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A Baseline Details

In this section, we introduce the baselines used in experiments.
MiB. In MiB [2], two kinds of loss are used to model the background, i.e.,
Lunce and Lunkd:

Lunce = − 1

|I|
∑
i∈I

log q̃tx(i, yi) ,

Lunkd = − 1

|I|
∑
i∈I

∑
c∈

⋃t−1
j=1 Cj

qt−1
x (i, c) log q̂tx(i, c) ,

(1)

where I denotes the pixel set of an image, yi ∈ cbg ∪Ct denotes the ground-truth
label of pixel i, qtx denotes the output of the model at step t, q̃tx and q̂tx denotes
the modified output of the current model, considering the old classes for the
cross entropy loss and new classes for the knowledge distillation loss.
PLOP. Different from MiB [2], PLOP [4] utilizes pseudo-labeling to address
the issue of background shift, as follows:

Lpseudo = − ν

WH

W,H∑
w,h

∑
c∈Ct

S̃(w, h, c) log Ŝt(w, h, c) , (2)

where Ŝ denotes the prediction of the model and S̃ denotes the pseudo-labels
generated by the old model in the previous step.

It also distills intermediate features by Local POD, as follows:

LLocalPod =
1

L

L∑
l=1

∣∣∣∣Φ(f t
l (I))− Φ(f t−1

l (I))
∣∣∣∣ , (3)
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where L denotes the number of layers, Φ denotes the operation of Local POD
embedding extraction, f t

l (I) denotes the output feature from the layer l with
the input I.
RCIL. RCIL [8] decouple the remembering of old knowledge and the learning of
new knowledge by adding a parallel module composed of a convolution layer and
a normalization layer for each 3×3 convolution module. At step 0, all parameters
are trainable. At the beginning of each incremental step, two branches of the old
model are fused into one frozen branch to memorize the old knowledge, while
the other branch is learnable. A drop path strategy is also used when fusing the
outputs of two branches, which can be denoted as:

xout = η · x1 + (1− η) · x2 , (4)

where xout denotes the fused output, x1 and x2 denotes the outputs from two
branches, and η denotes a channel-wise weight vector. For training process, η
is sampled from the set {0, 0.5, 1} and for evaluation η is set to 0.5. RCIL also
proposed a Pooled Cube Knowledge Distillation, using average pooling operation
on spatial and channel dimensions.

B Results and Analysis of Disjoint Settings

In Disjoint settings, at each step, the bg classifier will not see any future class,
leading to MiB’s initialization struggling in these settings, while our NeST lever-
ages semantic knowledge from old classifiers to generate new classifiers for initial-
ization, the pre-tuning process also benefits the stability of the model. Results
of NeST and baselines on 15-1 Disjoint and 10-1 Disjoint settings are shown
in Tab. 1, indicating that NeST can significantly improve the performance of
previous methods in Disjoint settings.

Table 1: Results of disjoint settings on Pascal VOC 2012 dataset.

Method 15-1 Disjoint 10-1 Disjoint
MiB 38.6 2.0

MiB+NeST 41.0 20.5
PLOP 40.7 12.6

PLOP+NeST 52.7 22.4

C Experiments of COCO-Stuff 10K

To prove the ability to apply our NeST in scenarios with more classes, we intro-
duce another dataset for class incremental semantic segmentation, COCO-Stuff
10K, to evaluate the effectiveness of our method. COCO-Stuff 10K includes 80
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thing classes and 91 stuff classes, which is a subset of the original COCO-Stuff
dataset. We evaluate our NeST on the 80-91 (2 Steps) overlapped setting, which
contains more classes than ADE20K and Pascal VOC 2012. As shown in Tab. 2,
our method can handle scenarios with more classes in one step.

Table 2: Results of 80-91 overlapped setting on COCO-Stuff 10K dataset.

Method 0-80 81-171 all
MiB 40.2 18.6 28.9

MiB+NeST 41.9 20.7 30.7
PLOP 46.1 17.0 30.8

PLOP+NeST 46.0 18.8 31.6

D Comparisons with Transformer-based SOTA Methods

In recent years, many Transformer-based CISS methods have emerged, here we
briefly discuss the differences between NeST and these methods. Comformer [1]
uses a universal segmentation model Mask2Former [3] to do mask classifica-
tion for continual panoptic segmentation and continual semantic segmentation.
CoinSeg [9] introduces a pretrained Mask2Former model as class-agnostic mask
generator. Incrementer [5] sequentially adds tokens of new classes and performs
dot production between features and updated class tokens to generate segmenta-
tion prediction results. The baseline is based on a simple per-pixel classification
model SETR with ViT-B as the backbone, while equipped with NeST, it can
achieve SOTA performances, as shown in Tab. 3. Moreover, NeST has the po-
tential to be integrated into these transformer-based methods, and we leave it
as our future work.

Table 3: Comparisons with Transformer-base SOTA methods.

Method Backbone Model 15-1 15-5 10-1

CoinSeg Swin-B Deeplab+Mask2Former 75.5 77.6 70.5

Incrementer ViT-B Segmenter 75.5 79.9 70.2

MiB ViT-B SETR 53.3 80.2 25.5

MiB+NeST (Ours) ViT-B SETR 76.5 80.3 71.9
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E More Implementation Details

Weight Align. To prevent the new classifiers’ weight from being too large
during the pre-tuning process, we apply Weight Aligning (WA) [10] as follows:

ŵnew = wnew · Mean(Normold)

Mean(Normnew)
(5)

where Normold and Normnew denote norms of old and new classifiers’ weights,
Mean(·) denotes the operation of calculating mean values. Relevant experiment
results in Tab. 4 show that WA can correct the biased weight thus boosting the
performance of NeST.

Table 4: Ablation study of Weight Align for NeST. All performances are reported on
the 15-1 setting.

Method 0-15 16-20 all
MiB+NeST w/o WA 58.4 10.9 47.1
MiB+NeST w/ WA 61.7 20.4 51.8
PLOP+NeST w/o WA 72.5 32.4 62.9
PLOP+NeST w/ WA 72.2 33.7 63.1

Fix old classifiers. We find that the pseudo-labeling strategy may change
the geometric structure of old classifiers severely, which has a detrimental impact
on our method. This phenomenon is particularly obvious on the Pascal VOC
2012 dataset. To preserve the old knowledge learned in previous steps, following
EWF [7], we fix old classifiers in the formal training steps on settings of Pascal
VOC 2012. Relevant experiment results are shown in Tab. 5.

Table 5: Ablation study of fixing previous classifiers for our method based on
PLOP [4]. All performances are reported on the 15-1 setting.

Method 0-15 16-20 all
PLOP w/ fix 56.9 11.3 46.0
PLOP+NeST w/o fix 66.8 20.2 55.7
PLOP+NeST w/ fix 72.2 33.7 63.1

F Further Analysis

Effectiveness of the importance matrix. For plasticity, we learn to generate
a new classifier with relevant old classifiers. In particular, the importance matrix
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Fig. 1: Visualization of the importance matrix on ADE20K 100-5 step1.

can capture the semantic relationship between old and new classifiers on the
channel level. To verify this, we visualize the importance matrix M ∈ R100×256

of the new class van on ADE20K 100-5 step1. We normalized the absolute values
to [0, 1] and a lighter color means a higher value. As shown in Fig. 1, the bg class
(row: 0) and car class (row: 21) make the largest contributions. It is intuitive, as
the class van may appear in old data, labeled as bg, and van and old class car
are closer in semantic relationship.
Different class orders. To evaluate the effectiveness of our method, following
PLOP [4], we use five different class orders of Pascal VOC 2012 15-1 overlapped
setting, as follows:

A : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] ,

B : [0, 12, 9, 20, 7, 15, 8, 14, 16, 5, 19, 4, 1, 13, 2, 11, 17, 3, 6, 18, 10] ,

C : [0, 13, 19, 15, 17, 9, 8, 5, 20, 4, 3, 10, 11, 18, 16, 7, 12, 14, 6, 1, 2] ,

D : [0, 15, 3, 2, 12, 14, 18, 20, 16, 11, 1, 19, 8, 10, 7, 17, 6, 5, 13, 9, 4] ,

E : [0, 7, 5, 3, 9, 13, 12, 14, 19, 10, 2, 1, 4, 16, 8, 17, 15, 18, 6, 11, 20] .

(6)

More qualitative results. More qualitative results are shown in Fig. 2
and Fig. 3. By applying the pre-tuning process, our method can help the model
preserve old knowledge.

Moreover, to validate the effectiveness of the matrix initialization, we also
visualize the class activation map for the last class tv/ monitor. To visualize seg-
mentation CAMs, we adopt the method proposed in [6]. As shown in Fig. 4, with
the designed matrix initialization strategy, the model can pay more attention to
areas of new classes.
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Fig. 2: More qualitative results. All experiments are conducted on the 15-1 setting.
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Fig. 3: More qualitative results. All experiments are conducted on the 15-1 setting.
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Fig. 4: Class activation maps for the last class tv/monitor on the 15-1 setting w/o (the
top row) and w/ (the bottom row) our matrix initialization strategy.
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