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Abstract. Guided sampling serves as a widely used inference technique
in diffusion models to trade off sample fidelity and diversity. In this
work, we confirm that generative adversarial networks (GANs) can also
benefit from guided sampling, not even requiring to pre-prepare a classi-
fier (i.e., classifier guidance) or learn an unconditional counterpart (i.e.,
classifier-free guidance) as in diffusion models. Inspired by the organized
latent space in GANs, we manage to estimate the data-condition joint
distribution from a well-learned conditional generator simply through
vector arithmetic. With such an easy implementation, our approach,
termed GANdance, improves the FID score of a state-of-the-art GAN
model pre-trained on ImageNet 64 × 64 from 8.87 to 6.06, barely in-
creasing the inference time. We then propose a learning-based variant
of our framework to better approximate the distribution of the entire
dataset, further improving the FID score to 4.37. It is noteworthy that
our sampling strategy sufficiently closes the gap between GANs and one-
step diffusion models (i.e., with FID 4.02) under comparable model size.
Code is available at https://github.com/zyf0619sjtu/GANdance.

Keywords: Generative adversarial networks · Conditional generation ·
Guided sampling

1 Introduction

Generative models have enabled a wide range of real-world applications in the
past few years, such as stimulating creativity [20, 36, 38, 64], editing visual as-
sets [40], and entertainments [17]. Among all types of generative paradigms, like
variational autoencoders [27], autoregressive models [34, 56], and normalizing
flows [37], diffusion models [51] tend to become the dominate solution and
are much sought after by the community. Thanks to better mode coverage
and stronger scalability, diffusion models even beat the previous state-of-the-art
generative framework, i.e., generative adversarial networks (GANs), especially
when the data is with a broad distribution [8].
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Text condition: a dog is playing with a cat.Text condition: a dog is playing with a cat.
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Class-free guidance direction

Fig. 1: (a) Visualization of guided sampling through Stable Diffusion 1.5 [39], in
which the state-of-the-art DPM fails without guidance. (b) Motivation scheme of
GANdance. The yolk represents the joint data distribution without condition effect, while
the egg white stands for the conditional distribution. The guiding direction from joint
to conditional distribution will strengthen the condition fidelity. (c) Visualization of
the latent space of GANs via t-SNE decomposition. Each collection of similar colors
represents a single class, while gray dots represent the joint distribution. All bold solid
lines stand for the guiding direction from joint to conditional distribution, while all
other dotted lines indicate the guiding directions achieved by GANdance.

However, we notice that the success of diffusion models stems from a post-
training technique, i.e., guided sampling [8, 15], to some extent. As we can
see in Fig. 1a, Stable Diffusion 1.5 [39] fails to produce meaningful images
without any guidance. The key idea of guided sampling is to rectify the predicted
noise with the gradient of a pre-prepared classifier, which is widely known
as classifier guidance [8]. Intuitively, thanks to such an inference technique,
the model is relaxed from “exactly” reproducing the data distribution, as the
outside curve shown in Fig. 1b. Instead, it only needs to learn a direction from
the unconditional generation (the center circle) to the conditional generation
(the middle curve) such that moving along this direction will finally decode
the condition satisfyingly (the dashed arrows). Ho and Salimans [15] further
proposed classifier-free guidance to circumvent the reliance on the classifier, yet
requiring a jointly learned unconditional model to estimate the moving direction.

In this work, we would like to figure out whether GANs can also benefit from a
better sampling strategy to match the performance of diffusion models. Encour-
agingly, our answer is a big yes, at least under the data scale at the ImageNet [7]
level. Our motivation is that the latent space of a GAN is usually well-organized
and hence allows easy semantic editing via vector arithmetic [46,48,62]. Inspired
by this, we propose to estimate the unconditional generation from a conditional
generator by eradicating the effect of the conditions. Concretely, given a sampled
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noise, we first fuse it with all conditions to obtain a collection of conditional
latents, then average these latents to cancel the conditional effect, and finally use
the latent with respect to the target class and the averaged result to compute the
guiding direction. We call the above process GANdance as it offers GAN sampling
guidance. We further propose a training-based variant of our framework, which
asks the generator to better approximate the distribution of the entire dataset
via learning an additional class. That way, at the inference stage, we can directly
compute the guiding direction by fusing the sampled noise with the target class
and the newly introduced class.

We evaluate our approach on a range of state-of-the-art GANs, including
StyleGAN2 [1], BigGAN [4]and the large-scale Aurora [64]. On the ImageNet
64 × 64 dataset, our training-free approach is capable of improving the FID
score [13] of Aurora from 8.87 to 6.06. It is noteworthy that, unlike classifier-free
guidance of diffusion models that doubles the inference time, GANdance barely
affects the sampling speed. We also analyze the sampling process and confirm
that our computed direction indeed pushes the model towards the conditional
distribution, as shown in Fig. 1c. With the proposed training-based framework,
we manage to further boost the performance from 6.06 to 4.37, almost on par
with the state-of-the-art one-step diffusion model (i.e., with FID 4.02) under
the same model size. We hope that our discovery could bring GANs back to the
public view and encourage more studies in the field of visual content generation.

2 Related Work

Generative adversarial networks. Formulated as a two-player game between
a generator and a discriminator, GAN [9] is designed to model a mapping from
a known distribution to observed data distribution through adversarial training.
Thanks to the sophisticated model [24] and training design [2, 21], GANs have
demonstrated excellent performance in various visual generation tasks, such as
image generation [4, 21, 23–25], video generation [41, 55], and 3D-aware image
synthesis [5, 6, 11, 33, 45, 49, 58]. In particular, style-based GANs [23–25] have
shown impressive ability on single-domain high-resolution images and inter-
pretable latent space [46, 63]. In addition, some studies focus on exploring the
use of GAN for conditional generation [32], including signals like class labels [4,
44, 61], texts [20, 43, 54, 64], and reference images [19, 29, 60]. Although GAN
has succeeded in many of the above fields, its performance is still unsatisfactory
when facing diverse conditional generation tasks.
Diffusion models and guided sampling. As an emerging type of generative
model, DPMs [14,50,51] has achieved remarkable results in many fields including
image generation [18], image editing [40] and video synthesis [16]. In recent
years, DPMs have outperformed Generative Adversarial Networks (GANs) by
a considerable margin [8], especially in the open-vocabulary text-to-image do-
main [3, 36]. The success of DPMs in high-quality conditional image generation
can be attributed to two main factors: LDM [39] compresses high-resolution
images into a lower-dimensional space to reduce the optimization difficulty of
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DPM: on the other hand, effective guided sampling methods [8,15] have further
enhanced the quality of synthesis images. Classifier guidance [8] utilizes a pre-
trained classifier to steer the diffusion process using gradients. Classifier-free
guidance [15], building on this, removes the reliance on the pre-trained classifier
by jointly training the model on both conditional and unconditional generation
tasks, allowing for broader application in open-vocabulary conditional genera-
tion tasks. In contrast to these guidance methods used in DPMs, our method
leverages the inherent nature of GANs, which possess a well-organized latent
space, without depending on classifiers or additional training. With a very easy
implementation, we can guide GANs to achieve even better results.

3 Method

3.1 Revisiting GANs and Conditional GANs.

GANs were first proposed by Goodfellow [10], by involving a generator G and a
discriminator D. Formally, for the vanilla GAN, let x be the training data with
an unknown distribution q(x), GANs are devoted to mapping a random noise
z to sample using G, while discriminating real or generated samples through
D, respectively. The GAN training endeavors to reach Nash equilibrium via the
following two losses:

LG = −Ez[logD(G(z))], (1)
LD = −Ex[logD(x)]− Ez[log(1−D(G(z)))], (2)

where z is random noise embedded in the latent space.
Follow-up seminal works [23, 24, 26] introduced the style space to GANs to

achieve further improvement on the sampling quality, enabling GANs to be a
prominent paradigm of generative model. Concretely, style-based GANs divide
the generator G into two parts, i.e., Gmap and Gsyn. A randomly sampled latent
code z will be first mapped to a style code w in the disentangled latent space, i.e.,
W space. ThenGsyn injects w into each layer, outputting the synthesized sample.
Thanks to this design, the highly depressed W space is confirmed to be well-
organized with a hierarchical structure, enjoying great interpretability [46,57,62].

Despite the expeditious generation on single-domain datasets (e.g., human
faces), conditional generation utilizing GANs remains not well-explored. Con-
ditional GANs are designed to approximate the marginal distribution given
the condition c by injecting the condition information into both generator and
discriminator [32]. By doing so, we can rewrite the GAN losses as below:

LG = −Ez,c[logD(G(z, c), c)], (3)
LD = −Ex,c[logD(x, c)]− Ez,c[log(1−D(G(z, c), c))]. (4)

However, existing conditional GANs are usually criticized for unsatisfactory
visual quality and limited diversity, especially compared with DPMs such as
ADM [8]. In the sequel, we will focus on the conditional generation utilizing
GANs, arguing that GANs are sufficiently capable of the task thanks to the
well-organized latent space.
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3.2 Training-Free Guidance in Latent Space

Before stating the guidance strategy, we first review the classifier guidance based
on Bayesian theory. Given fixed condition c, we have the following relationship
on the conditional probability p(x|c) according to Bayesian theory:

log p(x|c) = log p(x) + log p(c|x)− log p(c), (5)
∇x log p(x|c) = ∇x log p(x) +∇x log p(c|x), (6)

in which p(c|x) represents the probability of x classified to be with c. Inspired
by Eq. (6), the conditional generation can be improved when increasing p(c|x)
by adding classifier gradient ∇x log p(c|x) multiplied by a scale λ.

Recall that in GAN editing, thanks to the well-organized latent space with
continuous semantics, one can strengthen a given attribute for an image by
simply moving the latent code linearly with the corresponding direction. Theo-
retically, denote by c the given attribute, there exists an attached direction in
the latent space denoted by n, which dramatically increases p(c|x) for any x
by linear vector interpolation with an editing strength λ. This implies the close
relationship between the latent space and the probability in the image space.

Formally, we have the following theorem by some assumptions:

Theorem 1. Assume that Gsyn : W → Gsyn(W) is bijective, it induces the
probability from the image space Gsyn(W) up to W by

p(w|c) = p(Gsyn(w)|c) · det J(w), (7)
p(w) = p(Gsyn(w)) · det J(w), (8)

p(c|w) = p(c|Gsyn(w)), (9)

in which det J(w) is the determinant of the Jacobian matrix of Gsyn over w.
Then we have the following equality:

log p(w|c) = log p(w) + log p(c|w)− log p(c), (10)
∇w log p(w|c) = ∇w log p(w) +∇w log p(c|w), (11)

Theorem 1 confirms to bridge the latent space and the conditional probability
in image space, and hence the feasibility of GAN editing by selecting one single
direction in the latent space. Re-scoring analysis [46] verifies this theorem in
practice, which calculates the difference of the classifier output between images
before and after editing. In other words, the pre-selected appropriate direction
n in the latent space resembles the gradient ∇w log p(c|w).

Revealing this neat but insightful mathematical foundation, we first propose
the training-free version of GANdance, which is an intuitive guided sampling
strategy for conditional generation of GANs, and implemented in a plug-in and
training-free fashion. To be more detailed, in order to strengthen the condition
fidelity, motivated by the theory above, we point out that one simply needs to
set the joint data distribution in W space as the opposite of the given condition.
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Alg. 1 Training-free Guidance
Require: z, c, λ: guidance strength, C:

opposite condition set
1: wc = Gmap(z, c)
2: woppo = Ec′∈C [Gmap(z, c

′)]
3: w′

c = woppo + λ(wc −woppo)
4: xc = Gsyn(w

′
c)

5: return xc

Alg. 2 Training-based Guidance
Require: z, c, λ: guidance strength, ∅:

additional condition
1: wc = Gmap(z, c)
2: woppo = Gmap(z,∅)
3: w′

c = woppo + λ(wc −woppo)
4: xc = Gsyn(w

′
c)

5: return xc

Guaranteed by Theorem 1, such an operation increases log p(c|w) rapidly, and
will significantly improve the conditional generation quality by increasing p(w|c).

Estimating the joint data distribution from a well-learned conditional gener-
ator can be implemented easily. Given a randomly sampled noise z and a pre-
trained generator G, we can estimate the joint data distribution for z by fusing it
with all conditions to reach a collection of conditional latents. Then calculating
the expectation of such all conditional latents will cancel the conditional effect,
which becomes an approximate of the joint data distribution. Finally, one can use
the latent with respect to the target class and the averaged result to compute the
guiding direction, demonstrated in Alg. 1. To make a further step, by drawing
lessons from the theory of probability, we argue that the average conditional
latents over even only part of all conditions also serves as a great estimation, since
expectation over all potential average conditional latents over part of conditions
equals the mean over all conditions. Therefore, it is feasible to first uniformly
sample a subset C of conditions (termed as the opposite condition set), and
then calculate expectation over C. This decreases the time cost to traverse all
conditions with almost no performance degradation. We report the quantitative
results in Sec. 4.2. It is noteworthy that, the linear interpolation using the differ-
ence of (wc −woppo) (i.e., the guiding direction) not only increases p(c|w), but
also decreases p(c′|w) for each c′ in the opposite condition set C by interpolation
via (wc−woppo) (i.e., moving away from each Gmap(z, c′)). Benefiting from the
light-weight Gmap, our training-free guidance barely increases the inference time
(especially compared with classifier or classifier-free guidance in DPMs), while
significantly improving the generation quality.

3.3 Learning-Based GANdance for Conditional GANs

Recall that our proposed training-free guidance estimates the joint data distri-
bution by the expectation over the opposite condition set. Based on the analysis
before, more accurate estimation will lead to more effective drift direction in the
latent space and facilitate conditional sampling. Therefore, we hope to achieve
more accurate estimation at minimal cost. To this end, we further design a
learning-based variant of our framework, dealing with the approximation of
the joint distribution. Besides the condition set, we propose to leverage an



Exploring Guided Sampling of Conditional GANs 7

additional condition attached with the entire dataset for both the generator
and the discriminator. Concretely, for each data-condition pair (x, c), we will
reset the condition as the additional condition at a fixed probability, resembling
the training methodology of classifier-guidance in DPMs [15] and supplementing
the native training framework of conditional GANs.

This learning-based GANdance can imitate the joint distribution more accu-
rately since it builds upon the native conditional GANs which focus on each
conditional distribution via shared embedding layers in both generator and
discriminator. Furthermore, with the additional condition attached to the entire
dataset, the guiding direction can be obtained directly, by fusing the sampled
noise with the target and the additional condition and performing subtraction,
as described in Alg. 2. It is also worth noting that we only need to raise the input
dimension of the embedding layers by one, with no other structural modification
required. That is to say, plugging GANdance in GANs incurs almost no additional
training cost.

On the other hand, note that the training of additional condition bene-
fits from the shared embedding modules in both generator and discriminator.
Therefore, it is possible to apply the learning-based GANdance on pre-trained
conditional GANs by reusing all parameters and adding a tensor to the embed-
ding module of generator and discriminator, respectively. We claim that this
will further facilitate the conditional generation, since the prior of conditional
distribution from pre-trained models serves as a promising warm-up for the newly
added parameters. This will be addressed in Supplementary Material .

The additional condition involved in the native conditional GAN training
might make it challenging to retain the efficacy of the original conditional gener-
ation modules. Therefore, the probability to reset the condition is attached great
importance to the proposed GANdance. Theoretically, large probability will entail
to concentrate the training more on the generation with additional condition,
harming the quality of the original efficacy. On the other hand, too small prob-
ability suggests ignoring the approximation of the joint distribution, leading
to inaccurate opposite and hence poor guided sampling quality. Performance
comparison among different probabilities is addressed in Sec. 4.5.

3.4 Layer-Wise GANdance

It is well recognized that the latent space of style-based GANs [24, 59] controls
the output of G layer by layer, and some channels of w dominate different visual
attributes of the generated image [57]. In detail, StyleSpace [57] shows that
the channels in w with respect to early layers in G often affect the high-level
semantics (shape, category, etc.) of the generated image, while those channels
in w with respect to the later layers in G often affect the low-level semantics
(color, texture, etc.). A natural idea is that during the sampling process, we can
apply different guidance scales to different layers in G, i.e., layer-wise GANdance,
to achieve better sampling results. To this end, we analyze the impact of guided
sampling layer by layer, and the experimental results are shown in Fig. 4. We
find that the part of the generator G with features below 16 x 16 resolution
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can accept stronger guidance and is more likely to benefit from it. Therefore, by
simply designing a layer-wise GANdance with decreasing guidance scales, we can
further reduce the FID of an Aurora model trained on ImageNet 64 x 64 from
4.72 to 4.37. The details will be addressed in Supplementary Material .

3.5 Comparison between GANdance and Existing Techniques

We first compare GANdance with the truncation trick in StyleGAN [24]. Both two
tricks base on vector arithmetic, which is first proposed in DCGAN and becomes
a basic operation in latent space [30]. Note that the truncation trick is designed
to draw w away from ill-trained latent space, implemented by interpolation with
expectation w over z with coefficient ψ < 1, enforcing each w to concentrate
to the center of W space. However, GANdance aims to increase the posterior of
generation by interpolation with unconditional latent woppo approximated over
opposite condition set C with λ > 1. We argue that these two operations are
compatible, in which detailed results are reported in Tab. 3.

Next, recall that the motivation of GANdance stands upon the Bayesian
theory, aiming to improve the conditional generation by increasing p(c|w) in
W space. Similarly, classifier guidance in DPMs manages the same task, but
equipped with an auxiliary classifier providing gradient guidance for intermediate
noisy data at all timesteps [8]. Beyond supernumerary time cost for gradient
calculation, existing classifier-guided DPMs struggle on the poor classification
accuracy on considerably large noise strength (e.g., the classifier gets an average
top-1 accuracy on ImageNet 64x64 [7] less than 30% while ResNet50 [12] can
easily reach 60% top-1 accuracy by finetuning from a pre-trained model).

It is also noteworthy that the sampling algorithms of GANdance in Algs. 1
and 2 resemble the classifier-free guidance in DPMs [15]. They introduce the
similar interpolation with the difference between the conditioned latent code
and its corresponding latent under joint distribution (i.e., woppo in GANdance
and ϵθ(xt, t,∅) in [15]). We conclude that, the difference of (wc − woppo) is
the accurate classifier gradient, while avoiding the use of a classifier thanks to
surprising properties in the well-organized W space. On the other hand, classifier-
free guidance in DPMs increases ∇x log p(c|x) in Eq. (6) by interpolation with
∇xt

log p(xt|c)−∇xt
log p(xt), based on the following equality:

∇xt log p(xt|c) = − 1

σt
ϵθ(xt, t, c), (12)

∇xt
log p(xt) = − 1

σt
ϵθ(xt, t), (13)

in which xt = αtx+σtϵ with αt/σt the signal-to-noise ratio, and ϵθ the ground-
truth noise prediction DPM. However, the implementation of classifier-free guid-
ance in DPMs employs two evaluations of ϵθ at each single denoising step,
doubling the time cost during inference. As a comparison, GANdance barely slow
down the inference speed because of light-weight Gmap module.
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Table 1: Quantitative results of the conditional generation using Aurora [64] on
ImageNet 64 x 64 dataset [7]. We calculate the FID score by drawing 50K samples with
guidance strength λ ∈ {1.1, 1.2, 1.3} with different sizes of the opposite condition set
C. The values in each cell represent the FID score relative to increasing λ.

Metric |C| = 10 |C| = 100 |C| = 500 |C| = 1000

FID 7.16/6.43/6.20 7.07/6.27/6.17 6.98/6.16/6.07 6.92/6.15/6.06

4 Experiments

4.1 Experimental Setups

Datasets and baselines. We apply the proposed GANdance to previous seminal
conditional GANs, including StyleGAN2 [26], BigGAN [4], and Aurora [64]. We
train all three models on the ImageNet dataset [7] with different resolutions,
i.e., we introduce both 128x128 and 64x64 resolutions to StyleGAN, while using
128x128 and 64x64 on BigGAN and Aurora, respectively.
Evaluation metrics. We draw 50,000 samples for Fréchet Inception Distance
(FID) [13] to evaluate the fidelity of the synthesized images. In addition, we
use Improved Precision and Recall [28] to separately measure sample fidelity
(Precision) and diversity (Recall).
Implementation details. We train GANdance using PyTorch [35] with NVIDIA
Tesla A100 GPUs. We use the third-party implementation of StyleGAN21 [26]
under Hammer [47] and officially implemented BigGAN2 [4] and Aurora3 [64].

4.2 Results of Training-Free GANdance

Recall that we introduce the training-free GANdance by averaging all potential
conditions over a randomly sampled opposite condition set. Tab. 1 shows the
effectiveness of our method, and we surprisingly observe that the performance
degradation is inconspicuous with even a small opposite condition set.

4.3 Results of Learning-Based GANdance

Qualitative results. We show some visualization results in Figs. 2 and 3, by
introducing learning-based guidance, our method has demonstrated good perfor-
mance on both the 64-resolution and 128-resolution ImageNet datasets. We also
show some visualization results in Fig. 5, in the first two rows, we see given "suit"
and "trench coat" as class labels, original conditional generation can only output
such bad cases. However, while our approach is applied and the guidance strength
is gradually increased, the image quality improved significantly. Especially, in the
case of "suit", guided sampling leads the model to the correct data distribution
1 https://github.com/bytedance/Hammer
2 https://github.com/ajbrock/BigGAN-PyTorch
3 https://github.com/zhujiapeng/Aurora
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Fig. 2: Diverse results generated by learning-based GANdance upon Aurora [64] on
ImageNet 64x64 dataset [7]. We randomly sample eight global latent codes z for each
label condition c, demonstrated in each row.

Fig. 3: Diverse results generated by learning-based GANdance upon BigGAN [4] on
ImageNet 128x128 dataset [7]. We randomly sample eight global latent codes z for each
label condition c, demonstrated in each row.
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Table 2: Sample quality on ImageNet [7] with 64 x 64 and 128 x 128 resolutions.
†Methods that utilize distillation techniques. ‡Methods that are trained by ourselves
with official implementation. ∗Methods that are finetuned by ourselves with official
implementation using GANdance. For clearer demonstration, one-step approaches are
highlighted by gray color. Number of model parameters is also reported except for
methods that utilize distillation techniques for more comprehensive comparison.

METHOD # Parameter NFE (↓) FID (↓) Precision (↑) Recall (↑)
ImageNet 64x64

PD† [42] – 2 8.95 0.63 0.65
CD† [53] – 2 4.70 0.69 0.64
PD† [42] – 1 15.39 0.59 0.62
CD† [53] – 1 6.20 0.68 0.63
ADM [8] 296M 250 2.07 0.74 0.63
EDM [22] 296M 79 2.44 0.71 0.67
DDIM [51] 296M 50 13.70 0.65 0.56
DPM-Solver [31] 296M 10 6.61 0.64 0.65
CT [53] 296M 2 11.10 0.69 0.56
CT [53] 296M 1 13.00 0.71 0.47
iCT [52] 269M 1 4.02 0.70 0.63
StyleGAN2‡ [26] 25M 1 21.32 0.42 0.36
StyleGAN2+GANdance 25M 1 17.80 0.58 0.54
Aurora‡ [64] 203M 1 8.87 0.41 0.48
Aurora+GANdance 203M 1 4.37 0.73 0.53
ImageNet 128x128
ADM [8] 422M 250 5.91 0.70 0.65
DDIM [51] 422M 50 10.03 0.65 0.64
DPM-Solver [31] 422M 10 15.59 0.58 0.67
StyleGAN2‡ [26] 28M 1 25.39 0.52 0.51
StyleGAN2+GANdance 28M 1 19.63 0.59 0.55
BigGAN‡ [4] 70M 1 10.76 0.73 0.29
BigGAN+GANdance ∗ 70M 1 9.07 0.75 0.32

from a wrong class. In the third and fourth rows, we can also observe that our
method allows Aurora to generate correct data distribution according to the
given category and improves the generation quality.
Quantitative results. Besides the exhibited qualitative results, we also com-
pare quantitatively between baseline and GANdance-improving version on various
state-of-the-art conditional GANs. In Tab. 2, we report the evaluation results
with the number of model parameters on ImageNet for a more comprehensive
comparison. We can tell that GANdance significantly facilitates the fidelity on
the conditional generation task. The dramatic and steady improvement of the
reported FID score across all models and datasets strongly confirms the correct-
ness and effectiveness of our theory. It is also noteworthy that the utilization
of GANdance on Aurora achieves superior generation performance compared to
well-known Consistency Models (Consistency Distillation, CD) [53] even with
NFE = 2, appearing comparable with state-of-the-art iCT [52]. In addition, to
verify that our method is compatible with the truncation trick, we use these
two methods to sample the model obtained by a learning-based GANdance. The
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Table 3: Comparison Results of combining our method with truncation trick. We
sample and calculate FID according to different parameter settings with a pre-trained
Aurora on ImageNet 64 x 64. Each column increases the truncation strength ψ from
top to bottom, and each row increases the guidance strength λ from left to right.

FID ↓ λ = 1.0 λ = 1.1 λ = 1.2 λ = 1.3 λ = 1.4

ψ = 1.0 6.62 5.26 (-1.07) 4.61 (-2.01) 4.48 (-2.14) 4.53 (-2.09)

ψ = 0.9 5.55 (-1.07) 4.61 (-2.01) 4.13 (-2.49) 4.07 (-2.55) 4.21 (-2.41)

ψ = 0.8 5.22 (-1.40) 4.47 (-2.15) 4.33 (-2.29) 4.32 (-2.30) 4.55 (-2.07)

(a) (b) 

Fig. 4: Quantitative comparison measured by log FID (↓) of layer-wise guidance
under different strength using Aurora [64] trained on ImageNet 64 x 64 [7]. (a) Applying
guidance on each group of layers in the mapping network of Aurora. (b) Applying
guidance on the first several groups of layers in the mapping network of Aurora.

results in Tab. 3 show that compared to the truncation trick, our method can
significantly improve sample fidelity, and combining the two methods can obtain
a more satisfactory result (i.e., with FID 4.07).
Computational cost comparison. As one of the representative one-step gen-
eration paradigms, CD [53] distills the intricate knowledge to a new DPM model.
Despite achieving respectable performance, the distillation process can be ex-
tremely computationally expensive. As reported in [53], CD involves 64 A100
GPUs for distillation with 600k iterations. As a comparison, training Aurora [64]
from scratch with GANdance needs only 16 A100 GPUs and less than 300k
iterations, even surpassing the performance of CD.

4.4 Results on Layer-Wise Guidance

Since GAN itself has a well-disentangled latent space, we apply our method
to different parts of W space and analyze the results. We first apply guidance
on each group of layers of Aurora, where the output features of layers in the
same group have the same resolution. As shown in Fig. 4a, we see that the
performance of the model applied guidance among all layers drops quickly when
the guidance strength is larger than 1.3. The same phenomenon occurs in those
models that applied guidance in 5, 6 (means 32x32 resolution) or 7 (means 64x64



Exploring Guided Sampling of Conditional GANs 13

Scale=1.10No Guidance Scale=1.4Scale=1.15 Scale=1.2 Scale=1.25 Scale=1.3 Scale=1.35

Fig. 5: Qualitative Results of the effect of different guidance scales. The leftmost
column in the figure is the result of direct conditional generation by the model without
any guidance techniques. The conditions given from top to bottom are: “suit”, “trench
coat”, “teddy bear” and “American egret”. The right part of the figure is the result of
sampling with increasing guidance scale.

resolution). In contrast, increasing the guidance strength at the network level
below 16x16 resolution has excellent performance. Recall that the channels of w
controlling front layers (low resolution) of G are mainly responsible for high-level
semantic information. The class label is also high-level semantic information for
the picture itself. This also explains why guidance works well at small resolutions,
while excessive guidance will cause network performance to collapse at large
resolutions. The same phenomenon is also reflected in the experimental results
of Fig. 4b. When we only operate at layers below 16x16 resolution, even if the
guidance scale exceeds 1.5, the network performance still does not collapse.

4.5 Ablation Study

Guidance scale. Intuitively, the guidance strength λ is very important for
GANdance. In more detail, small λ weakens the effectiveness of guidance, suggest-
ing inconspicuous improvement. However, too large λ may drift the latent codes
outside the reasonable region, harming the generation performance contrarily.
We conduct a comprehensive ablation study to convey a direct and clear picture
of the potential interval of guidance strength. As demonstrated in Fig. 6, the
performance trend is consistent with the conclusion above.
Probability. Recall that in Sec. 3.3, we theoretically analyze the probability of
resetting the condition as empty will influence the performance of the underlying
GANs. As reported in Fig. 6, too large a probability will weaken the model
performance. 0.1-0.2 is a suitable range.
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(a) (b) 

Fig. 6: Quantitative comparison of conditional generation performance of utilizing
different probability to reset the condition to the newly added one using (a) Aurora [64]
trained on ImageNet 64x64 dataset [7]; (b) BigGAN [4] trained on ImageNet 128x128
dataset [7]. We plot the FID score under different probability settings shown in different
colors, in which the horizontal axis represents the guiding scale.

4.6 Discussion

It is widely recognized that GANs demonstrate poor capacity for handling multi-
modal distribution and conditional generation, leaving GANs lacking further
research such as text-to-image synthesis. Therefore, we believe our GANdance
could inspire more findings and further encourage the development of a powerful
GAN paradigm. Despite the great success of facilitating the fidelity of conditional
generation, our proposed algorithm has several potential limitations. As a sup-
plemental guidance, its efficacy depends highly on the strength λ. Furthermore,
the probability of resetting the condition to the newly added empty one may
influence the stability of native GANs. Although we conduct extensive and
convincing ablation studies, the optimal strategy is still unexplored. Therefore,
determining an adequate guidance strength and resetting probability according
to different model settings and data domains will be an interesting.

5 Conclusion

In this paper, we introduce the guided sampling algorithm to GANs by delving
into the background Bayesian foundation of classifier guidance. Drawing lessons
from the well-organized latent space, we first point out the training-free version
of GANdance, which estimates the joint distribution to provide effective classifier
guidance in a plug-in fashion, avoiding the involvement of a classifier. This easy
implementation brings dramatic performance improvement, barely increasing
the inference time. By leveraging an empty condition attached with the entire
dataset for GANs, we then propose a learning-based variant of GANdance to
better approximate the distribution of the entire dataset, leading to further im-
provement. We conduct comprehensive experiments to demonstrate the efficacy
of our method on a variety of baseline models.
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