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1. Theoretical Proofs
1.1. Proof of Eq. (4)

Proof. First, the maximum entropy coding length is:

L = µ log det
(
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)
, (1)

where µ = m+d
2 and λ = d

mε2 . Next, we employ the following identical equation:

log det (exp (A)) = log det

( ∞∑
n=0

An

n!

)
= log det

( ∞∑
n=0

(UDUT )n

n!

)

= log det

(
U

∞∑
n=0

Dn

n!
UT

)
= log

m∏
i=1

exp(λi) =

m∑
i=1

λi

= Tr (A) ,

(2)

1



where λ1 ≥ λ2 ≥ · · · ≥ λm are the eigenvalues of A. A = UDUT is the eigendecomposition. Then, we have:

log det
(
I+ λZTZ

)
= Tr

(
log
(
I+ λZTZ

))
. (3)

Finally, we apply a Taylor series expansion to the logarithm of the matrix to obtain:
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µ

∞∑
n=1

(−1)n−1

n

(
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)n)
. (4)

1.2. Proof of Eq. (8)

Proof. The total loss of the idempotent generative model is expressed as:

L = Lide − L = −2
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(5)

where A ∈ Rm×m is the adjacency matrix defined by the data generation and C is a constant. F = Zdiag(
√
p(x)) The

weights Ax,x̂ = p(x,x̂)√
p(x)p(x̂)

. L = I−A is the Laplacian matrix.

1.3. Proof of Eq. (11)

Proof. We compose the marginal distribution of x as a matrix D. Dx = p(x) = dx. We normalize the feature z = f(x) as
Ux =

√
dxf(x). U = ZD

1
2 ∈ Rd×m. We also normalize the adjacency matrix Âx,x̂ = p(x,x̂)√

dxdx̂
. Then we reformulate the

downstream error,
Ex,y∥y −Wf(x)∥2 =

∑
(x,y)

dx∥y −Wf(x)∥2

= ∥YD
1
2 −WU∥2

= ∥YD
1
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where Cj,x =
√
dx1[y(x) = j]. Then we consider the relationship between the downstream error and the augmentation

graph:
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When j ̸= y(x),
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Then, we define βx =
∑
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And we assume βx =
∑

x̂ p(x, x̂)1[y(x̂) ̸= y(x)] ≤ dxα.
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2 −CÂT )∥2 =

∑
x

2β2
x

dx

=
∑
x

2dxα
2

= 2α2 ≤ 2α.

(11)

Then we obtain
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2 −CÂT +CÂT −WU∥2

≤ c2α+ c1∥CÂT −WU∥2
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2. Gradient Analysis
In this section we specifically analyse the effect of the gradient of maximum entropy coding and fusion modules on the

feature space to specify the phenomenon of dimensionality collapse of the generative model.

2.1. Gradient Dynamics for Maximum Entropy Coding

First, the maximum entropy coding length is:

L = µ log det
(
I+ λZTZ

)
, (13)

where µ = m+d
2 and λ = d

mε2 . Z = VWUT .
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So for maximum entropy coding with constraints, the optimized dynamics of the derived eigenvalues are

ωi(t+ 1) = ωi(t) + η∇ωi(t)L− κ∇ωi(t)∥W∥1

= ωi(t) +
2ηµλωi(t)

1 + λω2
i (t)

− κ.
(15)

2.2. Equilibrium State and Complete Collapse

After reaching equilibrium, singular values converge to a fixed value:

ω∗ =
ηµ

κ
±
√

η2µ2

κ2
− 1

λ
, (16)

where we assume η2µ2

κ2 > 1
λ . Otherwise, if κ2 ≥ λη2µ2, a complete collapse occurs, at which point the singular values all

converge to zero. We can infer from this observation that as the feature dimension increases and the dataset size grows, the
likelihood of a complete collapse decreases.

2.3. Stability Analysis and Dimensional Collapse

We determine the gradient of the equilibrium point based on the gradient of the equilibrium point:

ω̇ = f(ω) =
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1 + λω2
− κ, (17)
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Therefore, larger equilibrium point represents stable fixed point, whereas smaller equilibrium point indicates unstable fixed
point. Consequently, all singular values smaller than the smaller equilibrium converge to 0, resulting in dimensional col-
lapse. Likewise, increased dimensions and larger datasets, coupled with reduced regularization constraints, can help alleviate
dimensionality collapse.

3. Implementation Details
3.1. Preliminary: Diffusion Models

Diffusion models implement generative processes by reversing a pre-defined forward diffusion process, commonly ex-
pressed as a linear stochastic differential equation (SDE). Formally, the data trajectory {x(t) ∈ Rn}t∈[0,1] follows the
forward SDE given by:

dx = µ(t)xdt+ ν(t)dw. (20)

Here, µ(t)x ∈ Rn and ν(t) ∈ R represent the drift and diffusion coefficients, while w is a standard Wiener process.
The affine drift coefficients ensure the presence of analytically tractable Gaussian perturbation kernels. These are denoted

by p0,t(xt |x) = N (xt;αtx, σ
2
t I), where exact coefficients αt and σt can be obtained using standard techniques. Through

appropriately designed αt and σt, this facilitates the transformation of the data distribution x0 ∼ pdata into a tractable isotropic
Gaussian distribution x1 ∼ N (0, I) via forward diffusion. Furthermore, µ(t) and ν(t) must be dependent on αt and σt in
the following form:

µ(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t . (21)

To recover the data distribution pdata from the Gaussian distribution N (0, I), Anderson established a pivotal theorem
stating that the forward process has an equivalent reverse-time diffusion process, as represented by the following equation,
thereby equating the generating process to solving the diffusion SDE:

dxt =
[
µ(t)xt − ν(t)2∇xt

log pt(xt)
]

dt+ ν(t)dw̄, (22)



where w̄t represents the Wiener process in reverse time, and ∇xt log pt(xt) is the score function.
Moreover, Song et al. [6] also demonstrated the existence of a corresponding deterministic process whose trajectories

possess the same marginal probability densities pt(xt), thereby establishing the basis for efficient sampling using numerical
ODE solvers.

dxt =
[
µ(t)xt − ν(t)2∇xt

log pt(xt)
]

dt. (23)

Typically, we train a score network sθ(xt, t), parameterized by θ, to approximate the score function ∇xt log pt(xt) by
optimizing the denoising score matching loss:

L = Et

{
ω(t)Ex0,xt [sθ(xt, t)−∇xt log pt(xt|x0)]

2
}
, (24)

In this equation, ω(t) represents a weighting function. In practical applications, there are two common methods for reparam-
eterizing the score network. The first approach involves using a noise prediction network ϵθ, where ϵθ(xt, t) = −σtsθ(xt, t).
The second approach employs a data prediction network xθ, where xθ(xt, t) = (σ2

t sθ(xt, t) + xt)/αt.

3.2. Network Architecture

Data Transformation: We describe the adopted transformations in detail. We select the following transformations as the
basic transformation set to the input sequences of the encoder f(·), which have been widely adopted in previous works [3,7]:

• Shearing: This transformation slants the human body 3D coordinates to a random angle by using a shear transformation
matrix:

S =

 1 a12 a13
a21 1 a23
a31 a32 1

 , (25)

where aij is the shear factor randomly sampled from [-1, 1].
• Joint Jittering: This transformation randomly selects j out of the 25 joints in the skeleton data. Subsequently, these

selected joints are either masked to zero or perturbed by a uniformly distributed random matrix. By default, we set j to 15.
• Gaussian Noise: Gaussian noise N (0, 0.005) is added to the skeleton data.
• Random Mask: Mask refers to random masking in the time and space domain:

x̃ = x⊙M, (26)

where M is a mask tenser. We adopt a more extensive masking ratio, inspired by the approach in MAMP [2], where we mask
90% of the data.
Patchify and Embedding: Given the input skeleton x ∈ Rc×t×v , we initially segment it into non-overlapping patches with
equal lengths along the temporal dimension, resulting in x′ ∈ R(s×c)×t′×v′

, where t represents the number of frames, v
denotes the number of joints, s signifies the patch length, and t′ = t/s. These patches are then flattened and embedded into
d dimensions via a trainable linear projection:

E = LinearProj(x′) ∈ Rd×(t′×v′), (27)

yielding l = t′ · v′ tokens of dimension d as the input for the Transformer.

Transformer Architecture: Our encoder and decoder adhere to a vanilla Transformer architecture. Initially, trainable
spatial and temporal positional embeddings, Pv ∈ Rd×1×v′

and Pt ∈ Rd×t′×1, are incorporated into the tokens E through
broadcasting.

z = E+Pv +Pt. (28)

The Transformer network comprises alternating layers of multi-head self-attention (MSA) and multi-layer perceptron (MLP)
with residual connections. Layer Norm (LN) is applied before each layer and after the last layer. The encoder output,
z ∈ Rd×l, represents the dense local representations. The global representation, z̄, is obtained by pooling all tokens. For the
decoder output, it is linearly projected to yield the final prediction of the same shape as x.

For enhancing network training, all skeleton sequences undergo temporal downsampling to 120 frames. The encoder f(·)
and generator g(·) are built using the Transformer architecture [8], employing hidden channels configured to a dimension of
256. To assess performance, we employ a fully connected layer ϕ(·).

To refine our network, we employ the Adam optimizer [4]. Training is executed on a single NVIDIA GeForce RTX 4090,
employing a batch size of 128, and the network undergoes training for 400 epochs.



3.3. Training Strategy

Here we introduce the details of unsupervised, supervised learning, transfer learning, and zero-shot adaptation learning.
Through comprehensive experiments, we can fully demonstrate the superiority of our method and obtain solid conclusions.

Self-Supervised Pretraining. We utilize diffusion-based generation to train the encoder f(·), generator g(·) and adapter
h(·). We train the network for 400 epochs and the learning rate is set to 0.0001.
Unsupervised Learning. In the unsupervised setting, we assess the feature representation using a linear evaluation mech-
anism. This approach involves applying a linear classifier ϕ(·) to the frozen pretrained weights of the encoder f(·). The
classifier is trained to classify the features extracted from the encoder, and the action recognition accuracy serves as a metric
to gauge the quality of the representation. We train the model for 100 epochs with a learning rate set to 0.1.
Supervised Learning. We utilize a K-nearest neighbor (KNN) classifier, a nonparametric supervised learning method, to
directly assess the quality of the feature space learned by the encoder during the self-supervised pretraining stage. In this
approach, we set K=1 to assign labels based on the cosine similarity distance, following a recent method called CMD [3].
Transfer Learning. To explore the generalization ability, we evaluate the performance of transfer learning. In transfer
learning, we utilize the linear evaluation mechanism to evaluate the performance on the target dataset. To evaluate the
transferability of learned features, we pretrain on NTU 60 dataset [5] and performs linear evaluation on the PKUMMD part
II dataset [1]. We train the classifier ϕ(·) for 100 epochs.
Zero-Shot Adaptation. In the zero-shot adaptation setting, first, we utilize the encoder to extract features from the noisy
data. Then, these noise features serve as conditions for diffusion denoising. After several iterations of noise removal, we
extract features from the denoised data to use as new conditions. This iterative process allows for the continuous removal of
noise information from the conditions.

4. Visual Results
4.1. One-Step Denoising Visualisation

In the Figure 1, we show the results of one-step denoising results. First row of each group represents the ground truth data
x, the second row displays the noisy data xt obtained after diffusion sampling, and the third row presents the predicted clean
data x0.

4.2. Conditional Generation Visualisation

In Fig. 3, we present the results of conditional generation. By applying a series of data transformations to the condi-
tions, we introduce noise, leading to the generation of skeleton data that exhibits some variation while preserving semantic
information.

4.3. Mask Prediction Visualisation

4.4. Zero-Shot Generalization Visualisation
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Figure 1. One-step denoising visualisation. Each group’s first row represents the ground truth data x, the second row displays the noisy
data xt obtained after diffusion sampling, and the third row presents the predicted clean data x0.



Figure 2. Conditional generation visualisation. Each group’s first row represents the ground truth data x, the second row presents the
generated data x0.



Figure 3. Conditional generation visualisation. Each group’s first row represents the ground truth data x, the second row presents the
generated data x0.
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