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A Evaluation Details

Datasets Statistics. We provide the detailed statistics of 8 fine-grained datasets
and the reference dataset (i.e., ImageNet [5]) in Tab. 4. The splits for training,
validation and test of each dataset basically follow the setting provided by Zhou
et al . [13]. Following the setting proposed in ZSCL [12], we sample 100,000 un-
labeled images from ImageNet as the reference dataset.

Details of Multiple Training Sequences. We introduce Multip Training
Sequences evaluation protocol to thoroughly evaluate every method over different
training sequences in Sec. 4.3. Here we provide the detailed order of tasks for
each sequence in Tab. 5.

B More Implementation Details

Re-Weighted Dual-Teacher Knowledge Distillation Loss. Our proposed
Dual-Teacher Knowledge Distillation loss shows the way to select the appropriate
teacher model for a reference image according to the dual-teacher discrepancy
and selection score η. In practice, there are few reference images with higher
dual-teacher discrepancy. To address this potential imbalance problem, we apply
a loss re-weighting strategy [4] as a post-processing technique. Specifically, the
re-weighted dual-teacher knowledge distillation loss is shown below:

L̃dual
KD = λ ·

∑
x∼X ref

η(x) · Lk−1
KD +

∑
x∼X ref

(1− η(x)) · L0
KD, (7)

where λ is a hyper-parameter to control the imbalance ratio between the KD
loss to the most recent fine-tuned model gk−1 and the KD loss to the pre-trained
model g0. Emprically we set λ = 9 to properly deal with the imbalance issue for
every experiment in this work.
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Table 4: Detailed statistics for each dataset.

Dataset Classes Train Val Test

ImageNet [5] 1,000 1.28M N/A 50,000

Aircraft [8] 100 3,334 3,333 3,333
DTD [3] 47 2,820 1,128 1,692
EuroSAT [6] 10 13,500 5,400 8,100
Flowers-102 [9] 102 4,093 1,633 2,463
Food-101 [1] 101 50,500 20,200 30,300
Oxford-Pets [10] 37 2,944 736 3,669
Stanford-Cars [7] 196 6,509 1,635 8,041
UCF-101 [11] 101 7,639 1,898 3,783

Table 5: The order of tasks for each training sequence.

Sequence 1st Task 2nd Task 3rd Task 4th Task 5th Task 6th Task 7th Task 8th Task

S1 Aircraft DTD EuroSAT Flowers Food Pets Cars UCF101
S2 DTD EuroSAT Flowers Food Pets Cars UCF101 Aircraft
S3 EuroSAT Flowers Food Pets Cars UCF101 Aircraft DTD
S4 Flowers Food Pets Cars UCF101 Aircraft DTD EuroSAT
S5 Food Pets Cars UCF101 Aircraft DTD EuroSAT Flowers
S6 Pets Cars UCF101 Aircraft DTD EuroSAT Flowers Food
S7 Cars UCF101 Aircraft DTD EuroSAT Flowers Food Pets
S8 UCF101 Aircraft DTD EuroSAT Flowers Food Pets Cars

Hyper-Parameters to the η Selection Function. Our proposed η selection
function:

η(x) = σ(
d(gk−1(x), g0(x))− δ

γ
), (8)

involves two hyper-parameters: δ and γ. At a high-level, δ serves as a threshold
that determining whether to select more from gk−1 or g0. As the threshold δ
increases, more reference data points are likely to be assigned values lower than
0.5, i.e., select KD Loss more from g0. On the other hand, γ works as a scaling
factor to scale the value before applying the sigmoid function. As γ → 0, the
selection function move towards a hard selection mechanism, where the η scores
tend to output either 1 or 0, depending on the discrepancy d(gk−1(x), g0(x)).

Tab. 6 provides a sensitivity analysis for hyper-parameters δ and γ. In general,
the performance shows no significant difference when δ = 0.1 or 0.2, hinting that
it is stable enough for a proper range. By default, we select δ = 0.2 and γ = 1/6
across all experiments in this work.

C Different Choices of Reference Datasets

Our Selective Dual-Teacher Knowledge Transfer framework leverages an unla-
beled reference dataset, following the settings in [12]. As mentioned in the limi-
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Table 6: Sensitivity analysis on S1 to the hyper-parameters δ and γ in the η selection
function. We highlight the results of our default setting across all experiments in the
main paper in light red.

δ γ Forgetting (↓) Degradation (↓) Avg. Accuracy (↑)

1/3 1.72 1.58 84.42
1/6 1.68 1.57 84.430.1
1/9 1.65 1.58 84.47

1/3 1.67 1.60 84.46
1/6 1.70 1.55 84.480.2
1/9 1.82 1.86 84.31

1/3 1.81 1.52 84.23
1/6 2.13 1.99 84.030.3
1/9 2.45 1.99 83.93

Table 7: The performance of different reference datasets with varying size. The default
setting for all experiments is marked in light red.

Ref. Dataset Size Forgetting (↓) Degradation (↓) Avg. Accuracy (↑)

ImageNet
10k 1.92 2.12 84.18
100k 1.70 1.55 84.48
200k 1.65 1.11 84.80

Conceptual Captions 12M
10k 2.28 2.17 83.84
100k 1.50 1.88 84.48
200k 1.60 1.25 84.99

tation, the composition and the diversity of the images in the reference dataset
might greatly affect the final performance. To examine the effect, we conduct
ablation studies using different reference datasets (e.g., ConceptualCaptioning
12M [2]) and exploring the impact of varying the size of the reference dataset.
Tab. 7 shows the performance of different reference datasets with varying size.
While increasing the size of the reference dataset typically enhances performance,
empirically there are no significant differences when the size exceeds 100k. By
default, we use ImageNet with 100k images as our reference dataset, which also
aligns with the same settings in [12].

D Experiments Details

Detailed Explanation to the Visualization of Reference Images with
Large η Scores. To illustrate the reference images with the highest η scores, we
train our model on the first sequence S1 (the detailed task orders are shown in
Tab. 5). For each stage k ≥ 2, we calculate the η scores for each reference image
using only the original pre-trained model g0 and the most recent fine-tuned
model gk−1 according to Eq. (2). Then, we select the Top-25 images with the
highest η scores. Given that the visual concepts in some datasets are challenging
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Fig. 7: Example images selected from the reference dataset with large η scores. Left:
Top-25 reference images selected after fine-tuning on the Flowers Dataset. Right: Top-
25 reference images selected after fine-tuning on the Food Dataset.

to depict (e.g ., EuroSAT, UCF101), we focus our visualizations on datasets with
more concrete concepts, such as Flowers and Food, as visualized in Fig. 7.

Detailed results for Catastrophic Forgetting and Zero-Shot Degrada-
tion. In Fig. 4 and Fig. 5, we present examples of the assessment of catastrophic
forgetting for the first task and evaluation of zero-shot degradation for the last
task, respectively. Here we plot the impact of catastrophic forgetting on the
first task and the impact of zero-shot degradation on the last task across each
sequence in Fig. 8 and Fig. 9. For catastrophic forgetting, our method clearly
outperform other methods by stably preserving the performance on the previ-
ously fine-tuned task (1st task in this case). Regarding the issue of zero-shot
degradation, our method effectively maintains the original zero-shot capabilities
in most scenarios, highlighting our success in preserving both pre-trained and
previously fine-tuned knowledge across diverse datasets and various sequences.

E The Training Algorithm of Our Proposed Framework

As discussed in Sec. 3.3, we provide the detailed training algorithm of our Se-
lective Dual-Teacher Knowledge Transfer framework in Algorithm 1.
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Algorithm 1 Selective Dual-Teacher Knowledge Transfer
Input: A pre-trained VLM g0, hyper-parameters δ, γ, λdual.
Data: A sequence of training tasks S = (T 1, · · · , T K) and a reference dataset X ref.
Output: The final fine-tuned model gK .
1: for k in 1 : K do
2: Freeze g0 as the pre-trained knowledge teacher.
3: Freeze gk−1 as the previously fine-tuned knowledge teacher.
4: Initialize the current model gk by gk−1.
5: for e in E do
6: while not traverse over all current data T k do
7: Sample a batch of current data Bk.
8: Sample a batch of ref data Bref.
9: Calculate LCE with the current data Bk.

10: Calculate Eq. (3) with g0, gk−1, and Bref.
11: Update gk with loss function Eq. (4).
12: end while
13: end for
14: end for
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Fig. 8: Assessment of catastrophic forgetting with the first task in the continual learn-
ing sequence (i.e., the horizontal axis). It can be seen that our method is able to
maintain their accuracies at the end of learning sequence.
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Fig. 9: Assessment of zero-shot degradation with the last task in the continual learning
sequence (i.e., the horizontal axis). It can be seen that our method shows satisfactory
accuracies before finetuning on the last task
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