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Abstract. Accurate object detection in LiDAR point clouds is a key
prerequisite of robust and safe autonomous driving and robotics appli-
cations. Training the 3D object detectors currently involves the need to
manually annotate vasts amounts of training data, which is very time-
consuming and costly. As a result, the amount of annotated training data
readily available is limited, and moreover these annotated datasets likely
do not contain edge-case or otherwise rare instances, simply because the
probability of them occurring in such a small dataset is low.
In this paper, we propose a method to train 3D object detector without
any need for manual annotations, by exploiting existing off-the-shelf vi-
sion components and by using the consistency of the world around us.
The method can therefore be used to train a 3D detector by only col-
lecting sensor recordings in the real world, which is extremely cheap and
allows training using orders of magnitude more data than traditional
fully-supervised methods.
The method is evaluated on KITTI and Waymo Open datasets, where it
outperforms all previous weakly-supervised methods and where it nar-
rows the gap when compared to methods using human 3D labels.
The source code of our method is publicly available at https://www.
github.com/jskvrna/TCC-Det.
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1 Introduction

Accurate object detection in LiDAR point clouds is a critical component of
many applications, ranging from robotics to autonomous driving. One of the
limitations that currently hinders exploitation of 3D object detectors in real-
world scenarios is the scarcity of labelled training data, owing to the fact that
human labelling in 3D is very time-consuming and therefore costly, as labelling
one object instance can take up to 100 seconds [7, 25]. Training data are also
specific to given country [28], and it is not practicable to assume there is a
labelled dataset for every country. On the other hand, vast amounts of data
are readily available, because capturing and storing sensor data is relatively
cheap; the data are just not annotated and therefore useless for traditional fully-
supervised 3D detection methods.
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Fig. 1: Combining raw unlabelled RGB camera and LiDAR sensor data across multiple
frames in a temporally consistent manner allows us to exploit a generic off-the-shelf
2D object detector to train a 3D object (vehicle) detector for LiDAR point clouds.

In our method, we aim to narrow this gap by training a standard 3D object
detector, but without using any human labels in the process, therefore al-
lowing the detector to be trained using the large quantities of unlabelled data
readily available. Instead, we exploit an off-the-shelf 2D detector for the RGB
camera (trained on a generic non-related dataset such as MS COCO [10]) and
a number of real-world priors such as a generic shape of a car or the fact other
objects only move subject to constraints given by the laws of physics between
individual frames to train the detector. The result of our training process is a
traditional 3D object detector that operates on LiDAR point clouds; the only yet
crucial difference is the training signal (the training loss) used for the training,
which does not rely on human annotations.

In this paper, we make the following contributions: (i) We introduce a Tem-
plate Fitting Loss that is a relaxed formulation of Chamfer distance loss which
is able to better estimate object location in noisy LiDAR scans and which takes
into account multiple shape hypotheses at the same time. (ii) Thanks to velocity
motion model for surrounding vehicles, we exploit the fact the same object is
captured in subsequent LiDAR scans and use this temporal consistency to get
more robust training signal for the network (iii) A novel Apperance Mask Loss is
introduced to ensure the object detection in the LiDAR point cloud is consistent
with the same object which is captured in the camera image.

The rest of the paper is structured as follows. In Section 2, an overview of
prior work is presented. In Section 3, our proposed method is described and in
Section 4 extensive experimental validation including numerous ablation exper-
iments is presented. The paper is concluded in Section 5.

2 Related work

Fully supervised methods. PointNet [18] utilizes max pooling on the extracted
features from points to learn to select interesting points and then use them in
the fully connected layers to generate predictions. PointPillars [9] encodes point
clouds into vertical columns (pillars), which allows the use of the 2D convolution,
as the data is in Bird’s Eye View (BEV). PV-RCNN [23] combines 3D sparse
voxel convolutions and PointNet-based networks, thus combining grid-based and
point-based methods to aggregate advances of both methods. Voxel-RCNN [2]
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consists of a 3D sparse voxel convolution network, whose output is used both
in 2D BEV Region proposal network (RPN) to get coarse predictions and in
the Detection head, which uses Voxel ROI pooling, to get the fine refinement
of the predictions provided by the 2D BEV RPN. The key advantage of grid-
based methods (PointPillars, Voxel-RCNN) is fast inference speed and training
compared to point-based methods (PointNet). CasA [30] adapts the 2D object
detection cascade models to 3D as it uses a region proposal network accompanied
by a cascade refinement network.
Weakly supervised methods. VS3D [19] detects regions of interest by the normal-
ized point density in the LiDAR point cloud. To train the 3D bounding boxes
prediction layer, it leverages the information of 2D bounding boxes detected by
an off-the-shelf detector. Zakharov et al. [33] use an off-the-shelf 2D detector
with a novel differentiable renderer of a DeepSDF framework [17] to auto-label
3D bounding boxes of cars. The method was pre-trained on the synthetic dataset
and then trained on the actual dataset while iteratively adding more complex
samples. McCraith et al. [14] use an off-the-shelf 2D detector accompanied by
direct optimization of a template mesh to the LiDAR point clouds. The method
showed that proper handling of the outliers is key to achieving good accuracy.

FGR [29] uses 2D ground truth bounding boxes and sparse LiDAR point
cloud as an input. The method first uses a 3D coarse segmentation stage with
RANSAC [3] to filter out the ground plane. The second stage performs the 3D
bounding box estimation with context-aware adaptive region growing, key vertex
localization and frustum intersection. The method was used to train PointR-
CNN [24]. It is worth noting that precise amodal 2D ground truth bounding
boxes are needed for this method.

WS3Dv2 [15] employs BEV click-point human annotations, representing the
object’s centre. The first stage generates the BEV points of interest, while the
second stage learns to generate 3D bounding boxes at those points of interest.
500 frames with 534 precisely labelled objects are used to train both stages. The
method’s performance is close to fully supervised trained PointPillars [9] and
PointRCNN [24] while being trained with less human-annotated data as those
fully supervised ones were trained on 3712 frames.

MAP-Gen [12] and MTrans [11] use the same 3D training data as WS3Dv2
[15]. Both provide a way to generate new 3D points out of a 2D RGB image to
deal with the problem of the LiDAR data sparsity. MTrans further closes the
gap and achieves state-of-the-art performance.
Synthetic data. Another approach to address the lack of human annotations is us-
ing synthetic data, where annotations are generated alongside the synthetic data
themselves. There are many synthetic driving datasets that have been proposed,
such as GTA-V [20], Virtual KITTI [4], SYNTHIA [21], SHIFT [27], OPV2V [32]
or most recently GAIA-1 [6]. The fidelity and data volumes of these datasets are
growing constantly, but we believe that they still cannot fully replace data cap-
ture, especially to capture long-tail events, i.e. events which happen very rarely,
and methods that allow training on unlabelled data, such as ours, are going to
be complementary to the synthetic data approach.
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3 Method

In traditional 3D object detection methods, training signal comes from (dis)agreement
of network predictions with human annotations, which have to be manually cre-
ated for each scene. In our method, human annotations are replaced by pseudo
ground truth labels and further supported by two additional training signals
which ensure network predictions are consistent with approximate 3D object
shape in LiDAR pointcloud as well as with appearance of the same object in
an RGB camera. We demonstrate that these pseudo ground truth labels to-
gether with two additional training signals, implemented as two individual loss
functions – Template Fitting Loss and Appearance Mask Loss – are sufficient
to train a standard 3D object detector from scratch without using any human
annotations.
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Fig. 2: Training pipelines of the traditional fully-supervised 3D object detector relying
on 3D human annotations (top) and of the proposed method relying of 2D detections
and shape prior hypotheses (bottom).

3.1 Template Fitting Loss (TFL)

The first loss function ensures that network 3D predictions can be “explained”
by matching a rigid shape model of a vehicle to the predicted location. In other
words, if the network predicts that there is a car at certain location, there should
be a sufficient number of LiDAR points in that location of the world to support
that, with an overall shape resembling to a car (see Figure 3).

The Template Fitting Loss exploits this observation by calculating the degree
of agreement between the observed LiDAR points Li for a given vehicle i and
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Fig. 3: Template Fitting Loss (TFL) sums up the distance of every shape model
point to the nearest LiDAR detection (left) with the distance of every LiDAR detection
to the nearest shape model point (right) in a symmetrical fashion, while discarding
potential outliers. Green to red encodes low to high distance value.

the shape model M which is placed to the predicted position Xi, Yi, Zi with yaw
θi, height Hi and scale (length/width) Si

LTFL(Li, Pi,M) = D(Li,M ⊗ Pi) +D(M ⊗ Pi, Li)

D(A,B) =
1

|A|
∑
a∈A

σ(k ·min
b∈B

∥a− b∥22) (1)

where Pi = (Xi, Yi, Zi, θi, Hi, Si) ∈ R6 denotes the network output (prediction),
M ⊗ Pi denotes the shape model M transformed to the position (Xi.Yi, Zi),
rotated by θi and scaled by Hi and Si, σ(x) is the sigmoid activation function
and k is a steepness parameter whose value is determined empirically. We note
that Si encodes both the width and length of the vehicle, as we believe long
cars are wide and vice versa, and coupling width and height together through a
single scaling factor achieved better accuracy.

The loss in Eq. (1) is a modified Chamfer distance loss, which can accommo-
date outliers and it permits for the fact that the two point clouds are not exactly
the same, which is key because every car is different, and we cannot expect a
perfect fit as our shape models M ∈ M are fairly generic.
Object Point Cloud. The LiDAR point cloud Li for each object (vehicle) i is
created in an offline pre-processing step, where an off-the-shelf instance segmen-
tation method [31] which already had been trained on a generic dataset such as
MS COCO [10] is used to detect objects (vehicles) and their instance segmenta-
tion Bi in the RGB camera image. Next, whole LiDAR scan is projected into the
camera coordinate system and individual LiDAR points are matched to individ-
ual 2D segmentation masks in the camera image or discarded as background.
Temporal Consistency. LiDAR scans on one end tend to be sparse, on the other
hand they may contain many outliers which are incorrectly associated with the
object point cloud Li, typically because of imperfect instance segmentation or
“see-through” surfaces. Using data from a single LiDAR scan in the loss function
leads to inferior results, especially for cars which are further away (see Sec. 4.5).

To address this issue, we exploit the availability of LiDAR scans and video
sequence captured before and after the reference frame. We track all vehicles
detected in the reference frames across the sequence by estimating their 3D
location as the median of the object point cloud and then assigning detections
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to the nearest vehicle in the subsequent frame, measured as the distance in the 3D
world. This allows us to aggregate LiDAR points corresponding to the same car
across multiple LiDAR scans, thus creating a more dense LiDAR representation
for each car. This helps us to alleviate the issue of far-away cars where intially
their object point cloud is sparse and ambiguous, as well as remove potential
false positives of the 2D detector as we discard any detections which cannot be
tracked across at least three frames.

For the algorithm to work correctly, we need to make sure that we take
into account vehicle movement - both the movement of the vehicle where the Li-
DAR&camera is mounted on (ego-vehicle), as well as movement of other vehicles
around the ego-vehicle. In order to compensate the ego-motion of our vehicle,
we use the available data from the Inertial measurement unit (IMU) unit. We
however found out that the measurement are not always precise enough, and
therefore we employ point to plane variant of the Iterative Closest Point (ICP)
algorithm [22] with the IMU data as the prior estimate to improve LiDAR scans
alignment.

In order to compensate for movement of vehicles around our car, we build a
simple motion model to predict the location of each car based on the last known
location and predicted velocity

pt
i = pt−1

i + (pt−1
i − pt−2

i ) (2)

where pt
i denotes estimated 3D position pt

i = (Xt
i , Y t

i , Zt
i ) of the vehicle i in

the frame t.
LiDAR Points Downsampling. For the method to stay computationally feasible
(note that in Eq. (1) we sum over all points in Li) we limit the number of
aggregated points by combining two different downsampling strategies: we use
voxel downsampling to reduce redundant points and to increase the possibility
of seeing more parts of the car, and we combine it with random downsampling,
which reduces outliers but retains points seen many times. The object point
cloud Li is created by concatenating results of both downsampling strategies.

3.2 Appereance Mask Loss (AML)

The second loss function is the Appereance Mask Loss which ensures predicted
object locations in 3D are consistent with 2D observations from the RGB camera
(see Figure 4). This is especially useful for situations which are ambiguous in
the LiDAR modality alone, like object occlusions or the vertical boundaries of a
vehicle, because for example often it’s not obvious from the LiDAR which points
correspond to the vehicle and which to the road.

The Apperance Mask loss is based on the per-pixel Binary Cross Entropy
(BCE) which compares the observed object mask Bi ∈ (0, 1)W×H from the 2D
instance segmentation [31] to the mask of the corresponding network prediction
through differentiable renderer R

LAML(Bi, Pi,M) =
1

|Bi|
BCE (Bi,R(M,Pi)) (3)
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predicted 3D location Pi shape model M at location Pi

rendered mask R(M,Pi) overlap of rendered mask with
instance segmentation mask Bi

Fig. 4: Appearance Mask Loss (AML) ensures predicted object location in the 3D
world is consistent with object observation in the RGB camera (bottom right figure:
rendered mask in green, instance segmentation from RGB camera Bi in red).

where R(M,Pi) denotes rendered mask of the shape model M placed in the
position Pi in the 3D scene.

3.3 Multiple shape hypotheses

It is important to note that cars come in few basic different shapes, such as a
hatchback or sedan, and trying to fit a hatchback template to a sedan would lead
to sub-optimal results. In our method, we therefore define a set of four basic car
shapes M = {Mhatchback,Msedan,MSUV,MMPV} and our final loss only considers
the template where the individual loss is minimal. This allows the network to
maintain multiple hypothesis during the training, as it is not forced to make
hard decisions early on.

L(L,P ) =

N∑
i=1

argmin
M∈M

(
LTFL(Li, Pi,M)+

λLAML(Bi, Pi,M)
)

(4)

3.4 Training process

We use Voxel-RCNN [2] architecture – an architecture introduced for fully-
supervised 3D object detector – and add loss functions with our loss formulation
of Equation (4). We also observed that training convergence can be significantly



8 Jan Skvrna, Lukas Neumann

sped up if we keep the original losses of Voxel-RCNN, by replacing human labels
with crude pseudo ground truth. Before starting the training process, we there-
fore generate pseudo ground truth by iteratively enumerating all possible values
for (Xi, Yi, Zi, θi, Hi, Si) in a given range, and select the configuration with the
lowest Template Fitting Loss (see Eq. (1)) as an initial estimate of vehicle posi-
tion. This offline process therefore creates very crude pseudo ground truth, but
our full loss Eq. (4) formulation allows the network to learn more fine-grained
predictions and achieve better accuracy.

4 Experiments

4.1 Dataset

We primarily conduct experiments on the standard KITTI dataset [5] on the
Car category, consistently with all previous weakly-supervised methods [11, 12,
14, 15, 19]. We additionally evaluate our method on Waymo Open Perception
Dataset [26] (WOD), as the first weakly-supervised method to our knowledge.

Table 1: 3D object (car) detection Average Precision on KITTI validation set.

Human BEV AP 3D AP
annotations Easy Moderate Hard Easy Moderate Hard

Method Year 2D 3D @0.5 @0.7 @0.5 @0.7 @0.5 @0.7 @0.5 @0.7 @0.5 @0.7 @0.5 @0.7
Fully-supervised methods

PV-RCNN [23] 2020 yes yes ✗ ✗ ✗ ✗ ✗ ✗ ✗ 89.4 ✗ 83.7 ✗ 78.7
Voxel-RCNN [2] 2021 yes yes ✗ ✗ ✗ ✗ ✗ ✗ ✗ 89.4 ✗ 84.5 ✗ 78.9
CasA+T [30] 2021 yes yes ✗ ✗ ✗ ✗ ✗ ✗ ✗ 90.1 ✗ 86.6 ✗ 79.5

Weakly-supervised methods with partial (500 frames) human labels
WS3D [16] 2020 no partial 96.3 88.6 89.0 85.0 88.5 84.7 95.9 84.0 89.1 75.1 88.3 73.3
FGR [29] 2021 yes no ✗ ✗ ✗ ✗ ✗ ✗ ✗ 86.1 ✗ 74.9 ✗ 67.5
WS3D v2 [15] 2021 no partial 96.5 88.9 89.3 85.8 89.0 85.0 96.3 85.0 89.4 75.9 88.9 74.4
MAP-Gen [12] 2022 yes partial ✗ ✗ ✗ ✗ ✗ ✗ ✗ 87.9 ✗ 78.0 ✗ 76.1
Mtrans [11] 2022 yes partial ✗ ✗ ✗ ✗ ✗ ✗ ✗ 88.7 ✗ 78.8 ✗ 77.4

Weakly-supervised methods with no human labels
VS3D [19] 2020 no no 81.6 ✗ 72.4 ✗ 64.31 ✗ 41.8 ✗ 39.2 ✗ 32.7 ✗
Zakharov [33] 2020 no no 94.9 81.0 88.5 59.8 ✗ ✗ 90.7 22.4 71.1 13.3 ✗ ✗
McCraith [14] 2022 no no 90.2 ✗ 85.7 ✗ 76.8 ✗ ✗ ✗ ✗ ✗ ✗ ✗
TCC-Det (ours) no no 98.9 90.1 89.6 88.3 89.1 87.0 98.8 85.9 89.5 75.3 89.0 73.7

The KITTI dataset contains 7481 training samples and 7518 testing samples.
As the dataset does not contain a specific validation set, we use the same split
as in [14, 29, 33], which has 3712 training samples and 3769 validation samples.
Objects in the dataset are divided into three categories: Easy, Moderate and
Hard, based on their occlusion, visibility and height of the bounding box in the
camera.

The WOD contains approximately 150k training, 40k validation and 30k
testing samples. The labelling process in 2D and 3D is not coupled. Therefore,
many objects labelled in 3D are not captured in the camera’s FOV. Vehicles fall
into two categories (level 1 and level 2) based on the detection difficulty.

Object detection is evaluated using two metrics – 3D and Bird’s Eye View
(BEV) Average Precision. Both metrics are based on the standard intersection
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over union (IoU) measurement. We provide results for both 0.5 and 0.7 IoU
thresholds, to make sure we can compare with all previous methods, where some
only report results for the 0.5 or the 0.7 threshold respectively.

BEV IoU = 0.74 3D IoU = 0.68

Fig. 5: An example on the KITTI dataset of a detection by our model (in red) which
is considered correct in the BEV metric but incorrect in the 3D metric. We argue that
given LiDAR point cloud of the vehicle (purple) our detection is correct, but methods
relying on raw data like ours are unable to adjust to such annotation bias in its outputs.
Detections in red, ground truth in green. Best viewed zoomed in.

Sedan

Hatchback

Fig. 6: Sample results on unusual cars. Template shape model M in position Pi with
lowest loss value as red points / red bounding box, human annotation in green. The
same shape model M shown as a mesh for illustrative purposes in the yellow cut out.

4.2 KITTI Implementation

The templates M ∈ M used for the Template Fitting Loss (see Eq. (1)) were
created by uniformly sampling 1000 points from four 3D generic 3D models of
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cars obtained online [1], where their size was initially adjusted to match the
average car dimensions of the KITTI dataset. The templates M ∈ M generalize
well to sufficiently fit rare shape cars (see Fig. 6).

Table 2: 3D object (car) detection Average Precision on KITTI test set. Results
denoted as * were obtained reproducing published code.

Human BEV AP 3D AP
annotations Easy Moderate Hard Easy Moderate Hard

Method Year 2D 3D @0.7 @0.7 @0.7 @0.7 @0.7 @0.7
Fully-supervised methods

PV-RCNN [23] 2020 yes yes 95.1 90.7 86.1 90.3 81.4 76.8
Voxel-RCNN [2] 2021 yes yes 94.9 88.8 86.1 90.9 81.6 77.1
CasA+T [30] 2021 yes yes 94.6 91.2 88.4 90.7 84.0 79.7

Weakly-supervised methods with partial human labels
WS3D [16] 2020 no partial 90.1 84.0 77.0 80.1 69.6 63.7
FGR [29] 2021 yes no 90.6 82.7 75.5 80.3 68.5 61.6
WS3D v2 [15] 2021 no partial 91.0 84.9 78.0 81.0 70.6 64.2
MAP-Gen [12] 2022 yes partial 90.6 85.9 80.6 81.5 74.1 67.6
Mtrans [11] 2022 yes partial 91.4 86.0 78.8 83.4 75.1 68.3

Weakly-supervised methods with no human labels
Zakharov * [33] 2020 no no 78.5 72.3 64.5 36.6 26.0 21.7
TCC-Det (ours) no no 91.2 85.1 80.2 77.8 65.4 60.9

The steepness parameter k of the loss was set to 10. For the Appearance
Mask Loss (see Eq. (3)) we used soft silhouette shader [13] for rendering of
the template. To aggregate LiDAR detections, we used 30 frames before and 30
frames after the reference frame, which at the sample rate of 10 Hz is equal to
3 seconds before and 3 seconds after.

Detectron2 [31] with a pre-trained model on MS-COCO [10] dataset was used
as the 2D object instance segmentation framework. Only detections with a score
higher than 0.7 were considered.

The Voxel-RCNN [2] was pre-trained on the pseudo-ground truth for 50
epochs with batch size equal to 50 on 2x NVIDIA A100. The initial learning
rate was 0.01 and the weight decay was 0.01. We used Adam optimizer [8] and
Cosine Annealing learning rate scheduler with one epoch warmup. The weight of
the Appearance Mask Loss λ was 0.1. It took approximately 2 hours to pretrain
the network, while creating the pseudo ground truth labels took approximately
6 hours. The full training of the network with our loss function (Eq. (4)) was
for 10 epochs with batch size 8 on 2x NVIDIA A100. The learning rate was
set to 0.001 and weight decay 0.01. It took approximately 10 hours to train the
network. We added our proposed loss functions only to the final stage (Detect
Head) of the Voxel-RCNN [2] network, as it serves as a fine refinement, while
the initial stage (RPN) loss was unchanged, only training on the pseudo ground
truths. For WOD implementation, please refer to the supplementary material.



TCC-Det: Temporarily consistent cues for weakly-supervised 3D detection 11

4.3 KITTI Results

On the KITTI validation set, our method significantly outperforms all previous
methods which do not rely on domain-specific human labels [14,19,33] by a great
margin, thus achieving state-of-the-art accuracy in 3D object detection trained
without human annotations (see Table 1). Our method achieves similar 3D AP
as FGR [29] in Easy and Moderate categories and outperforms it in the Hard
category by a great margin, despite the fact FGR relies on 2D KITTI ground
truth annotations in its training. Our method also outperforms WS3D [16] and
WS3Dv2 [15] in BEV and achieve comparable results in the 3D AP, despite the
fact both methods rely on 500 frames of human 3D KITTI labels for training.
MAP-Gen [12] and Mtrans [11] achieve slightly better results than us in 3D AP,
but they again, unlike our method, rely on 500 frames with 3D labels annotated
by humans, and we are unfortunately unable to compare in the BEV metric
because these results are not published for some reason.

Fig. 7: Qualitative examples of 3D object detections on the KITTI dataset. Note the
two detections marked with a red arrow which are cars missed by human annotators
of KITTI. Detections in red, ground truth in green. Best viewed zoomed in.

On the KITTI test set, our method outperforms FGR [29], WS3D [16] and
WS3Dv2 [15] using the BEV metric across all categories and achieves similar
performance as MAP-Gen [12] and Mtrans [11] (see Table 2). As none of the
previous methods that do not use human labels [14, 19, 33] reports results on
the KITTI test set, we are only able to compare to Zakharov et al. [33] as test
labels can be easily obtained from their published code. Using the 3D metric,
a small performance gap is still present when compared to methods which use
partial 3D human labels, which we believe is due to an annotation bias in KITTI
(see Figure 5) which makes it very hard to reach the required IoU of 0.7 without
somehow incorporating this bias into our method (we speculate that the methods
which use partial 3D human labels actually are able to learn this bias as part of
their training process).
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Fig. 8: Typical failure modes on the KITTI dataset. Estimating length of a car which
is moving and has the same yaw as the ego-vehicle is extremely difficult as there is
no data even in subsequent frames to infer vehicle length (left). A vehicle in the Hard
category (car) has very sparse LiDAR point cloud and since it is a moving car in
opposite direction, we cannot aggregate enough LiDAR points for this instance (right).

Table 3: 3D object (car) detection Average Precision on the Waymo Open Percep-
tion [26] validation set.

BEV AP 3D AP
Human Level 1 Level 2 Level 1 Level 2

Method labels @0.5 @0.7 @0.5 @0.7 @0.5 @0.7 @0.5 @0.7
Voxel-RCNN [2] 3D boxes 95.80 91.00 91.47 84.40 94.17 77.37 88.58 69.04
TCC-Det (ours) None 76.81 58.27 68.97 51.36 69.98 17.44 62.24 15.01

4.4 Waymo Open Perception Dataset Results

Despite using no 3D human labels, our method achieves competitive results on
the WOD (see Tab. 3 and Fig. 9), especially in the Birds Eye View (BEV) metric.
The main limitation is that in this dataset cameras do not cover the whole area
covered by LiDAR, and therefore some vehicles are inherently not included in our
training: our method can actually use stationary cars out of cameras’ FOV in the
training, because thanks to our proposed temporal consistency exploitation such
car is at some point captured by the camera as the ego-vehicle drives around; on
the other hand, cars moving behind the ego-vehicle are often only captured in
LiDAR and never by a camera, and as such are excluded. Note that limitation
is consistent with previous methods such as Mtrans [11] and MAP-Gen [12] and
this limitation can be solved by including more cameras into the setup, to make
sure cameras’ and LiDAR FOV sufficiently overlap.

4.5 Ablations

In this section, we present three ablation studies to support the design choices we
made, additional ablations, such as the number of frames, steepness parameter
k and ICP, are presented in Supplementary material. All ablations are evaluated
on the KITTI dataset.
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Fig. 9: Qualitative examples on the Waymo Open Perception dataset [26]. Our method
(top) and fully-supervised Voxel-RCNN [2] (bottom).
Individual loss functions. In our paper, we introduce two new loss functions –
Template Fitting Loss (TFL) and Appearance Mask Loss (AML). In Table 4, we
show the impact of using just one of the losses. Template Fitting Loss (Eq. (1))
on its own shows a small improvement in BEV and 3D, Appearance Mask Loss
(Eq. (3)) on its own greatly improves 3D Average Precision, but combining both
losses brings the biggest benefit.

Table 4: Ablation study of the proposed loss functions on the KITTI validation set.

Loss BEV 3D
Easy Moderate Hard Easy Moderate Hard

TFL AML @0.7 @0.7 @0.7 @0.7 @0.7 @0.7
✗ ✗ 89.64 87.55 85.48 78.42 64.77 63.64
✓ ✗ 90.12 88.15 86.99 76.42 66.01 65.00
✗ ✓ 90.09 88.05 86.64 85.35 74.54 67.67
✓ ✓ 90.09 88.25 86.95 85.92 75.33 73.74

Chamfer distance loss. Another ablation study to support using Template Fitting
Loss instead of the well-known Chamfer distance loss or McCraith et al. loss [14]
is shown in Table 5, where the Template Fitting Loss greatly improves accuracy
over the Chamfer distance loss and McCraith et al. loss in both BEV and 3D
Average Precision. The Appearance Mask Loss was present in all three cases.
Training dataset size. The main advantage of weakly-supervised methods is the
ability to exploit larger volumes of training data, because the training data do
not require human labels. We unfortunately do not have more unlabelled data
available from the KITTI dataset, but instead to demonstrate this ability of our
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Table 5: Ablation study of the Template Fitting loss function on the KITTI validation.
* denotes reproducible loss without discounting outliers from McCraith et al. [14].

Point cloud BEV 3D
distance Easy Moderate Hard Easy Moderate Hard

@0.7 @0.7 @0.7 @0.7 @0.7 @0.7
McCraith loss [14] * 77.30 75.37 66.41 53.45 49.76 42.80
Chamfer loss 84.02 73.11 66.39 67.21 53.93 51.37
TFL 90.09 88.25 86.95 85.92 75.33 73.74

method, we assume that only part of the dataset had actually been labelled while
the rest remained unlabelled. As it is demonstrated in Tab. 6, for example when
using 25% of human labels to fine-tune our trained model, our method performs
almost identically to the fully-supervised model – in another words, the time
and money originally spent on creating 75% of KITTI labels could have been
saved.

Table 6: Ablation study of the impact of the amount of human labels

BEV 3D
Fraction of Easy Moderate Hard Easy Moderate Hard
human labels @0.7 @0.7 @0.7 @0.7 @0.7 @0.7
0 % (Ours) 90.09 88.25 86.95 85.92 75.33 73.74
10 % 90.27 87.78 86.10 88.95 78.58 77.42
25 % 90.25 87.78 87.05 89.27 78.98 78.13
50 % 90.22 88.26 87.64 89.41 79.24 78.51
100 % 90.44 88.39 87.86 89.42 84.06 78.77

5 Conclusion

A new method which exploits a generic off-the-shelf 2D detector and a number
of real-world priors to train a 3D object detector was proposed. The method can
be used to train a 3D detector by only collecting sensor recordings in the real
world, which is extremely cheap and allows training using orders of magnitude
more data than traditional fully-supervised methods.

Our method significantly outperforms all previous methods which do not rely
on domain-specific human labels, thus achieving state-of-the-art accuracy in 3D
object detection trained without human annotations. In Bird’s Eye View (BEV)
AP, our method also outperforms methods which rely on partial 2D or 3D KITTI
annotations, and in 3D AP it achieves similar results, despite not having access
to any 3D human labels. We also show in ablations, that using only 25% of
human labels, we get almost identical accuracy to the fully-supervised method.

The main limitation seems to be the inability to account for some annotation
bias, which is demonstrated by a smaller gap to the fully-supervised method in
the less strict overlap evaluation (IoU threshold 0.5).
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