the other four branches.
Instead of simply summing the output values of these four branches as shown
in Eq. (3), we concatenate these output values along the channel dimension in
Eq. (7). To enhance the network’s learning capability, the concatenated results
pass through a batch normalization layer and are added to the input residual.
Finally, non-linearity is introduced through a ReLU [12] activation layer.
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Fig. 3: UbH-Graph convolution operation block. The
←→
A is an adjacency matrix,

and sid, scf , scp, scf2 , scp2 indicate identity, centrifugal, centripetal, 2-hop centrifugal
and 2-hop centripetal joint subsets, respectively. The ×, + and C operations denote
matrix multiplication, element-wise addition and concatenation.

F
(k)
UbH = ∥s∈S

{←→
A k

UbH;sΦ(Fin)Θ
k
s

}
, (7)

FUbH ←
NL∑
k=1

(F
(k)
UbH ||Fin), (8)

where F
(k)
UbH denotes the output feature map of the UbH-Graph convolution and

function Φ denotes a linear transformation with parameter W ∈ RC′×C .Note
that ∥ is a concatenation operation.

Our entire GCN process is illustrated in Fig. 3, and the computation is ex-
plained in Eq. (8). The branch outputs in the UbH-Graph are linked with the
channel dimension and computed in the same way for all branch outputs of the
hierarchical edge sets. As the number of joint nodes in each dataset varies, the
number of hierarchical sets also differs. To address this, we use an additive strat-
egy for the NL level outputs and a union strategy for the NS subset outputs.
By using this method, we maintain dimensionality and follow a universal hierar-
chical set ensemble strategy for each skeletal dataset by adding all outputs with
different numbers of hierarchical sets.

3.3 Four-Way Ensemble

Shi et al. [30] demonstrated that a four-stream ensemble method (joint stream,
bone stream, joint motion stream, and bone motion stream) can be employed
for efficient GCN. However, the motion stream exhibited relatively poorer per-
formance compared to the joint and bone streams. To address this, we utilized
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an new four-way ensemble method that only utilizes the joint and bone streams
without any motion stream. we integrates four distinct models for two joint
streams and two bone streams. Each model was trained with different UbH-
Graphs rooted at the hip and nose nodes. By combining these four models, we
leverage diverse perspectives, thereby significantly improving the performance
of our UbH-GCN as shown in the supplementary. Many recent methods require
the selection of optimal ensemble coefficients for specific datasets, leading to low
model generalization ability. Our method eliminates the requirement of ensem-
ble coefficient selection by letting each model contribute equally. As a result, our
model can be more easily adapted to practical applications.

3.4 Loss Function

Suppose that the final FC layer in our model outputs a logits vector z ∈ RQ,
where Q is the number of emotion classes. The classification probabilities for the
input sample can be computed by a Softmax function,

ŷi =
ezi∑Q−1

l=0 ezl
, (9)

where zi denotes the ith element of z. Then, the Cross-Entropy (CE) loss is
calculated as the objective function for model optimization

LCE = −
Q−1∑
i=0

yi log ŷi, (10)

where y ∈ RQ is the one-hot vector indicating the ground truth of emotion class.
The derivation from Eq. (9) to Eq. (10) provides insight into the basic re-

lationship between optimizing the CE loss, which is denoted as LCE , and the
logit term, represented by z. It is important to note that the dimension of logit
z corresponds to the total number of categories and directly impacts the cal-
culation of the loss, making it the most intuitive factor that influences the size
of the classification feature space. Therefore, the key challenge is to effectively
utilize the logit term to mitigate the problem of imbalanced data distribution.
Building on the work of [35], this study introduces necessary modifications to
the network predictions (i.e., logit z as referred to here) in Eq. (11).

ẑi,j = zi,j +
cj

maxQ−1
i=0 ci

|δ(σ)|, cj = log

∑Q−1
j=0 qj

qj
, (11)

where qj is the number of the instances with category j and δ is a gaussian
distribution with a mean of 0 and standard deviation of σ.

Eq. (11) is designed to adjust the variability within each class by differentially
processing categories based on the number of instances. It assigns a smaller
variation to the category which has more instances, while a larger variation to
the categories with fewer instances. This approach expands the representation of
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each instance in the feature space from a single point to a region with a certain
range, which helps to balance the inter-class representation during the training
process. Additionally, to ensure that predictions during the inference phase are
reliable, the variations introduced during training are excluded.

3.5 Network Architecture

Our network architecture, as illustrated in Fig. 1, consists of 1 initial block and
9 GCN blocks that are stacked together. The output channels of each block
are 64, 64, 64, 64, 128, 128, 128, 256, 256 and 256, respectively. Each block
comes with a residual connection and is divided into two modules - the spatial
module, where GCN operations are performed, and the temporal module, which
comprises temporal convolutions. For the temporal module, our method utilizes
the one from [3], which has four branch operations. Two of these are dilated
temporal convolutions with kernel sizes of 5 and dilation rates of 1 and 2, while
the remaining branch operations consist of point convolutions with a kernel size
of 3 and max pooling. For the spatial module, we use an UbH-Graph convolution
operation as detailed Sec. 3.2. To prevent overfitting, a dropout layer with a
dropout rate of 0.25 is added after the Global Average Pooling (GAP) layer and
before the final Fully Connected (FC) layer.

4 Experiments

4.1 Datasets and Experimental Settings

AIDE. AIDE [38] is an AssIstive Driving pErception dataset aimed at advanc-
ing research on vision-driven Driver Monitoring Systems (DMS). AIDE provides
rich information from real driving scenarios, capturing both internal and external
views of the vehicle through four cameras. This dataset is characterized by its
multi-view setup, multi-modal data annotations related to driver features, and
multi-task design for comprehensive driving assistance. With 2898 data sam-
ples and 521.64K frames, each sample includes 3-second video clips from four
perspectives, each aligned with specific perception tasks. Bounding boxes and
keypoints are estimated for the internal views. To meet the practical needs of the
DMS, AIDE provides fine-grained (FG) criteria classifying coarse-grained (CG)
emotions into positive, neutral, or negative categories.

Emilya. Emilya [10] captured by the Xsens MVN system at a frame rate of 120
Hz. This dataset comprises 8,206 emotional posture segments depicting 8 distinct
emotions: anxiety (Ax), pride (Pr), joy (Jy), sadness (Sd), panic fear (PF), shame
(Sh), anger (Ag), and neutral (Nt). These emotional postures were enacted by
12 actors engaging in 8 common daily actions. Each posture segment includes
the 3D positional coordinates and rotational information of 28 keypoints.
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Experimental Settings. In our experiments, we adopt [30] as the backbone.
The SGD optimizer is employed with a Nesterov momentum of 0.9 and a weight
decay of 0.0004. The number of learning epochs is set to 90, with a warm-up
strategy [13] applied to the first five epochs for more stable learning. We set the
learning rate to decay with cosine annealing [22], with a maximum learning rate
of 0.1 and a minimum learning rate of 0.0001. Our experiments are conducted
using two distinct datasets: AIDE and Emilya. These datasets are selected for
their relevance and the diversity of scenarios they present, which are critical for
assessing the robustness of our model. All our experiments are conducted on a
single RTX 2080Ti GPU. To evaluate the recognition performance of our model,
we employ two metrics: classification accuracy (Acc.) and the weighted F1 score
(F1) for the AIDE dataset. For the Emilya dataset, performance is evaluated
using either a 3-fold and 10-fold cross-validation scheme.

Table 1: Comparisons of the Accuracy (%) and F1-score (%) against others
methods on the AIDE dataset. The best one is in bold and the second one is
underlined. †: 2-ensemble, ‡: 4-ensemble

Method Modality Body Acc. F1 CG-Acc. CG-F1

AIDE [38] Scene, Face, Body,
Gesture, Posture Full 74.87 72.56 76.52 74.92

CTR-GCN [3] Posture Upper 71.92 70.35 73.73 72.81
EfficientGCN-B0 [31] Posture Upper 67.65 66.68 71.10 70.49
EfficientGCN-B2 [31] Posture Upper 66.50 64.76 72.58 71.36
EfficientGCN-B4 [31] Posture Upper 67.49 65.87 70.61 69.98

HD-GCN † [16] Posture Upper 73.89 71.06 76.52 75.04
HD-GCN ‡ [16] Posture Upper 76.68 74.32 77.50 75.70

UbH-GCN † Posture Upper 75.37 73.13 77.34 76.29
UbH-GCN ‡ Posture Upper 77.50 75.70 78.33 77.19

4.2 Comparisons with Other Methods

We uniquely employ upper-body data for emotion recognition, setting our method
apart from others that rely on full-body data. This focused examination is pre-
sented through comparisons on the AIDE and Emilya datasets. Our method
demonstrates superior performance against full-body data methods on the AIDE
dataset, as seen in Tab. 1. This achievement is significant, showcasing that upper
body data, even without motion streams, can effectively capture driver’s emo-
tions. The three action recognition methods [3,16,31] are similar to the emotion
recognition task based on body movement. We obtain their original codes and
evaluate their performance on the AIDE dataset using upper-body data. UbH-
GCN outperforms the three action recognition methods mentioned above, which
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reinforces the validity of our approach focusing on the upper body. On the Emilya
dataset, UbH-GCN closely rivals methods that analyze full-body movement, as
detailed in Tab. 2. This result underscores the potential of leveraging upper body
information only for emotion recognition.

Table 2: Comparisons of the Accuracy(%) against other methods on Emilya
dataset. The best one is in bold and the second one is underlined. †: 2-ensemble

Method Body Protocal Acc.

RF-Motion Features [9] Full 3-fold 75.00
MS-Shift [28] Full 3-fold 92.00
ST-ITE [34] Full 3-fold 93.01 ± 1.81
UbH-GCN † Upper 3-fold 91.28 ± 0.36

SVM-X 2 Kernel [4] Full 10-fold 82.20
Multiscale CNN [2] Full 10-fold 91.31

ST-ITE [34] Full 10-fold 94.42 ± 0.68
UbH-GCN † Upper 10-fold 93.98 ± 0.80

4.3 Ablation Study

In this section, we demonstrate the effectiveness of the proposed architecture.
Performance is specified as fine-grained accuracy and fine-grained weighted F1
score on the AIDE [38] dataset.

UbH-Graph. To proceed with ablation study for UbH-Graph, we set Yan et
al. [3]’s graph as conventional graph. The experiment results are shown in Tab. 3.
We set the edges of UbH-Graph in different ways to show a gradual performance
increase according to the type of graph. There are two main versions of UbH-
Graph, the first of which is graph A containing only the PC edges and the second
of which is graph B contains FC edges for NH hierarchy joint nodes sets.

Table 3: Comparison of the different types of graph on the AIDE dataset.
The best one is in bold and the second one is underlined. †: 2-ensemble

Method Graph Edges Acc. F1

CTR-GCN [3] Conventional PC 71.92 70.35
HD-GCN † [16] A PC 73.40 70.63
HD-GCN † [16] B FC 73.89 71.06

UbH-GCN † A PC 74.55 72.23
UbH-GCN † B FC 75.37 73.13
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Four-Way Ensemble. We use the ensemble method by applying it to two
graphs with different rooted nodes. Tab. 4 shows UbH-GCN with 4-way en-
semble significantly outperforms the method proposed by [16]. This superior
performance indicates that the features extracted from different rooted nodes
are learned from distinct perspectives, enhancing the overall learning process.

Table 4: Comparisons of the Accuracy (%) and F1-score (%) against others
on the AIDE dataset. ‡: 4-ensemble

Method Loss Function Acc. F1

HD-GCN ‡ [16] cross-entropy 76.03 73.40
HD-GCN ‡ [16] ours 76.68 74.32

UbH-GCN ‡ cross-entropy 74.55 72.37
UbH-GCN ‡ ours 77.50 75.70

Loss Function. Fig. 4a vividly illustrates imbalanced data distribution for the
emotion categories of the AIDE dataset, which is characteristic of naturalistic
datasets. As shown in Tab. 4, we conduct ablation experiments on HD-GCN and
UbH-GCN, applying both cross-entropy and special loss function. On the AIDE
dataset, our method surpasses the performance metrics achieved through the
conventional cross-entropy loss function. As evidenced by Fig. 4b and Fig. 4c,
UbH-GCN demonstrates superior performance over the benchmark model in ac-
curately recognizing four emotions including happiness and anger. The tendency
to misclassify weariness as peace is likely attributable to the inherent limitations
of emotion recognition from body movement. Despite this, it does not diminish
the effectiveness of our method to address the class imbalance challenges.

(a) Percentage of samples in
each category in the driver emo-
tion recognition task on the
AIDE dataset.

(b) Confusion matrices for the
benchmark in the driver emo-
tion recognition task on the
AIDE dataset.

(c) Confusion matrices for
UbH-GCN in the driver
emotion recognition task on the
AIDE dataset.

Fig. 4: Visualization of data distribution and experiments on the AIDE dataset.



14 J. Wu, J. Chen et al.

Table 5: Comparison of complexity of the single-stream other methods on
the AIDE dataset. The best one is in bold and the second one is underlined.

Method Acc. F1 GFLOPs Param.

EfficientGCN-B4 [31] 67.49 65.87 0.24 2.02M
EfficientGCN-B0 [31] 67.65 66.68 0.05 0.32M

CTR-GCN [3] 71.92 70.35 0.14 1.64M
HD-GCN [16] 74.38 72.11 0.12 1.13M

UbH-GCN 74.55 73.01 0.11 1.04M

4.4 Comparison of Complexity with Other Models

To evaluate the efficiency of our model, we compare UbH-GCN against other
methods based on accuracy, F1-score, and model complexity (FLOPs and num-
ber of parameters) on the AIDE dataset. By utilizing the original code supplied
by these methods, we obtain results concerning model complexity trained on
upper-body data where the time window size is fixed at 16. Despite our model
employing multiple branched layers with multiple edge sets, its placement prior
to the channel reduction layer ensures that it does not cause high complexity. As
shown in Tab. 5, our approach demonstrates superior performance on the AIDE
single-stream, with model complexity only second to EfficientGCN-B0.

5 Conclusion

In this work, we introduce a tailored emotion recognition approach for assistive
driving, overcoming the limitations of traditional systems that rely on facial ex-
pressions, speech, and physiological signals. By focusing on the upper-body skele-
ton sequences, our method addresses the impracticality of full-body pose cap-
ture and leverages the emotional expressiveness of upper-body movements. Our
novel UbH-Graph dynamically captures nuanced relationships between upper-
body movement and emotion, while incorporating class-specific variations during
training enhances model generalization and understanding of driver’s emotion.
Demonstrated improvements on the assistive driving emotion dataset and valida-
tion on a daily action dataset highlight our method’s robustness and adaptability.

This work significantly contributes to emotion recognition within assistive
driving systems and sets the stage for future research into real-time integration,
adaptability to in-vehicle conditions, and the inclusion of other non-verbal com-
munication forms. Addressing limitations such as imbalanced data distribution
and exploring real-world applicability will be crucial. Ultimately, our research
advances the journey towards autonomous vehicles, promising enhanced safety,
user experience, and human-vehicle interaction harmony.
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