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This appendix provides several additional experiments (Sec. A), more qualitative
results (Sec. B), model implementation details (Sec. C), evaluations of inference time
(Sec. D), protocol for the motion conversation evaluation (Sec. E), details of motion
representations (Sec. F), metric definitions (Sec. G).

A Additional Experiments

We conducted a comprehensive series of experiments to evaluate the efficacy of the pro-
posed MotionChain models further. Specifically, we evaluate each specific comparison
on text-to-motion (Sec. A.1), motion-to-text (Sec. A.2), and motion prediction (Sec. A.3)
on the HumnaML3D [6] dataset. Additionally, we present an ablation study focusing on
the effectiveness of our motion tokenizer (Sec. A.5) and the integration of motion tokens
within the language model (Sec. A.6).

A.1 Comparisons on Text-to-Motion

The text-to-motion task showcases our MotionGPT model’s capability in generating
human-like movements based on textual inputs. Evaluations were performed on Mo-
tionChain against current state-of-the-art methods [6, 7, 10, 32, 34, 36], on the Hu-
manML3D [6] dataset according to established metrics [6]. The evaluation results,
featuring a 95% confidence interval from 20 runs, largely draw from data reported
in the cited works. The comparative outcomes, summarized in Tab. 5, demonstrating
MotionChain’s competitive performance across numerous metrics.

A.2 Comparisons on Motion-to-Text

In the motion-to-text task, the goal is to generate descriptive text based on sequences of
human motion. We evaluate the proposed MotionChain, contrasting it with TM2T [7] and
MotionGPT [10] on the HumanML3D dataset and adhering to the evaluation metrics used
in [7, 10]. Following [10], we leverages the original ground truth texts for evaluation,
ensuring a more comprehensive assessment . Assessments in Tab. 6 demonstrate that
MotionChain outperforms the recent methods in generating text descriptions of human
motions on most benchmarks.

*Work done while Biao Jiang was a Research Intern with Tencent.
†Project lead.
‡Corresponding author.
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Table 5: Comparison of text-to-motion on HumanML3D [6]. The empty MModality indicates Real
motion is deterministic. Pre-trained and Fine-tuned indicate uniform motion-language pre-training
and specific fine-tuning on this task. The arrows (→) indicate that closer to Real is desirable. Bold
and underline indicate the best and the second best result on text-to-motion task.

Methods
RPrecision↑

FID↓ MMDist↓ Diversity→ MModality↑
Top1 Top2 Top3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

TM2T [7] 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076 2.424±.093

T2M [6] 0.457±.002 0.639±.003 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

MotionDiffuse [37] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

MDM [32] 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MLD [34] 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

T2M-GPT [36] 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

MotionGPT [10] 0.492±.003 0.681±.003 0.778±.002 0.232±.008 3.096±.008 9.528±.071 2.008±.084

MotionChain 0.504±.003 0.695±.003 0.790±.003 0.248±.009 3.033±.010 9.470±.075 1.715±.066

Table 6: Comparison of motion captioning on HumanML3D [6]. The evaluation metrics follow [7],
while we use the ground truth texts without pre-processing for linguistic metrics calculation. Bold
indicate the best.

Methods Lengthavg↑ Bleu@1↑ Bleu@4↑ Rouge↑ Cider↑ BertScore↑

Real 12.75 - - - - -

TM2T [7] 10.67 48.9 7.00 38.1 16.8 32.2
MotionGPT [10] 13.04 48.2 12.47 37.4 29.2 32.4

MotionChain 12.37 48.1 12.56 39.9 33.7 36.9

A.3 Comparisons on Motion Completion.

In accordance with MotionGPT [10], we consider motion prediction as a collective task
referred to as general motion completion. To assess the motion completion capability of
MotionChain, we utilize a subset of the AMASS dataset [16], which consists solely of
motion data. For the motion prediction task, we use only the initial 20% of the motion
sequence as conditions. We evaluate MotionChain using the identical settings as outlined
in [10]. The motion completion results of MotionChain, presented in Table 7, indicate
that MotionChain achieves lower values in terms of ADE and FDE metrics. This implies
that the mean and last-frame L2 distance between the ground truth and predicted motion
are closer.

A.4 Evaluation on Multi-turn performance.

We evaluated performance as the number of motions and conversation turns increased, as
shown in Fig. 5. (a) We split the GT motions into N equal-length sequences and had the
models generate N times. (b) We assessed visual conditioned generation performance in
different conversation rounds.



MotionChain 3

Table 7: Comparison of motion composition on HumanML3D. FID indicates motion quality and
Diversity (DIV) for motion diversity within each condition. ADE and FDE are joints distance
between generation and ground truth.

Methods
Motion Prediction Motion In-between

FID ↓ Diversity↑ ADE↓ FDE↓ FID ↓ Diversity↑ ADE↓
Real 0.002 9.503 - - 0.002 9.503 -

MDM [32]M 6.031 7.813 5.446 8.561 2.698 8.420 3.787
T2M-GPT [36] 2.056 8.635 6.161 8.302 - - -
MotionGPT [10] 0.905 8.972 4.745 6.040 0.214 9.560 3.762
MoMask [5] 2.546 9.044 3.514 5.079 0.548 9.691 2.026

MotionChain - small 1.607 8.172 5.162 6.859 0.634 9.099 3.514
MotionChain - base 1.053 8.802 4.388 5.401 0.325 8.821 2.939
MotionChain - large 1.004 9.107 3.437 5.213 0.239 8.853 2.624
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Fig. 5: Visualization of performance changes.

A.5 Ablation on Motion Tokenizer.

we conducted an ablation study on the motion tokenizer V of the MotionChain model,
focusing specifically on the impact of varying the size K and dimension d of motion
codebooks, and residual quantizer layers Q. Additionally, we benchmarked our VQ-VAE
implementation against previous work [21, 24, 34], as shown in Tab. 8. This comparative
analysis underscored the better performance of our VQ-VAE approach in terms of motion
reconstruction accuracy. Through this comprehensive ablation study, in addition to the
length limit of T5 series models, we thus identified parameters for the majority of our
experiments as Q = 4,K = 512, d = 1024.

A.6 Ablation on Motion Tokens.

Subsequent to our analysis of motion codebooks, we shift focus to the strategy of sharing
motion vocabularies Vm within the language model backbone. Specifically, we aim to
explore the differences between sharing motion tokens across different quantization
layers in the language model (LM) and not sharing them. For the LM codebooks, we
design a baseline where motion tokens from different layers are shared, resulting in
Vm newly added tokens. In another setting, where tokens are not shared, this results in
Vm ×Q newly added tokens. All other settings, such as the motion tokenizer, are kept
the same. Our experiment shown in Tab. 9, grounded in the text-to-motion experiments
conducted on the HumanML3D [6] dataset, reveals that the best performance is achieved
when motion codes are not shared across the language model.
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Table 8: Evaluation of our motion tokenizer on the motion part of HumanML3D [6] dataset. We
follow MLD [34] to evaluate our VQ-VAE model V: MPJPE and PAMPJPE are measured in
millimeter. We evaluate FID and Diversity the same as Tab. 3. The baselines of VPoser-t [21] and
ACTOR [24] are borrowed from MLD. K indicates the codebook size, d indicates the codebook
dimension , Q indicates the Residual-VQ layers.

Method
Reconstruction

MPJPE↓ PAMPJPE↓ FID↓ DIV→

Real - - 0.002 9.503

VPoser-t [21] 75.6 48.6 1.430 8.336
ACTOR [24] 65.3 41.0 0.341 9.569
MLD-1 [34] 54.4 41.6 0.247 9.630
MotionGPT [10] 55.8 40.1 0.067 9.675

MotionChain 63.1 43.4 0.014 9.157

Q = 4,K = 128, d = 512 71.8 51.2 0.037 9.098
Q = 4,K = 256, d = 512 70.4 48.5 0.051 9.004
Q = 4,K = 512, d = 512 69.5 46.5 0.025 9.015
Q = 4,K = 1024, d = 512 65.9 43.9 0.041 9.310

Q = 2,K = 512, d = 512 79.7 56.9 0.081 9.162
Q = 4,K = 512, d = 512 69.5 46.5 0.025 9.015
Q = 8,K = 512, d = 512 49.7 38.6 0.025 9.213
Q = 16,K = 512, d = 512 48.4 38.4 0.026 9.075

Q = 4,K = 512, d = 128 114.5 79.7 1.698 8.344
Q = 4,K = 512, d = 256 83.9 59.7 0.560 8.782
Q = 4,K = 512, d = 512 69.5 46.5 0.025 9.015
Q = 4,K = 512, d = 1024 63.1 43.4 0.014 9.157

Table 9: Comparison of text-to-motion on HumanML3D [6]. The empty MModality indicates
Real motion is deterministic. Shared indicate motion tokens from different layers are shared in the
language model (LM), resulting in Vm newly added tokens. Independent indicates tokens are not
shared which results in Vm ×Q newly added tokens. The arrows (→) indicate that closer to Real
is desirable. Bold and underline indicate the best and the second best result on text-to-motion task.

Methods Motion Token Numbers
RPrecision↑

FID↓ MMDist↓ Diversity→ MModality↑
Top1 Top2 Top3

Real - 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Shared Vm 0.496±.003 0.686±.003 0.784±.002 0.291±.012 3.067±.011 9.394±.075 2.072±.080

Independent Vm ×Q 0.504±.003 0.695±.003 0.790±.003 0.248±.009 3.033±.010 9.470±.075 1.715±.066
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B Qualitative Results

We visualize our result gallery on motion conversations (cf. Fig. 6) and some qualitative
results on the comparison of text-to-motion (cf. Fig. 7) and motion reasoning (cf.
Fig. 8).

Generate motion starting with the 
similar pose in image.

Predict the next possible motion after and show me.

What is the person in the motion doing?

The person is walking slowly while looking at the ground, maintaining a bent over 
posture as if sneaking.

What is the person looking for?

It is difficult to say exactly what the person is looking for, but it could be a tool or 
equipment related to their job.

What may the person do after bending over?

It is unclear what the person does after bending over. However, they could continue 
with their task or move on to something else entirely.

Is there any equipment or tools used during this motion?

No, there are no equipment or tools used during this motion. It is a simple body 
movement.
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Generate motion starting with the 
similar pose in image.

Predict the next possible motion after and show me.
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Continue from previous motion

Then the person walks and steps over something.

Continue from previous motion

After that jogs back and forth across the floor before returning to their 
original position.

Continue from previous motion

Finally the man walks in a s-shape.

Continue from previous motion

Fig. 6: The gallery showcases the results of our MotionChain model. The supervision of Motion-
Chain is based on our conversational motion-language dataset (see Appendix E), which builds
upon previous motion datasets [6, 27]. For a more dynamic visualization, we recommend referring
to our supplemental video.



MotionChain 7

MDM

a man starts off in an up left position with both arms extended out by his sides, he then 
brings his arms down to his body and claps his hands together. after this he walks down 
and to the right where he proceeds to sit on a seat.

Real

T2M-GPT

Human

Motion
Chain

Human

MDM

Real

T2M-GPT

Motion
Chain

A person is walking forwards, but stumbles and steps back, then carries on forward.

A man walks forward in a snake like pattern.Human

MDM

Real

T2M-GPT

Motion
Chain

Fig. 7: Comparison of text-driven motion generation methods on the HumanML3D dataset [6].
In the visualizations, misaligned motions are highlighted with red words and boxes, while the
characters are color-coded from light to dark to indicate the progression of time.
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Motion
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What is the difference between a professional golfer's swing
and an amateur golfer's swing?

A professional golfer's swing will be more efficient and well-coordinated, with less
wasted motion and more power and accuracy. An amateur golfer's swing will be
more sloppy and uncontrolled, with more swinging arms and a more awkward gait.

GT Professional golfers typically have more consistent swings
and are able to hit the ball with greater accuracy and power.
They also tend to have more refined techniques and spend
more time practicing their swing. Amateur golfers may have
less consistent swings and may struggle with hitting the ball
accurately or with enough force.

Flan-T5-xl The difference between a professional golfer's swing and an amateur golfer's swing is 
the amount of force that is applied to the club.

Llama-7b The main difference between a professional golfer's swing and an amateur golfer's
swing is the level of coordination, control, and power generated throughout the
swing. Professional golfers typically have a more refined and consistent swing, with
a smoother transition from backswing to downswing, better ball positioning, and
more efficient use of their body weight and muscles. This results in faster swing
speeds, more accurate ball striking, and longer drives. In contrast, amateur golfers
may have a less controlled and less efficient swing, with a slower swing speed and
more inconsistent ball striking.

Vicuna-7b The difference between a professional golfer's swing and an amateur golfer's swing
is that the professional golfer's swing is more consistent, fluid, and powerful, while
the amateur golfer's swing is often less controlled and lacks the same level of power
and precision. Professional golfers have typically spent more time practicing and
honing their swing, which allows them to execute it with greater accuracy and
control. Additionally, professional golfers often have a more efficient and effective
technique, which allows them to generate more power and accuracy with less effort.

Human

Motion
Chain

GT

Flan-T5-xl

Llama-7b

Vicuna-7b

What is happening in the motion? 

In the motion, a person is standing with their arms out from 
their sides, then they lower their arms and with their right hand 
swipe in front of them, left to right, up to down, then out to in.

The person is swinging a golf club. 

Based on the description provided, it appears that the person is performing a
golf swing motion. In a golf swing, the person stands with their feet shoulder-
width apart, bends slightly forward at the waist, and holds onto something with
both hands. They then swing their arms back and forth, transferring their weight
from their back foot to their front foot as they do so. The goal of the golf swing
is to generate enough force and accuracy to hit the ball with the club.

Based on the given human motion, it appears that the person is practicing a golf
swing. The bent posture and the holding of something with both hands suggest
that the person is gripping a golf club, and the swinging of the arms is likely
intended to mimic the motion of hitting a golf ball.

A person is swinging their arms as if they were hitting a golf ball.
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GT

Flan-T5-xl

Llama-7b

Vicuna-7b

How does the person's body position affect the swing?

The person's body position affects the swing by determining
the direction and force of the swing. For example, if the person
is standing with their feet shoulder-width apart, they will swing
the golf club from left to right, while if they are standing with
their feet shoulder-width apart, they will swing the golf club
from right to left.

The person's body position, including their stance and
posture, can affect the direction and power of the swing.
Proper body positioning can help the person hit the ball
more accurately and with greater force.

The person's body position affects the swing of the golf club in several ways.
Firstly, the person's stance, which is the position of their feet and legs, can affect
the power and accuracy of the swing. A wider stance can provide more stability
and power, while a narrower stance can increase control and accuracy.

Secondly, the person's grip on the golf club can also affect the swing. A loose grip
can allow for more control and accuracy, while a tight grip can increase power
but reduce control.

Thirdly, the person's posture and alignment can also affect the swing. Good
posture and alignment can help the person maintain control and accuracy
throughout the swing, while poor posture and alignment can lead to
inconsistencies and errors.

Overall, the person's body position plays a crucial role in the swing of the golf
club, and proper technique and practice can help the person achieve the desired
body position for a successful swing.

The person's body position significantly affects the swing in the following ways:

1. Posture: A stable and balanced posture is essential for generating power and
control in the swing. A professional golfer will typically maintain a neutral
spine angle, with a slight forward tilt at address, while an amateur may lean
back or forth excessively.

2. Clubhead speed: The position of the body can influence the speed at which
the clubhead travels. A more compact swing with a shorter backswing and
longer follow-through can generate faster clubhead speed, while an over-the-
top swing may result in slower speeds.

3. Ball position: The position of the body can affect the positioning of the ball in
the stance. A professional golfer will typically position the ball slightly
forward of the center of their stance, while an amateur may put the ball too
far back or too far forward.

4. Clubface alignment: The position of the body can influence the alignment of
the clubface at address. A professional golfer will typically align the clubface
parallel to the target line, while an amateur may position the clubface closed
or open.

In summary, the person's body position in the swing has a significant impact on
the swing's power, control, and accuracy.

The person's body position affects the swing by determining the angle of the swing.
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Flan-T5-xl

Llama-7b

Vicuna-7b
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Vicuna-7b

Is there any equipment or tools used in this motion?

No, there are no equipment or tools used in this motion. 
It is a simple body movement.

No, this motion does not require any equipment or tools.

What might happen after this motion?

Again, it's hard to say without more context. The person
could continue moving in the same direction, or they
might change direction again.

It depends on the context, but the person could continue 
moving forward or change direction. 

No, there is no equipment or tools used in this motion.

It is not possible for me to accurately answer your question without more
context. The motion you describe is a simple action, but it could have many
different possible outcomes depending on the situation and the person
performing the motion. For example, the person might continue to slide
forward diagonally with their right leg, or they might stop or change direction.
Without more information, it is not possible to accurately predict what might
happen after this motion.

Based on the human motion provided, it is likely that the person will continue
to move forward after the diagonal slide with their right leg. They may:

A) Take a step forward with their left foot to maintain their forward
momentum.

B) Change direction and turn to the right or left.

C) Come to a stop or slow down.

D) Perform another motion, such as bending or stretching.

You might be able to get up.

No, there is no equipment or tools used in this motion. The person is simply 
sliding forward diagonally with their right leg.

Yes, there is one piece of equipment or tool used in the motion of \"person 
slides forward diagonally with right leg\":\n\n* Skates or ice skates

GT

GT
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Llama-7b
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Is there any specific type of footwear that would be best 
for performing this motion.

It's possible that this motion could be appropriate for someone
who needs to perform this motion that requires a lot of balance,
such as law enforcement or military. However, it would depend
on the specific type of dance or athletic shoes.

It would be beneficial for the person to wear shoes with good 
traction and support to prevent slipping or injury.

There is no specific type of footwear that is best for performing the motion of "a
person making a step to the right." The type of footwear that is best for this
motion would depend on various factors such as the surface on which the person
is stepping, the weight and size of the person, and the purpose of the motion.
For example, if the person is stepping on a rough or uneven surface, they may
want to wear shoes with good traction and support. If the person is stepping for
exercise or sports, they may want to wear shoes that provide good cushioning
and support. Ultimately, the best type of footwear for performing the motion of
"a person making a step to the right" would depend on the specific
circumstances and needs of the person.

Yes, the type of footwear that would be best for performing the motion of taking
a step to the right would depend on the specific context and the individual's
footwear needs. However, in general, a person may find it more comfortable and
supportive to perform this motion in footwear with the following characteristics:

1. Good arch support: A step to the right requires the foot to absorb the impact
of the step and transfer the weight to the right foot. Footwear with good arch
support can help reduce the risk of foot fatigue and injury.

2. Wide toe box: A wide toe box can provide adequate room for the toes to move
and flex, allowing the foot to move naturally during the step.

3. Traction: The footwear should have good traction on the ground to ensure
stability and balance during the step. In summary, the best footwear for
performing the motion of taking a step to the right would depend on the
individual's foot shape, the surface they are stepping on, and the purpose of the
step.

You might be able to get up.

Fig. 8: Comparison on motion reasoning question-answer. The MotionChain is trained on our
conversation dataset based on HumanML3D [6]. The results demonstrate that our MotionChain
shows promising text and motion understanding.

C Implementation Details

We provide detailed explanations regarding the implementation details of motion com-
position ( Sec. C.1), and the image tokenizer ( Sec. C.2).

C.1 Details of Temporal Motion Compoistion

To investigate the temporal motion composition abilities of the MotionChain model, we
conduct a pair actions composition experiment on the BABEL dataset [27], following
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the methodology of TEACH [2]. For simplicity, we consider pairs of actions, but it is
important to note that MotionChain can handle sequences of actions/motions of any
length. During training, in cases where there is segment overlap, we evenly distribute the
overlapping frames between the two segments that form the pair. It is worth mentioning
that the majority of the pair data (approximately 70 % ) is generated through overlapping
segments rather than transitions. In the event of a transition, we concatenate the transition
with the second segment. Instead of training a MotionChain model from scratch on
the BABEL dataset [27], we utilize a pre-trained MotionChain model obtained from
HumanML3D [6]. Subsequently, we convert the motion data in the BABEL dataset [27]
into the format used in HumanML3D [6], and then fine-tune the MotionChain model on
the BABEL dataset [27] using prompts that incorporate memory, as demonstrated below:

Xsystem-message
USER: Please assume the role of an Human Motion Language translator. I will use
English, you should translate it, and respond in Human Motion Language. My first
request is "<label1>"
ASSISTANT: <motion1>
USER: Please assume the role of a Human Motion Language translator. I will use English,
you should translate it, and respond in Human Motion Language. In the last round I
asked you to translate "<label1>", and your answer is <motion1>. Now my second
request is "<label2>"
ASSISTANT: <motion2>

For comparison with TEACH [2], we employed the TEACH model that was pre-trained
on the BABEL dataset [27] to generate motion samples 20 times on the validation set.
Subsequently, we converted the generated motion, originally in SMPL-H format [14],
into the HumanML3D format.

We also examine the influence of various motion composition mechanisms on the
generated complete motion sequences, as presented in Table 3. The "Independent" mech-
anism refers to the direct concatenation of independently generated motion sequences
without any additional processing. On the other hand, the "Tokens-joint" mechanism
involves concatenating motion tokens and decoding them using the VQ decoder, which
results in a more coherent and natural sequence of movements.

C.2 Details of Image Tokenzier
We explore three different architectural designs for image tokenizers:

(a) MLP: In this design, we connect the frozen vision encoder CLIP ViT-L/14 [28]
to the language model using a linear layer. The output of the vision encoder is projected
to the same dimension as the word embeddings of the language model and is inserted
before the text or motion token embeddings.

(b) Perceiver: This design incorporates a perceiver module with a similar architecture
to Flamingo [1]. The perceiver module includes a transformer that receives a predefined
number of latent input queries. These queries are then projected to the same dimension
as the word embeddings of the language model and are inserted before the text or motion
token embeddings. Details of architecture is presented in Tab. 10.

(c) Q-former: In this design, we directly utilize the pre-trained Q-former from BLIP-
2 [12] to align visual inputs with the language model. The Q-former is frozen throughout
the entire training process.
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Table 10: Architecture of our vision perceiver

(0): PerceiverResampler(
(layers): ModuleList(

(0-5): 6 x ModuleList(
(0): PerceiverAttention(

(norm_media): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(norm_latents): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(to_q): Linear(in_features=1024, out_features=512, bias=False)
(to_kv): Linear(in_features=1024, out_features=1024, bias=False)
(to_out): Linear(in_features=512, out_features=1024, bias=False) )

(1): Sequential(
(0): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(1): Linear(in_features=1024, out_features=4096, bias=False)
(2): GELU(approximate=’none’)
(3): Linear(in_features=4096, out_features=1024, bias=False) ) ) )

(norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) )
(1): Linear(in_features=1024, out_features=768, bias=True)

C.3 Details of Motion Similarities

As mentioned in Sec. 3.1, we employ TMR [25] for categorizing motions from the
dataset into varying similarity levels. Here we define motion similarities sij > 0.8 are
high and 0.6 < sij < 0.8 are medium

C.4 Details of Model Architecture

We provide model details in Fig. 9.

D Inference time

We conducted a study to evaluate the inference time of our MotionChain model, which
utilizes an auto-regressive approach for motion generation. To assess the time costs, we
measured the Frames Per Second (FPS) on a single Tesla V100 GPU with a batch size of
one. It is important to note that the frame generation rate of MotionChain, even without
specific engineering optimizations, surpasses the ground-truth frame rate in text-motion
pair datasets [6, 13, 27], highlighting its capability to support real-time motion animation
applications.

E Evaluation Protocols on the Motion Conversation.

We propose a protocol to evaluate our Multi-turn Multi-modal model, MotionChain,
on various motion-language generation tasks. While MotionGPT [10] utilized previous
text-motion pair datasets [6, 16, 26] to create an instruction motion-language dataset
comprising 14 core tasks with numerous instruction templates, these tasks lack analysis
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Fig. 9: MotionChain base architecture.

Table 11: The inference time costs of text-driven motion generation by evaluating the Frames
Per Second (FPS), which is obtained by averaging the number of frames generated per second.
We present the time costs for various model sizes and observe that, under the same 1 Tesla V100,
smaller model sizes achieve faster FPS.

Models Backbone Parameters FPS

MotionChain-small Flan-T5-small 401 M 136.7
MotionChain-base Flan-T5-Base 573 M 74.99
MotionChain-large Flan-T5-Large 1.1 B 39.18

of human motion and are limited to single-turn generation without contextual memory.
To overcome this limitation, we introduce motion reasoning and motion editing tasks
that leverage contextual information. Initially, we manually provide ChatGPT [18, 19]
with a few examples along with corresponding textual descriptions of the motions in the
datasets, and then we let it generate the motion analysis (refer to Fig. 10). Additionally,
using a pre-trained text-motion retrieval model, TMR [25], we retrieve motions from
the dataset with high and middle similarities. We collect captions for motion pairs with
middle similarity and employ ChatGPT [18, 19] to generate motion editing instructions
that can transform one motion into another. Furthermore, we manually construct highly
similar motion pairs for motion length editing tasks based on their respective lengths. By
randomly combining these single-turn generation tasks, we can create a dialog format.
The resulting tasks, along with diverse prompt instructions, are presented in Tab. 12.
We provide token and round length statistics of proposed multi-turn datasets in Fig. 11.
We will release the pre-processed dataset.



MotionChain 15

Prompt
You are an AI visual assistant, and you are seeing a motion.
What you see are provided with some sentences, describing the same motion you are looking at.
The motion content you are seeing is provided as following:

<Motion_Caption>

Design a conversation between you and a person asking about this motion.
In conversations you should indicate who saids using "User:","AI:" in the begginning but these two words 
do not occur in sentences.
The answers should be in a tone that a AI visual assistant is seeing the motion and answering the 
question.
Ask diverse questions and give corresponding answers, and questions are asking about the content of the 
motion.
Questions the person will ask is related but not limited to following:
1. Asking the possible scenario of the motion happening.
2. Asking about what will happen after the motion or what have happened before the motion.
3. Asking what job the motion subject most likely to do.
4. Asking what tools or equipments are used during the motion, etc.
You also have to take some rigorous logic inference about the motion content and design other reasoning 
questions-answers not limited to above examples.
Questions should not be yes-no questions but wh-questions.
The questions-answers you should design at least 9.
Provide detailed answers when answer questions, for example, give detailed examples or reasoning steps 
to make the content more convincing and well-organized.
It is better to keep the questions concise, but the answers you design is allowed to be longer.

Fig. 10: The dedicated ChatGPT prompt for facilitating the collection of motion question-answer
pairs. Our primary goal was to encompass a wide range of topics, including motion physics and
motion analysis. By utilizing this prompt, our aim was to enable ChatGPT to generate high-quality
questions, thereby making a valuable contribution to the development of a comprehensive motion
question-answer dataset.
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Fig. 11: Statistics of token length and rounds of our dataset.

F Motion Representations

We summarize two kinds of motion representations as follows.
HumanML3D Format [6] introduces a motion representation x1:L that draws

inspiration from motion features in character control [23, 30, 31]. This representation,
which contains redundant information, is well-suited for neural models, particularly
variational autoencoders. Specifically, the i-th pose xi is defined by a tuple consisting of
the root angular velocity ṙa ∈ R along the Y-axis, root linear velocities (ṙx, ṙz ∈ R) on
the XZ-plane, root height ry ∈ R, local joint positions jp ∈ R3Nj , velocities jv ∈ R3Nj ,
and rotations jr ∈ R6Nj in root space. Additionally, it includes binary foot-ground
contact features cf ∈ R4 obtained by thresholding the heel and toe joint velocities. Here,
Nj represents the number of joints, yielding the following representation:

xi = {ṙa, ṙx, ṙz, ry, jp, jv, jr, cf}. (6)

SMPL-based Format [14] is a widely used parametric human model, SMPL [14],
and its variants [22, 29], which propose motion parameters θ and shape parameters β.
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Table 12: A few examples of prompt templates used in our standardized motion conversation
evaluation protocol.

Task Input Output

Text-to-Motion
Show me a sequence of movements that illustrates [caption].

[motion]Demonstrate a motion that symbolizes the input: [caption].
I need a human motion that represents [caption].

Text-to-Motion w/ length
Please generate a motion that is around [frames] frames long for the caption: [caption].

[motion]
Generate a motion that lasts for [seconds] seconds, and captures the essence of [caption].

Motion-Length-Editting
Extend the duration of the motion provided.

[motion]
Reduce the duration of the motion without losing its main characteristics and precision.

Length-to-Motion
I want to see a motion that lasts for [frames] frames.

[motion]
Show me a motion that has a duration of [seconds] seconds.

Radnom Motion
Just show me a moving human.

[motion]
Produce motions that are not planned or choreographed..

Motion-to-Text
Provide a description of the motion shown in [motion] using natural language.

[caption]
Provide a text-based explanation of what is happening in [motion].

Motion-to-Text w/ length
Generate a text summary for the [motion] that takes [frames] seconds to complete.

[caption]
Describe the movement exhibited in [motion] that is shown for a length of [seconds] seconds?

Motion-to-Length
How long does [motion]’s poses last in seconds?? There are [frames] frames in the motion.
Calculate the second duration for [motion]’s body movements in seconds? The motion lasts for [seconds] seconds.

Caption-to-Length
Predict the anticipated frame duration for the motion that corresponds to [caption]? The duration is estimated to be around [frames] frames.
Guess the second count required for the motion represented by [caption]. The motion has a length of [seconds] seconds.

Length-to-Caption
Given the [frames] frames of the motion, what are some possible actions that could be taken?

[caption]
[seconds] is the number of motion seconds, generate the motion description:

Random Caption
Depict a motion as like you have seen it.

[caption]
Describe the motion of someone randomly.

Motion-Reasoning
Can you tell me what muscles are being used during this motion?

This motion primarily targets the quadriceps, hamstrings, glutes,
and core muscles. It also engages the shoulders and upper back
muscles while raising the arms.

What could be the reason for the person not swinging their arms while walking?
There could be various reasons for this, such as the person carrying
something heavy or trying to maintain a certain posture while walking.

The rotation vectors θ ∈ R3×23+3 represent the rotations of joints and the root, while
β represents the weights for linear blended shapes. This representation is commonly
employed in markerless motion capture [3, 9, 11]. By including the global translation r,
the representation is formulated as:

xi = {r, θ, β}. (7)

G Metric Definitions

In the following section, we present additional details regarding the evaluation metrics.
Linguistic Quality. To evaluate motion question-answer tasks, we employ linguistic

metrics that assess the degree of alignment between the generated results and the ground-
truth labels. These metrics include BLUE [20], Rouge citelin2004rouge, Cider [33], and
BertScore [38]. For detailed information, please refer to the respective papers associated
with each metric.

Motion Quality. The Frechet Inception Distance (FID) serves for evaluating the
distribution similarity between generated and real motions. It is calculated using a
suitable feature extractor [6, 8, 24] specific to each dataset. Additionally, we employ
popular metrics in motion capture [3, 11, 17], such as MPJPE and PAMPJPE [4], to
measure global and local errors in millimeters. To assess temporal quality, we utilize
the Acceleration Error (ACCL). Furthermore, in line with previous motion prediction
studies [15, 35, 39], we define the Average Displacement Error (ADE) as the average
L2 distance between the ground truth and predicted motion for the entire sequence. The
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Final Displacement Error (FDE) is calculated as the L2 distance between the ground
truth and predicted motion in the last frame.

Motion Diversity. Following previous studies [7, 8, 32], we employ two metrics,
Diversity (DIV) and MultiModality (MM), to evaluate the variability of motion across the
entire dataset and the diversity of generated motion within each text input, respectively.
To assess Diversity, the generated motions are randomly divided into two equal-sized
subsets, and the Diversity metric is computed as the average distance between the motions
in these subsets. For MultiModality evaluation, a set of text descriptions is randomly
sampled from the available descriptions. Each text description is then replicated m times
for motion generation, and the MultiModality metric is defined as the average distance
between the motions generated from the same text description.

Condition Matching. HumanML3D [6] and TMR [25] provide motion/text feature
extractors that generate geometrically coherent features for aligned text-motion pairs
and vice versa. Within this feature space, we assess the motion-retrieval precision
(R Precision) by combining the generated motion with 31 mismatched motions and
calculating the top-1/2/3 matching accuracy between the text and motion. Additionally,
we measure the Multi-modal Distance (MM Dist), which quantifies the distance between
the generated motions and the corresponding text..

Time Costs. To assess the computational efficiency of our models, particularly the
inference efficiency, we measure the average Frames Per Second (FPS) during motion
generation. Specifically, we calculate the FPS on the test set of HumanML3D [6], with a
batch size of one, while excluding the time required for model and dataset loading.
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