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A Dataset Details

GQA [1] is a vision-and-language dataset, consisting of a total of 113k images.
We retain images only with the most frequent 160 object and 60 relationship cat-
egories for experiments. Then it contains 59,588 images, of which 41,773 (70%)
images are used for the training, and 17,815 (30%) images are used for the testing.
We follow [4] to sample a 5k validation set from the training set for parameter
tuning. The detailed list of the most frequent 160 object and 60 relationship
categories is shown in Tab. 1.

We visualize the quantity distribution for each relationship as shown in Fig. 1,
GQA exhibits a severe long-tailed effect, with a highly imbalanced distribution
between head categories (e.g., “on”, “wearing”, “of ”) and tail categories (e.g.,
“contain”, “pulling”, “pulled by”).

B Ablation Studies

iii) The Effect of Weight Factor α: To assess the impact of α for SBG,
we conduct the PredCls task on Transformer model. We validate a range of
values (0.050, 0.075, 0.100) for α. The performance is presented in Tab. 2. From
the results, it can be observed that the A@50/100 metric achieves the highest
performance when α is set to 0.075, indicating the optimal performance of SBG.

iV) The Effect of Training Mode: In Section 3.2, we employ a grad-
ual training mode, where the parameters of the classic SGG model are frozen
after the training, and subsequently, the training of BGAN is conducted. The
comparison between the gradual training and integrated training of SBG on the
PredCls task of Transformer model is presented in Tab. 3. The results indicate

† indicates the corresponding author.
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Table 1: List of object and relationship categories in GQA.

categories

object

’window’, ’man’, ’shirt’, ’tree’, ’wall’, ’person’, ’building’, ’ground’, ’sky’, ’sign’, ’head’,
’pole’, ’hand’, ’grass’, ’hair’, ’leg’, ’car’, ’woman’, ’leaves’, ’trees’, ’table’, ’ear’, ’pants’,
’people’, ’eye’, ’water’, ’door’, ’fence’, ’nose’, ’wheel’, ’chair’, ’floor’, ’arm’, ’jacket’,
’hat’, ’shoe’, ’tail’, ’clouds’, ’leaf’, ’face’,’ letter’, ’plate’, ’number’, ’windows’, ’shorts’,
’road’, ’flower’, ’sidewalk’, ’bag’, ’helmet’, ’snow’, ’rock’, ’boy’, ’cloud’, ’tire’, ’logo’,
’roof’, ’glass’, ’street’, ’foot’, ’umbrella’, ’legs’, ’post’, ’jeans’, ’mouth’, ’boat’, ’cap’,
’bottle’, ’bush’, ’girl’, ’flowers’, ’shoes’, ’picture’, ’glasses’, ’field’, ’mirror’, ’bench’,
’box’, ’dirt’, ’bird’, ’clock’, ’neck’, ’bowl’, ’food’, ’bus’, ’letters’, ’pillow’, ’shelf’,
’train’, ’trunk’, ’horse’, ’airplane’, ’plant’, ’coat’, ’lamp’, ’kite’, ’wing’, ’elephant’, ’house’,
’cup’, ’paper’, ’dog’, ’seat’, ’sheep’, ’street light’, ’counter’, ’branch’, ’glove’, ’banana’,
’giraffe’, ’book’, ’rocks’, ’cow’, ’truck’, ’racket’, ’ceiling’, ’flag’, ’skateboard’, ’cabinet’,
’zebra’, ’eyes’, ’ball’, ’bike’, ’wheels’, ’sand’, ’surfboard’, ’frame’, ’hands’, ’motorcycle’,
’feet’, ’windshield’, ’finger’, ’bushes’, ’player’, ’child’, ’hill’, ’sink’, ’bed’, ’cat’, ’container’,
’traffic light’, ’sock’, ’tie’, ’towel’, ’pizza’, ’paw’, ’backpack’, ’collar’, ’basket’, ’mountain’,
’vase’, ’lid’, ’phone’, ’branches’, ’animal’, ’donut’, ’fur’, ’license plate’, ’laptop’, ’lady’

relationship

’on’, ’wearing’, ’of’, ’near’, ’in’, ’behind’, ’in front of’, ’holding’, ’on top of’, ’next to’,
’above’, ’with’, ’below’, ’by’, ’sitting on’, ’under’, ’on the side of’, ’beside’, ’standing on’,
’inside’, ’carrying’, ’at’, ’walking on’, ’riding’, ’standing in’, ’around’, ’covered by’, ’hanging on’,
’lying on’, ’eating’, ’watching’, ’looking at’, ’covering’, ’sitting in’, ’on the front of’,
’hanging from’, ’parked on’, ’riding on’, ’using’, ’covered in’, ’flying in’, ’sitting at’, ’walking in’,
’playing with’, ’full of’, ’filled with’, ’on the back of’, ’crossing’, ’swinging’, ’surrounded by’,
’standing next to’, ’reflected in’, ’covered with’, ’contain’, ’touching’, ’pulling’, ’pulled by’,
’flying’, ’leaning on’, ’hitting’
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Fig. 1: Quantity distribution for each relationship varies from many to few.
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Table 2: The effect of weight factor α.

PredCls
Weight Factor α R@50/100 mR@50/100 A@50/100

0.050 55.9 / 57.7 33.0 / 35.3 44.5 / 46.5
0.075 55.8 / 57.6 33.3 / 35.7 44.6 / 46.7
0.100 57.2 / 59.0 32.0 / 34.1 44.6 / 46.6

that the gradual training outperforms the integrated training. This is because
SBG is trained based on the output of the classic SGG model. However, the
output of the classic SGG model using the integrated training is continuously
varied, thus leading to the unstable training for SBG.

Table 3: The effect of training mode.

PredCls
Training Mode R@50/100 mR@50/100 A@50/100

integrally 56.4 / 58.1 32.6 / 34.8 44.5 / 46.5
gradually 55.8 / 57.6 33.3 / 35.7 44.6 / 46.7

V) The Superiority of BGAN for Sample-Level Bias Prediction:
To demonstrate the sample-level bias’s prediction capability of BGAN, which
employs the one-dimensional convolution network, we conduct a comparison in-
volving three networks: a conventional 5-layer fully connected network (denoted
as FC5), a 5-layer one-dimensional convolutional network (denoted as 1D5), and
a fully connected BGAN (denoted as BGANFC), on the Predcls task of Trans-
former model. The results are presented in Tab. 4. It can be observed that in the
case of FC5 and 1D5 networks, the 1D5 network outperforms the FC5 network
slightly, as the 1D5 network benefits from the translation invariance and strong
local receptive field provided by one-dimensional convolutions. Similarly, the per-
formance of the BGAN based on one-dimensional convolutions is slightly better
than that of BGANFC which uses the fully connected networks. Furthermore,
by comparing the first and last two rows, BGAN exhibits stronger capabilities
for the sample-level bias prediction than conventional neural networks.

Table 4: The superiority of BGAN for sample-level bias prediction.

PredCls
Network R@50/100 mR@50/100 M@50/100
FC5 42.3 / 44.0 37.4 / 39.7 39.9 / 41.9
1D5 41.9 / 43.7 38.1 / 40.2 40.0 / 42.0

BGANFC 60.1 / 62.9 28.4 / 30.0 44.3 / 46.5
BGAN 55.8 / 57.6 33.3 / 35.7 44.6 / 46.7
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Vi) The Analysis for Feature Mapping ϕ: In Section 3.2, when con-
structing the correction bias set, we utilize an encoder that includes a single
layer of transformer (denoted as Trans1) to map high-dimensional features to
one-dimensional features. We compare this approach with a conventional fully
connected mapping (denoted as FC) and an encoder containing two layers of
transformer (denoted as Trans2), based on the Predcls task of Transformer
model. The results are presented in Table Tab. 5. It is evident that using Trans1
for feature mapping yields the best performance. Compared to FC, Trans1
demonstrates superior performance by leveraging the strong interaction capabil-
ities of the transformer. Moreover, Trans2 is relatively complex and results in a
performance decline.

Table 5: The analysis for feature mapping ϕ.

PredCls
Mapping Method R@50/100 mR@50/100 M@50/100

FC 55.8 / 57.8 32.1 / 34.7 44.0 / 46.3
Trans1 55.8 / 57.6 33.3 / 35.7 44.6 / 46.7
Trans2 55.8 / 57.6 32.9 / 35.3 44.4 / 46.5

Vii) The Structure Analysis of BGAN: The generator G and discrim-
inator D in BGAN consist of multiple layers of one-dimensional convolution
networks. The performance of G and D directly impacts the performance of
BGAN. To assess their impact, we conduct experiments using various combina-
tions of one-dimensional convolution layers for G and D based on the Predcls
task of Transformer model. The results are presented in Tab. 6. Based on the
combination (5, 3) of G and D (last row in the table), we individually keep the
number of layers fixed for G and D while modifying the number of layers for
the other. It is evident that among these combinations, the combination (5, 3)
yields the best performance for both G and D.

Table 6: The structure analysis towards G and D in BGAN.

BGAN PredCls
G(layers) D(layers) R@50/100 mR@50/100 M@50/100

5 2 55.0 / 56.2 33.9 / 36.3 44.5 / 46.3
5 4 60.4 / 62.1 28.7 / 31.0 44.6 / 46.7
4 3 57.0 / 59.1 32.2 / 34.1 44.6 / 46.6
6 3 56.9 / 58.7 32.1 / 34.3 44.5 / 46.5
5 3 55.8 / 57.6 33.3 / 35.7 44.6 / 46.7

Viii) The Effect of Small Non-Zero Value ε: In constructing the cor-
rection bias set (Section 3.2), we utilize the ε which is set to 0.0001. In order to
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assess the impact of ε for SBG, we conduct the Predcls task using the Trans-
former model. We test a range of values (0.001, 0.0001, 0.00001) for ε, and the
performance of our SBG is presented in Tab. 7. It can be observed that the
M@50/100 metric achieves the highest performance when ε is set to 0.0001,
indicating optimal comprehensive performance.

Table 7: The effect of small non-zero value ε.

PredCls
ε value R@50/100 mR@50/100 M@50/100
0.001 56.6 / 58.4 32.5 / 34.8 44.6 / 46.6
0.0001 55.8 / 57.6 33.3 / 35.7 44.6 / 46.7
0.00001 56.5 / 58.3 32.6 / 34.9 44.6 / 46.6

iX) The Improvements of Long-Tailed Classes: In Fig. 2, we present
the R@100 of each relationship for the PredCls task, comparing Transformer
and our SBG. It shows that all tail classes are improved significantly.

Fig. 2: Comparison of R@100 on Transformer and our SBG. The relationships are listed
by the long-tailed order. Only “flying in” is not improved, whose training samples are
only 5, affecting the correction effect of our method.

X) The Rationale for Generative Model. The bias in our SBG is non-
linear and its continuity is very important for correction, so we compare gen-
erative models with non-generative models for bias prediction in Fig. 3. GAN
has the dual optimisation that helps to predict the more non-linear bias, and
that G and D of GAN supervise each other and promote each other making
the bpre predicted by GAN more closely approximate to the btru and capture
the continuity of the btru better. These are also reflected in HiFi-GAN [3] and
VCA-GAN [2].
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Fig. 3: Comparison of generative and non-generative models.

C Visualization for Bias Correction

In order to specifically demonstrate the process of sample-level bias correction,
we illustrate the corrections of relationships for object pairs <man, boat> and
<man, pole> as depicted in Fig. 4 (a) and Fig. 4 (b). The original predictions are
the coarse-grained relationships of “on” and “holding”. Utilizing the contextual
information (from union region) of <man, boat> and <man, pole>, the relation-
ships’ global bias, and the original predictions, the generator in BGAN predicts
the sample-specific biases to refine the coarse-grained “on” and “holding” to the
fine-grained “sitting on” and “using”.
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Fig. 4: The bias corrections of relationships for object pairs <man, boat> and <man,
pole>.
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