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Abstract. Recent advancements in language models have demonstrated
their adeptness in conducting multi-turn dialogues and retaining conver-
sational context. However, this proficiency remains largely unexplored
in other multimodal generative models, particularly in human motion
models. By integrating multi-turn conversations in controlling continuous
virtual human movements, generative human motion models can achieve
an intuitive and step-by-step process of human task execution for hu-
manoid robotics, game agents, or other embodied systems. In this work,
we present MotionChain, a conversational human motion controller that
generates continuous and long-term human motion through multimodal
prompts. Specifically, MotionChain consists of multi-modal tokenizers
that transform various data types such as text, image, and motion, into
discrete tokens, coupled with a Vision-Motion-aware Language model.
By leveraging large-scale language, vision-language, and vision-motion
data to assist motion-related generation tasks, MotionChain thus com-
prehends each instruction in multi-turn conversation and generates hu-
man motions followed by these prompts. Extensive experiments validate
the efficacy of MotionChain, demonstrating state-of-the-art performance
in conversational motion generation, as well as more intuitive manners
of controlling and interacting with virtual humans.
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1 Introduction

The success of large language models (LLMs) [60, 62, 93, 94, 122] has sparked
significant interest in the development of multi-modal language models. These
models aim to transfer instruction-following and zero-shot abilities to other
modalities tasks, such as image-language models [1,50,107,124], video-language
models [1, 43, 44, 113], and 3D-language models [12, 26, 28, 108]. However, a
comprehensive model that can perceive visual input and generate continuous
motion through multi-turn conversations has not yet been developed. Such a
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Generate motion starting with the 
similar pose in this image.  

What could be the possible 
scenario of this motion?

The man could be practicing
martial arts or defending
himself from an attacker. It is
also possible that he is playing
a sport such as soccer or
football. Or he maybe just kick
something unimportant.

Show me a motion sequence that is 
the reverse of the above one.

Describe this motion for me.

A man is kicking something 
with his left leg.

Continue Continue

Fig. 1: MotionChain can interpret instructions from multi-turn conversations and gen-
erate human motions or textual answers based on text, motion, or image inputs. We
provide the conversation results in image-conditioned motion generation (1st column),
motion reasoning (second column), motion editing (third column), and motion transla-
tion (third column), with each subsequent turn informed by all previous conversations.
Left-to-right represents the temporal order.

multi-modal model would have wide-ranging applications in fields like humanoid
robotics, virtual assistants, game agents and so on.

Previous research on human motion has explored various tasks, including
motion generation [23,32,66,92,102,116], motion captioning [20,24,32], motion
prediction [32, 56, 111, 121], and motion composition [3]. Recent works in text-
to-motion [67,92,102,117] have involved pre-trained language models [16,73] for
motion generation. For instance, TEMOS [67] employs BERT [16] text embed-
dings in an end-to-end transformer architecture, while MDM [92] and MLD [102]
both utilize text embeddings from CLIP [73] during the conditional diffusion pro-
cess. On the other hand, MotionCLIP [91] and TMR [68] focus on modeling the
coupled relationship between motion and text description, and MotionGPT [32]
introduces a motion-language model that represents human motion and language
in one unified vocabulary. However, these above methods treat all tasks as a
one-turn conditioned generation, lacking contextual understanding and multi-
turn continuous generation abilities. Therefore, we construct a Vision-Motion
language model, integrating multi-turn conversations and continuous human mo-
tions.

Two crucial challenges need to be addressed in this conversational motion
generation. The first challenge is to contextually generate human motion in a
continuous manner, resembling the way real humans move. The second challenge
is the scarcity of text-motion paired datasets compared to datasets with pairs
of image-language [11, 81], image-pose [37, 58, 61, 64] and video-motion [4, 5, 8,
30,96]. Fortunately, both human motion and language are sequential and can be
continuously "written". Building upon this observation, we employ the general
vision-language instruction-tuning approach [50, 123] to enable conversational
motion generation and question-answering through multi-modal instructions. By
integrating image, motion, and language data and encoding them into tokens,
the relationship between these three modalities becomes more evident. Therefore,
with the advent of large vision-motion and vision-language data, Vision-Motion-
language pre-training can enhance the performance of motion-related tasks.
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In this study, we introduce MotionChain, a comprehensive framework that in-
tegrates vision, motion, and language. MotionChain leverages large-scale vision-
language data, vision-motion data, and pre-trained language models’ strong lan-
guage generation abilities to assist in motion-related generation tasks. To enable
MotionChain to comprehend and generate human-like motions, we first train
a motion-specific vector quantized variational autoencoder (VQ-VAE) model.
This model constructs a "motion vocabulary" similar to the English word vo-
cabulary and converts raw motion data into a sequence of motion tokens. To
incorporate vision inputs into MotionChain, we then introduce a specialized vi-
sion tokenizer that connects a pre-trained vision encoder to the language model.
This tokenizer converts image data into visual tokens within the language-motion
"words" embedding space. These tokens are then processed by a pre-trained lan-
guage model [14,74,93,94], which learns the relationship between image, motion
and language. To enable conversational generation, we construct a multi-modal
motion conversation dataset based on the existing text-motion dataset [23] and
vision-motion dataset [5]. We then train the language model using our multi-
modal conversation dataset to learn the correlation between the three modalities.
Extensive experiments demonstrate that MotionChain achieves state-of-the-art
performance in multiple motion-related tasks.

We summarize our contributions as follows: (1) We propose MotionChain,
a unified vision-motion-language generative pre-trained model, which performs
conversational generation tasks via multi-modal inputs with language models.
(2) We introduce a motion composition technique, to generate 3D human mo-
tions following the temporal order of instructions. (3) We propose a multi-modal
motion conversation benchmark, wherein MotionChain achieves competitive per-
formance across diverse motion tasks.

2 Related Work

Human Motion Modeling. There have been numerous attempts to model
the relationship between 3D human motion and multiple modalities including
incomplete motion [56, 111, 121], action [3, 25, 40, 66, 99, 102], text [22–24, 32,
55, 67, 82, 92, 117–119], image [19, 21, 33, 114, 115] and video [5, 13, 19, 36, 75].
Text-to-motion is one of the most important motion generation tasks, due to
the user-friendly and convenient language input. MDM [92], MotionDiffuse [117]
and MLD [102] proposes a diffusion-based generative model [27, 77, 85] to gen-
erate motions conditioned on different inputs. TM2T [24] and T2M-GPT [116]
investigate a generative framework based on VQ-VAE [76, 95] and generative
transformer for motion generation. Motion completion task generates motion
conditioning on partial motions, such as classical motion prediction [56,111,121]
or motion in-between [92], which generates the intermediate motion while the
first and last parts are fixed. TEACH [3] proposes a past-conditioned transformer
model that generates motion from a sequence of actions autoregressively. Apart
from motion generation, there is also work investigating other modalities of gen-
eration from motion. Two statistical models [90] and recurrent networks [70,105]
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Please reverse 
the direction.

Generate a 
motion according 
to the <Image>.

What could be the 
possible scenario 
of this motion?

A person raised 
his hand and 
touch 
something.
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motion
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Text Codebook

…

Motion Codebook

…

Visual Embeddings

…

The man could be 
practicing martial arts 
or defending himself 
from an attacker. It is 
also possible that he 

is playing a sport such 
as soccer or football.

Could you  make 
the motion longer?

Fig. 2: Method overview: MotionChain consists of a motion tokenizer VM ( Sec. 3.2),
a vision tokenize VI (r Sec. 3.2) and a vision-motion-aware language model (Sec. 3.3).
By leveraging motion tokens generated by VM, alongside visual language token embed-
dings projected by vision tokenizer VI , and text tokens by text tokenizer, MotionChian
achieves a unified learning paradigm for both motion and linguistic data.

are learned in mapping motions to language. TM2T [24] proposed a new motion
representation that compresses motions into a short sequence of discrete vari-
ables and then uses a neural translation network to build mappings between two
modalities. In contrast to the above methods limited to only several tasks, Mo-
tionGPT [32] treats human motion as a foreign language and leverages language
understanding and zero-shot transfer abilities of pre-trained language models.

Character Control and Animation. Character control involves generat-
ing interactive motion sequences based on user instruction signals. One kind of
approach [38, 59, 79] is to construct a graph representing transitions between
motion clips and plan motion using graph search. Considering the limitations
of these graph-based approaches in coarse discreteness, alternative methods
like frame blending and concatenation [41], low-dimensional latent space learn-
ing [42], motion matching [15] proposed for embedding the task in the feature and
[88] do the similar thing through hierarchical setup. Although the control signals
for motion control and character animation are different from the instructions in
text-to-motion tasks, we still recognize textual commands of conventional human
motion generation as a boost for intuitive character control.

Multi-Modal Language Models. In the field of computer vision, there has
been a recent surge of interest in multi-modal models that can process text along
with other modalities, including images [18, 29, 44, 104], audio [6, 80, 101], and
3D [12,45,54,83,108]. CLIP [73] is an example of such a model, which learns a se-
mantic latent representation that connects images with corresponding language
descriptions. While language models have achieved success in various tasks, the
development of multi-modal language models capable of handling human mo-
tion is still limited. Existing works in computer vision can be broadly categorized
into two classes. The first consists of end-to-end trained models explored sepa-
rately for specific research topics. For example, tasks like vision-language navi-
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The person is walking 
slowly while looking 

at the ground…

TMR

ChatGPT

Dataset High Similarity

Mid Similarity

Reasoning Editing TranslationGeneration
Single-turn Data

Random Sample

Multi-turn Data

Fig. 3: Data collection overview: Our initial step in collecting the motion reasoning
data involves the utilization of human motion captions derived from an existing text-
motion dataset. Subsequent to this, the text-motion retrieval model TMR [68] aids in
the segmentation of motion pairs into categories based on the similarity between them.
With the assistance of ChatGPT, we proceed to craft motion editing task data that
correspond to these categorized similarity levels. Incorporating both motion reasoning
and editing single-turn tasks, as well as the extensive 14 tasks delineated in [32], we
construct a rich multi-modal multi-turn conversation dataset.

gation [2, 7] and Habitat [89] require embodied AI agents to follow natural lan-
guage instructions and take actions to accomplish goals in visual environments.
InstructPix2Pix [7] in image translation enables agents to edit images based on
human instructions. The second involves systems that coordinate various models
using approaches like LangChain or LLMs [51, 62, 103]. Examples of such sys-
tems include Visual ChatGPT [100], X-GPT [125], and MMREACT [110]. While
these methods focus on building instruction-following agents, we aim to develop
an end-to-end trained multimodal model that can perform conversational motion
generation tasks via multi-modal inputs with language models.

3 Methods

To leverage large language data, vision-language data, and vision-motion data
for assisting motion-related tasks, we propose a motion-language-vision frame-
work called MotionChain. The framework, as depicted in Fig. 2, consists of a
multi-modal tokenizer that converts various types of data (text, image, and
motion) into discrete tokens (Sec. 3.2), and a vision-motion-aware Language
model that comprehends information from different modalities and generates
corresponding answers based on input instructions (Sec. 3.3). Additionally, to
simultaneously understand data from multiple modalities, we employ a multi-
stage training strategy (Sec. 3.4) for the training of the multi-modal tokenizer
and the motion-language-vision framework.
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We first introduced the multi-modal tokenizer, which comprises three branches
for processing textual, image, and motion inputs. For textual inputs w1:N = {wi}
of length N that describes a motion-related question or demand, we employ the
SentencePiece model [39] used in previous works [14,74,93,94], which has a vo-
cabulary size of Kt and is trained on a large number of language datasets. The
motion branch consists of a motion encoder EM that encodes a motion sequence
m1:M = {xi} of M frames into L motion tokens z1:L = {zi}, where L = M/l and
l represents the temporal downsampling rate on motion frames. It also includes
a motion decoder DM that can decode motion tokens back to human motion
m̂1:M . The vision branch processes the input image X with a pre-trained CLIP
visual encoder and a learnable linear projection that follows it, converted into
language token embeddings Hq. Given a textual sentence w1:N , a sequence of
motion m1:M , and an image condition X, all encoded as language tokens, our
vision-motion-aware language model is designed to produce an answer compris-
ing L tokens, denoted as x̂1:L = {x̂i}. These output tokens can represent either
motion sequences x̂1:L

m or textual descriptions x̂1:L
t , which integrate both human

motion m̂1:M , and text ŵ1:L within the given context.

3.1 Data Collection

With the emergence of text-conditioned motion generation tasks, datasets like
KIT [69], BABEL [71], HumanML3D [23] and the more recent Motion-X [49]
have been developed. However, these datasets predominantly offer text labels
as simple action phrases or captions. Building upon these foundations, Mo-
tionGPT [32] introduces an instruction-based motion-language dataset that en-
capsulates 14 core tasks, including motion prediction, translation, and editing,
through thousands of instruction templates in a unified format. Despite this
advancement, MotionGPT’s data lack a deep engagement with the nuances of
human motion analysis and are limited to single-turn generation tasks without
incorporating contextual memory. Inspired by the recent success of GPT models
across text-annotation tasks [17], image-annotation tasks [50], 3D-annotation
tasks [28], we propose a data collection methodology integrates the capabili-
ties of existing LLMs like ChatGPT [62], with the text-motion retrieval model
TMR [68] to facilitate motion conversation data collection. In addition to the
14 motion-related tasks in MotionGPT [32], we introduce tasks centered around
motion reasoning and motion editing, leveraging contextual insights for a deeper
motion analysis.

Utilizing ChatGPT [62], we initiate the collection of motion reasoning data
using human motion captions from the text-motion dataset [23], starting with
manually designed example queries that explore the contextual scenarios sur-
rounding motions, possible preceding or succeeding actions, the subjects’ roles,
and the tools or equipment involved, etc. Following this, we employ TMR [68] for
categorizing motions from the dataset into varying similarity levels. For medium-
similarity motion pairs, we utilize ChatGPT [62] to generate motion editing di-
rectives that enable the transformation of one motion to another. For motions of
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high similarity, we manually devise tasks aimed at editing their lengths, further
enriching the dataset’s versatility and analytical scope.

After the collection of single-turn generation tasks, we progress to develop
multi-turn conversation data. This involves the deliberate association of ini-
tial motion generation tasks with a variety of follow-up tasks randomly chosen
among motion translation, reasoning, editing, etc. Following [122] we construct
our conversation data in a structured format, as depicted below:

Xsystem-message

USER: Xv X1
s ASSISTANT: X1

a </s>
USER: Xv X2

s ASSISTANT: X2
a </s>

USER: Xv X3
s ASSISTANT: X3

a </s> ...

Where Xv is defined as the vision language token embeddings, processed via the
visual tokenizer. Xi

s and Xi
a are used to denote the source inputs and target

answers for each round i, respectively. Both sets of tokens originate from the
integrated motion-language vocabulary V , which includes motions, texts, or a
blend thereof. The dataset exhibits variability in the number of generation turns
up to 10; for the sake of clarity, we present only three examples herein. Motion-
Chain is trained to predict answers, incorporating a learning mechanism that
determines whether to stop generation by outputting end of sentence flag </s>
based on the current instruction and all preceding questions and answers. In the
computation of the loss, as defined in Eq. (5), only the green tokens are utilized.

3.2 Multi-modal Tokenizer

Motion tokenizer, denoted as VM, is based on the architecture of Vector Quan-
tized Variational Autoencoders (VQ-VAE) utilized in previous studies [22,24,32,
84,95,98,106,109,116]. Once pre-trained, it can represent motion using discrete
tokens, facilitating the integration of motion and language. The Motion tokenizer
consists of a motion encoder EM and a motion decoder DM. Initially, the mo-
tion encoder E applies 1D convolutions to the motion features m1:M along the
temporal dimension to obtain latent vectors ẑ1:L = EM(m1:M ). Subsequently,
the latent vectors ẑ are quantized and transformed into a collection of code-
book entries z. The learnable codebook Z = {zi}Ki=1 ⊂ Rd comprises K latent
embedding vectors, each with a dimension of d. The quantization process Q(·)
replaces each row vector ẑ with its nearest codebook entry zk in Z, which can
be expressed as:

zi = Q(ẑi) := argminzk∈Z ∥ẑi − zk∥2 . (1)

We assign si as the index number of motion tokens z1:L, so motion tokens
z1:L can be represented as a sequence of indices s1:L = {si}Li=1. The motion
decoder DM can project z1:L = {zi}Li=1 back to the raw motion space, resulting
in the motion m̂1:M with M frames. Following [22,24,32,98,116], we adopt three
distinct loss functions when training the motion tokenizer:

LV = Lr + Le + Lc (2)
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Fig. 4: Motion Composition Variants: We illustrate the baselines for motion compo-
sition during multi-turn motion generation (a). independent decoding each turn (b).
separate decoding conditioned on the last few tokens from the prior turn (c). decoding
with joint motion tokens. Green tokens stand for image condition, blue tokens stand
for textual instruction, and orange tokens stand for human motions.

where Lr denotes reconstruction loss, Le denotes the embedding loss, and Lc

denotes commitment loss.
During multi-turn motion generation, the motion continuity between turns

is achieved through our motion decoder, which links the motion of the current
turn with that of the preceding ones. Taking the composition of two motions
as an example: we concatenate the past motion tokens, denoted as z

1:Lp
p , with

the tokens representing the current motion, z1:Lc
c . This concatenated sequence

of tokens is subsequently decoded into a comprehensive set of continuous motion
features, represented as m1:Mwhole

whole , as depicted below:

z
1:(Lp+Lc)
whole = [z1:Lp

p , z1:Lc
c ]. (3)

Similarly, this framework is adept at executing composition tasks involving an
array of motions. The comparison results in Tab. 3 demonstrate that our motion
tokenizer could effectively perform motion composition tasks.

Visual Tokenizer accepts images XI as inputs. We employ the CLIP visual
encoder that is pre-trained on image-text pairs to derive visual feature ZI . These
features are then projected into language token embeddings Xv via a linear layer
like previous work [50], maintaining consistency in the dimensionality with the
language model’s word embedding space.

3.3 Motion-aware Language Model

Language models such as Llama [93, 94] and T5 [14, 74] employ the Sentence-
Piece [39] model to encode textual inputs into WordPiece tokens, utilizing a Kt

word piece vocabulary. Unlike prior text-to-motion [24,102,116,118] and motion-
to-text [24] methods that process text and motion separately, we merge the text
vocabulary Vt = {vit}

Kt
i=1 with the motion vocabulary Vm = {vim}Km

i=1 , maintain-
ing the motion tokenizer’s codebook Z order and including special tokens for
boundary demarcation. This creates a unified vocabulary V = {Vt, Vm}, enabling
the formulation of motion-centric tasks in a universal template, where inputs and
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outputs share the same vocabulary. For visual input, our visual tokenizer con-
verts images into visual token embeddings Xv, aligning with the language model
[39,62,74,93] token space for integrated representation.

For single conditioned generation tasks, our input comprises a sequence
of N length tokens Xs = {xs

i}Ni=1, where xs ∈ {Vt, Vm} representing either
text, motion, or a combination thereof, drawn from the unified vocabularies.
In cases involving image inputs, visual tokens Xv are interspersed at the be-
ginning of the source tokens sequence, forming [Xv, Xs]. Subsequent interaction
rounds generate target answer tokens Xa. To facilitate iterative result gener-
ation and content retention, our framework generates multi-turn conversation
data (Xv, X

1
s , X

1
a , X

2
s , X

2
a , · · · , XT

s , X
T
a ), with T indicating the total turn count.

Notably, visual tokens are consistently placed at the forefront of the initial turn’s
source tokens. The processing sequence is organized such that to predict target
answer tokens autoregressively, as shown in Fig. 2. Source tokens are processed
by the transformer to predict the next token’s probability distribution, formu-
lated as:

pθ(Xa | Xv, Xs) =
∏
i

pθ
(
xi
a | Xv, Xs,<i, Xa,<i

)
(4)

with θ indicating trainable parameters, and Xs,<i, Xa,<i representing the se-
quences of source and preceding target tokens. The training objective is maxi-
mizing the log-likelihood of distribution:

LLM = −
Lt−1∑
i=0

log pθ
(
xi
a | Xv, Xs,<i, Xa,<i

)
. (5)

By optimizing this objective, MotionChain captures the complex interrelations
among images, motion, and text, facilitating accurate target "word" generation.

During the inference phase, target tokens are recursively sampled from the
model’s predicted distribution pθ

(
x̂a

i | Xv, Xs, X̂a,<i

)
, ceasing with the appear-

ance of a special end token. This strategy facilitates a step-by-step target se-
quence generation, where each token’s probability is conditioned on all previous
turns’ sources and targets and current source input.

3.4 Training Strategy

To facilitate the integration of image and motion comprehension within the
language modeling context, we adopt a 3-stage training strategy. (1) The initial
stage involves pre-training the motion tokenizer on a corpus of human motion
data, in line with [32]. This process establishes the motion vocabulary Vm, which
serves as a foundation for encoding human motions as a series of discrete tokens.
(2) Subsequently, the motion tokenizer remains frozen while we connect the
visual tokenizer to the language model framework. This integration is supported
by a suite of supervised objectives, including text-to-motion, motion-to-text,
and image-based motion generation, aiming to learn the intricate relationships
between images, motion, and language. (3) The final stage involves instruction
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tuning, and refines the model’s capabilities through the application of prompt-
based instructions. These instructions are framed within multi-turn conversation
sequences, as detailed in Sec. 3.3, to expanded range of motion-related tasks.

Training of Motion Tokenizer. The initial step involves training the mo-
tion tokenizer, guided by the loss objective in Equation 2. This stage enables the
tokenizer to represent human motion sequences x̂1:L as discrete motion tokens,
a key step for merging motion data with textual information seamlessly. Once
optimized, the motion tokenizer remains frozen.

Motion-language Pre-training Stage. Leveraging recent developments in
language modeling [14, 74, 93, 94, 122] pre-trained on natural language datasets
and then fine-tuned with instruction-based phrasing [14, 62]. To augment the
model’s ability to discern relationships between images and human motions, we
first pre-train our MotionChain using a mix of language, image, and motion
datasets. Following the stage 1 training of the motion tokenizer, we have estab-
lished a unified motion-language vocabulary V = Vt, Vm, capable of represent-
ing motions in discrete token form. Moreover, we maintain the visual encoder’s
weights in the visual tokenizer as fixed, while the linear projection weight W is
jointly optimized with the language model. During this stage, the model under-
takes three fundamental single-turn modality translation tasks: text-to-motion,
motion-to-text, and image-conditioned motion generation, as outlined in Sec. 3.1.
The primary objective is to maximize the likelihood of the model according to
the loss function specified in Eq. (5), thereby letting the model understand the
relationship between language, vision conditions, and motions.

Instruction Tuning Stage. As described in Sec. 3.1, we construct a multi-
modal, multi-task, and multi-turn motion conversation dataset by augmenting
existing text-to-motion [23] and human mesh reconstruction datasets [5] with
targeted instructional prompts and leverage the capabilities of LLMs [62] and
the text-motion retrieval model [68] for motion reasoning and editing tasks. The
efficacy of instruction tuning, as evidenced across language models [14, 50, 62,
122], is well-established, yielding enhancements in model performance across
a wide range of tasks. After instruction tuning, MotionChain can handle more
motion-related tasks including the proficient handling of previously unseen tasks

4 Experiments

We evaluate the proposed MotionChain encompasses comprehensive compar-
isons across both one-turn motion-related tasks and multi-turn motion genera-
tion tasks. Firstly, we provide details of the dataset settings, evaluation criteria,
and implementation details as specified in Sec. 4.1. Subsequently, comparative
analyses are presented, focusing on the motion reasoning task (Sec. 4.2) and the
temporal motion composition task (Sec. 4.3). In Sec. 4.4, we evaluate the choice
of motion composition technique and different architectures of vision tokenizer.
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4.1 Experimental Setup

Datasets. For one-turn motion reasoning tasks, the study employs our pro-
posed multi-modal multi-turn conversation dataset upon HumanML3D [23] with
44,970 sequence-level textual descriptions for 14,616 motion sequences obtained
from AMASS [57] and HumanAct12 [25]. The datasets are divided into training,
testing, and validation sets with a ratio of 0.8 : 0.15 : 0.05. To evaluate the
multi-turn motion generation task, we focus on BABEL [71] that provides tex-
tual descriptions for the motions in the AMASS [57] with annotated segments
that overlap in each sequence, which allows evaluating generation of a sequence
of motion or actions. We adopt the processed text labels by [3] and motion rep-
resentation of HumanML3D [23] which combines joint velocities, positions, and
rotations. Following [3] we consider pairs of actions for simplicity but Motion-
Chain applies to a sequence of actions or motion of arbitrary length. For the
image-conditioned motion generation task, we mainly focus on BEDLAM [5], a
large synthetic dataset of realistic moving 3D humans containing more than 200
subjects and 380K frames video and motion pair.

Evaluation Metrics are summarized as four parts. (1) Motion quality: We
adopt Frechet Inception Distance (FID) as the primary metric, FID quantifies
the divergence in feature distributions between generated and actual motion se-
quences. Utilizing feature extractors from prior studies [23,49,68], FID measures
the distance of feature distributions between the generated and real motions. Fol-
lowing [5,32,33,65,102], we also adopt MPJPE, PA-MPJPE to measure global
and local errors in millimeters and ACCL for acceleration errors, to evaluate
the quality of the reconstructed motions. (2) Motion Diversity: Utilizing the Di-
versity (DIV) metric, we calculate variance across motion features to evaluate
generation diversity. (3) Text matching: The precision of text-to-motion matches
is quantified by the R Precision metric, based on the feature evaluator [23,49,68],
and includes an analysis of Top 1/2/3 retrieval accuracy. The Multi-modal Dis-
tance (MM Dist) quantifies the semantic gap between motions and texts. (4)
Linguistic quality: We follow [24] utilizing linguistic metrics from natural lan-
guage studies, including BLUE [63], Rouge [48], Cider [97], and BertScore [120]
to evaluate the quality of generated motion captions. More detailed benchmark
information is provided in the supplementary materials.

Implementation Details. We set the codebook of the motion tokenizer
as K ∈ R512×1024 for most experiments. The motion encoder, denoted as EM,
integrates a temporal downsampling rate, l = 4. Our vision tokenizer incorpo-
rates a frozen Vision Transformer (ViT-L/14) [73] as visual encoder for most
experiments. Additionally, for comprehensive ablation studies, we explored the
use of both a frozen vision encoder and a Q-former from BLIP-2 [43] as a vision
tokenizer. We mainly utilize Flan-T5-base [14] as the underlying architecture
for our language model. Moreover, all our models employ the AdamW [53] opti-
mizer with [β1, β2] = [0.9, 0.99] for training. The motion tokenizers are trained
to utilize a 10−4 learning rate employing cosine annealing scheduler and a 256
mini-batch size. Our language models based on Flan-T5-base [14] have a 10−4

learning rate with cosine annealing scheduler and 16 mini-batch sizes in both the
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Table 1: Comparison of motion reasoning on the test set of our conversation dataset.
Our proposed MotionChain is fine-tuned on motion reasoning tasks while other meth-
ods’ results are generated by their pre-trained weight. Lengthavg represents the average
words in generated answers to all questions. We adopt metrics commonly used in nat-
ural language processing tasks for evaluation.

Methods Params Lengthavg Bleu@1↑ Bleu@4↑ Rouge↑ Cider↑ BertScore↑

Flan-t5-base [14] 250M 8.34 4.64 1.78 15.32 15.93 3.45
Flan-t5-large [14] 780M 11.95 12.18 4.83 22.81 15.02 14.19
Flan-t5-xl [14] 3B 9.09 8.54 4.01 24.89 15.03 18.34
Llama-2-7b [94] 7B 130.84 11.12 3.67 19.14 1.04 6.81
Vicuna-1.5-7b [122] 7B 71.49 19.27 7.39 25.75 5.44 19.05
Vicuna-1.5-13b [122] 13B 84.74 17.20 6.53 24.18 7.77 18.00

MotionChain (Ours) 573M 22.17 37.92 19.19 38.05 24.53 32.24

pre-train stage and the instruction tuning stage. The motion tokenizer under-
goes 10000 epochs of training, while the language model undergoes 500 epochs
during the pre-train stage and another 50 epochs during the instruction tuning
stage. Most models are trained on 8 Tesla V100 GPUs.

4.2 Comparisons on Motion Reasoning.

In Sec. 3.1, we introduce a multi-modal motion conversation dataset, enriched
with motion reasoning data facilitated by ChatGPT [62]. This task evaluates
the model’s reasoning capabilities with motion reasoning tasks, where a motion
sequence or its corresponding textual descriptions serve as inputs. Our evalu-
ation compares our MotionChain, which integrates motion perception, against
contemporary Large Language Models (LLMs) that possess solely textual pro-
cessing capabilities. The compared LLMs are assessed using their original pre-
trained weight. Results in Tab. 1, illustrate that MotionChain exhibits superior
motion reasoning proficiency, benefiting from its integrated motion perception.

4.3 Comparisons on Temporal Composition.

The temporal motion composition task involves generating a continuous motion
sequence from two actions in a time series. We conducted our experiments fol-
lowing the settings in TEACH [3] and used the Amass [57] subset BABEL [71]
validation set. Additionally, we processed the motion in AMASS [57] into the
format proposed by HumanML3D [23] and trained our MotionChain on the
action-to-motion task. To compare with TEACH, we initially used an officially
provided pre-trained model to sample motion on the validation set 20 times.
Subsequently, we post-processed their motion into the HumanML3D format,
represented in SMPL [52]. The performance of our MotionChain is summarized
in Table 2. As evaluating generative models quantitatively is challenging, we also
provide qualitative comparisons in the supplementary materials.
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Table 2: Comparison of temporal motion composition on Babel [71]. We evaluate
the state-of-the-art motion temporal composition method Teach [3] under the 95 %
confidence interval from 20 times running. (cf. Sec. 4.1 for notations.)

Methods Diversity MPJPE↓ PA-MPJPE↓ ACCL↓

Real 15.74±.149 - - -

Teach [3] 27.11±.159 979.21±.215 933.32±.254 23.02±.018

MotionChain (Ours) 43.25±.159 276.05±6.72 53.72±.580 7.11±0.100

Table 3: Evaluation of motion composition methods on HumanML3D [23]. Here In-
dependent, Past-condition, and Tokens-joint stand for different motion composition
varients during multi-turn motion conversation, as illustrated in Fig. 4.

Method MPJPE↓ PA-MPJPE↓ ACCL↓ Diversity

Independent 350.79 102.97 11.40 6.47
Past-condition 232.46 46.15 6.18 6.01
Tokens-joint 108.77 18.85 2.26 5.56

4.4 Ablation Studies

MotionChain enables multi-modal motion conversation using two main tech-
niques. The first technique involves generating a smooth sequence of motions by
concatenating motion tokens which are then decoded back to motion by motion
decoder DM. The second technique involves processing multi-modal visual in-
put through a vision tokenizer, which consists of a frozen vision encoder and a
trainable linear projection. To evaluate the effectiveness of these two designs, we
compare them with other variants. For a more comprehensive analysis, detailed
ablation studies can be found in the supplementary materials.

Motion Composition Mechanism Apart from the jointly token concate-
nating mechanism, we also evaluate the performance of temporal motion com-
position through the other motion temporal composition variants Motion-cat:
concatenating the motion in final motion level rather than token level. Experi-
mental results in Tab. 3 show that jointly concatenating motion tokens achieved
remarkable performance compared to the other variants. For further information
regarding the implementation of the aforementioned vision tokenizer, please refer
to the supplementary materials.

Image Tokenizeer Architecture. MotionChain connects the frozen vi-
sion encoder to the language model through a linear layer. However, previous
vision-language [1,43] works also demonstrate the effectiveness of other kinds of
visual-aligning modules. Here we consider the other two vision tokenizer variants:
(a) inspired by [1, 10, 31], we introduce a perceiver module that incorporates a
transformer receiving a predefined number of latent input queries. These queries
cross-attend to the visual features, enabling effective information exchange. (b)
We directly adopt the pre-trained Q-former from BLIP-2 [43] to align visual
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Table 4: Evaluation of vision tokenizer architecture on Bedlam [49]. We implement
three different architectures, including Q-former, Perceiver, and Linear. We evaluate
these results with the metrics in motion reconstruction. Additional information regard-
ing the implementation is in the supplementary materials. (cf. Tab. 2 for notations.)

Architecture First-frame Last-frame

MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓

Q-former 195.49 86.56 134.73 57.17
Perceiver 185.61 99.21 134.89 57.58
Linear 144.37 76.48 133.73 56.73

inputs with the language model. We evaluate the different architectures under
the single human image as the first frame condition and the last frame condi-
tion separately. Experimental results in Tab. 4 show that a lightweight linear
projection is sufficient for comprehending the human pose from visual input.
Additional details about the implementation of the above vision tokenizer can
be found in the supplements.

5 Conclusion and Limitation

Limitation. As the trial to explore conversational human motion generation
with visual language models, the proposed MotionChain still has limitations as
follows. MotionChain utilizes indeterministic generative models, similar to other
language models, but other traditional or neural motion controllers [86, 87] are
mostly deterministic and sensitive to control signals. Besides, our method can
only generate motion on articulated human bodies, excluding many other human
parts such as faces [9, 34, 72] and hands [46, 46, 47, 47, 78]. Although we utilize
vision, language, and motion as multimodal conditional inputs akin to human
perception, MotionChain is still restricted to the collision signals for human-
object and human-scene interactions [35,82,112].

Conclusion. We summarize the proposed MotionChain as a conversational
human motion controller to generate continuous and long-term human motion
through multimodal prompts. Compared to these one-turn motion generation
methods [32, 92, 117], our MotionChain produces more contextually rich gen-
eration and can achieve the step-by-step process of human task execution for
humanoid robotics and game agents. By leveraging large-scale language, vision-
language, and vision-motion data to assist motion-related generation tasks, Mo-
tionChain thus comprehends each instruction in multi-turn conversation and
generates human motions followed by these prompts. Extensive experiments val-
idate the efficacy of MotionChain, demonstrating state-of-the-art performance
in conversational motion generation, as well as more intuitive manners of con-
trolling and interacting with virtual humans.
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