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Abstract. Addressing the dual challenges of local redundancy and global
dependencies in video understanding, this work innovatively adapts the
Mamba to the video domain. The proposed VideoMamba overcomes the
limitations of existing 3D convolution neural networks (CNNs) and video
transformers. Its linear-complexity operator enables efficient long-term
modeling, which is crucial for high-resolution long video understanding.
Extensive evaluations reveal VideoMamba’s four core abilities: (1) Scala-
bility in the visual domain without extensive dataset pretraining, thanks
to a novel self-distillation technique; (2) Sensitivity for recognizing short-
term actions even with fine-grained motion differences; (3) Superiority
in long-term video understanding, showcasing significant advancements
over traditional feature-based models; and (4) Compatibility with other
modalities, demonstrating robustness in multi-modal contexts. Through
these advantages, VideoMamba sets a new benchmark, offering a scalable
and efficient solution for comprehensive video understanding.
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1 Introduction

The core objective for video understanding lies in mastering spatiotemporal
representations, which presents two formidable challenges: large spatiotempo-
ral redundancy in short video clips and complex spatiotemporal dependencies in
long contexts. Although the once-dominant 3D CNNs [9,20,77] and video trans-
formers [2, 4] effectively tackle one of these challenges by leveraging either local
convolution or long-range attention, they fall short in addressing both simulta-
neously. UniFormer [44] attempts to integrate the advantages of both methods,
but it struggles with modeling long videos, which has been the major trend in
recent research on video understanding [48,73] and generation [5, 92].
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Fig. 1: Comparisons of throughput and memory. The TimeSformer-Ti [4] is built
based on DeiT-Ti [76] with joint spatiotemporal attention. Our VideoMamba is better,
faster and cheaper for both short-term and long-term video understanding.

The emergence of low-cost operators such as S4 [26], RWKV [74], and Ret-
Net [71] in the NLP domain, has carved a novel pathway for the vision model.
Mamba [25] stands out with its selective state space model (SSM), striking a bal-
ance between maintaining linear complexity and facilitating long-term dynamic
modeling. This innovation has spurred its adoption in vision tasks, as evidenced
by Vision Mamba [91] and VMamba [50], which leverage multi-directional SSMs
for enhanced 2D image processing. These models rival attention-based archi-
tectures in performance while offering a significant reduction in memory usage.
Given the inherently longer sequences produced by video, a natural question
arises: Can Mamba work well for video understanding?

Inspired by this, we introduce VideoMamba, a purely SSM-based model tai-
lored for video understanding. VideoMamba harmoniously merges the strengths
of convolution and attention in vanilla ViT [16] style. It offers a linear-complexity
method for dynamic spatiotemporal context modeling, ideal for high-resolution
long videos. The related evaluation focuses on VideoMamba’s four key abilities:

(1) Scalability in the Visual Domain: We examine VideoMamba’s scal-
ability and find that, while the pure Mamba model tends to overfit as it scales,
our introduction of a simple yet effective self-distillation strategy allows Video-
Mamba to achieve remarkable performance enhancements as the model and input
sizes increase, without the need for large-scale dataset pretraining.

(2) Sensitivity for Short-term Action Recognition: Our analysis ex-
tends to assessing VideoMamba’s capability to accurately distinguish short-term
actions, especially those with fine-grained motion differences, e.g., opening and
closing. The findings reveal VideoMamba’s superior performance over existing
attention-based models [2,4,52]. More importantly, it is also suitable for masked
modeling, which further enhances its temporal sensitivity.

(3) Superiority in Long-term Video Understanding : We then assess
VideoMamba’s prowess in interpreting long videos. It showcases remarkable su-
periority over conventional feature-based methods [36, 47] through end-to-end
training. Notably, VideoMamba operates 6⇥ faster than TimeSformer [4] and
demands 40⇥ less GPU memory for 64-frame videos (see Fig. 1).
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(4) Compatibility with Other Modalities: Lastly, we assess VideoMamba’s
adaptability with other modalities. Results in video-text retrievals show its im-
proved performance than ViT, particularly in long videos with complex scenar-
ios. This underscores its robustness and multi-modal integration capacity.

In conclusion, our experiments reveal VideoMamba’s potential in understand-
ing both short-term (K400 [37] and SthSthV2 [24]) and long-term (Breakfast [38],
COIN [72], and LVU [86]) video contents. Given its efficiency and effectiveness,
VideoMamba is poised to become a cornerstone in long-video comprehension.

2 Related Works

2.1 State Space Models

Recently, State Space Models (SSMs) have shown significant effectiveness in cap-
turing the dynamics and dependencies of language sequences. [26] introduces a
structured state-space sequence model (S4), designed to model long-range depen-
dencies with linear complexity. Based on it, various models have been developed
(e.g., S5 [67], H3 [21], and GSS [57]). Mamba [25] distinguishes itself by in-
troducing a data-dependent SSM layer and a selection mechanism using parallel
scan (S6). Compared to transformers [6,54] with quadratic-complexity attention,
Mamba excels at processing long sequences with linear complexity.

In the vision domain, [26] first applies SSM in pixel-level image classifica-
tion, and [36] uses S4 to handle long-range temporal dependencies for movie
clip classification. Mamba’s potential has motivated a series of works [11,28,30,
32, 46, 50, 56, 79, 80, 88, 91], demonstrating better performance and higher GPU
efficiency than Transformers on visual tasks like object detection and seman-
tic segmentation. Unlike previous works, our VideoMamba is the first purely
SSM-based video model, demonstrating exceptional efficiency and effectiveness
in both short-term and long-term video understanding.

2.2 Video Understanding

Video understanding is a cornerstone of computer vision, amplified by the growth
of short video platforms. To advance this field, numerous datasets with extensive
data and meticulous human annotations have been developed to enhance action
recognition. Notable examples include UCF101 [68] and Kinetics [7,8,37], which
have been pivotal in benchmarking progress. Other datasets [22, 27, 31, 35, 49,
63] provide annotated activity videos for action localization, fostering deeper
research into human activities. Beyond action recognition, large-scale video-text
datasets [10, 13, 58, 84, 87, 89] extend video understanding into multi-modality
tasks like video captioning, retrieval, and question answering.

The architecture has evolved from CNNs to more advanced techniques. Ini-
tially, 3D CNNs [9, 18, 77, 78] expanded traditional 2D CNNs to capture spa-
tiotemporal information. Two-Stream [66], TSN [82], and SlowFast [20] further
enhanced action recognition by combining spatial and temporal streams, propos-
ing sparse sampling, and using parallel networks, respectively. Attention-based
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Fig. 2: Mamba blocks for 1D [25] and 2D [91] sequence. We omit the initial
normalization and the final residual for simplification.

models [2,4,60,64,90] like TimeSformer [4] and ViViT [2] significantly advanced
the field by capturing long-range dependencies, improving temporal relation-
ship understanding. Recent models [42,44,52,85] have focused on efficient video
transformers, with innovations like VideoSwin’s window attention [52] and Uni-
Former’s integration of convolution and self-attention [44], balancing computa-
tional efficiency with performance. Despite these advancements, high computa-
tional costs remain for long sequences. In contrast, our VideoMamba introduces
a linear-complexity operator for efficient long-term modeling, outperforming ex-
isting methods with faster speed and lower GPU consumption.

3 Method

3.1 Preliminaries

SSM for 1D sequence. State Space Models (SSMs) are conceptualized based
on continuous systems that map a 1D function or sequence, x(t) 2 RL ! y(t) 2
RL through a hidden state h(t) 2 RN . Formally, SSMs employ the following
ordinary differential equation (ODE) to model the input data:

h0(t) = Ah(t) +Bx(t), (1)
y(t) = Ch(t), (2)

where A 2 RN⇥N represents the system’s evolution matrix, and B 2 RN⇥1,C 2
RN⇥1 are the projection matrices. This continuous ODE is approximated through
discretization in modern SSMs. Mamba [25] is one of the discrete versions of the
continuous system, which includes a timescale parameter � to transform the
continuous parameters A,B to their discrete counterparts A,B. The transfor-
mation typically employs the zero-order hold (ZOH) method, defined by:

A = exp(�A), (3)
B = (�A)�1(exp(�A)� I) ·�B (4)
ht = Aht�1 +Bxt, (5)
yt = Cht. (6)
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Fig. 3: Framework of VideoMamba. We strictly follow the architecture of vanilla
ViT [16], and adapt the bidirectional mamba block [91] for 3D video sequences.

Contrary to traditional models that primarily rely on linear time-invariant
SSMs, Mamba distinguishes itself by implementing a Selective Scan Mechanism
(S6) as its core SSM operator. Within S6, the parameters B 2 RB⇥L⇥N , C 2
RB⇥L⇥N , and � 2 RB⇥L⇥D are directly derived from the input data x 2
RB⇥L⇥D, indicating an intrinsic capacity for contextual sensitivity and adaptive
weight modulation. Fig. 2a shows the details of the Mamba block.
Bidirectional SSM for Vision. The original Mamba block, designed for 1D
sequences, falls short for visual tasks requiring spatial awareness. Building on
this, Vision Mamba introduces a bidirectional Mamba (B-Mamba) block in Fig.
2b, which adapts bidirectional sequence modeling for vision-specific applications.
This block processes flattened visual sequences through simultaneous forward
and backward SSMs, enhancing its capacity for spatially-aware processing. In
this work, we extend the B-Mamba block for 3D video understanding.

3.2 VideoMamba

Overview. Fig. 3 illustrates the overall framework of VideoMamba. Specifi-
cally, we first use 3D convolution (i.e., 1⇥16⇥16) to project the input videos
Xv 2 R3⇥T⇥H⇥W into L non-overlapping spatiotemporal patches Xp 2 RL⇥C ,
where L=t⇥h⇥w (t=T , h=H

16 , and w=W

16 ). The sequence of tokens input to the
following VideoMamba encoder is

X = [Xcls,X] + ps + pt, (7)

where Xcls is a learnable classification token that is prepended to the start of
the sequence. Following previous works [2, 4, 16], we added a learnable spatial
position embedding ps 2 R(hw+1)⇥C and the extra temporal one pt 2 Rt⇥C

to retain the spatiotemporal position information, since the SSM modeling is
sensitive to token position. The tokens X are then passed through by L stacked
B-Mamba blocks, and the representation of [CLS] token at the final layer is
processed by normalization and linear layer for classification.
Spatiotemporal Scan. To apply the B-Mamba layer to spatiotemporal input,
we extend the original 2D scan into different bidirectional 3D scans in Fig. 4: (a)
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Fig. 4: Different scan methods. We omit the [CLS] token for simplification.

Spatial-First, organizing spatial tokens by location, then stacking them frame
by frame; (b) Temporal-First, arranging temporal tokens by frame, then stack-
ing them along the spatial dimension; (c) Spatiotemporal, a hybrid of Spatial-
First and Temporal-First, with v1 conducting half and v2 conducting full (2⇥
computation). Our experiments in Fig. 7a demonstrate that the Spatial-First
bidirectional scan is the most effective and simple. Thanks to Mamba’s linear
complexity, our VideoMamba can efficiently handle long, high-resolution videos.
Comparison to Vim [91] and VMamba [50]. Our VideoMamba builds
upon Vim, streamlining its architecture by omitting the middle [CLS] token
and Rotary Position Embedding (RoPE [69]), resulting in superior performance
on ImageNet-1K with gains of +0.8% and +0.7% for Vim-Ti and Vim-S,
respectively. Unlike VMamba, which incorporates additional depthwise convolu-
tion, VideoMamba strictly follows the ViT design without downsampling layers.
To counter overfitting issues observed in VMamba, we introduce an effective
self-distillation technique outlined in Section 3.3, demonstrating VideoMamba’s
great scalability for image and video tasks.
Comparison to TimeSformer [4] and ViViT [2]. Traditional attention-
based models like TimeSformer and ViViT address the self-attention mecha-
nism’s quadratic complexity by adopting divided spatiotemporal attention. De-
spite being more efficient, it introduces additional parameters and underperforms
compared to joint attention, particularly in masked pretraining scenarios [43,75].
In contrast, VideoMamba processes spatiotemporal tokens with linear complex-
ity, outperforming TimeSformer on Kinetics-400 by +2.6% and making signifi-
cant strides on SthSthV2 with a +5.9% improvement (see Table 3 and 4). Fur-
thermore, VideoMamba achieves a 6⇥ increase in processing speed and requires
40⇥ less GPU memory for long videos (see Fig. 1, demonstrating its efficiency
and effectiveness in handling long-video tasks.

3.3 Architecture
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Fig. 5: Different masking strategies. Row masking, tailored for VideoMamba in
light of the 1D convolution preceding SSM, enhances performance with continuous
tokens. The difference between clip-row and frame-row masking is that the former
masks the entire video clip, while the latter masks each frame individually.

Table 1: Different model sizes.

Base model is finally excluded due
to its suboptimization.

Model #Depth #Dim #Param.

Tiny 24 192 7M
Small 24 384 26M
Middle 32 576 74M
Base 24 768 98M

For SSM in the B-Mamba layer, we adopt the
default hyperparameters as in Mamba [25].
setting the state dimension and expansion
ratio to 16 and 2, respectively. Following
ViT [16], we adjust the depth and embedding
dimensions to create models of comparable
sizes in Table 1, including VideoMamba-Ti,
VideoMamba-S and VideoMamba-M. How-
ever, we observe that larger VideoMamba
tends to overfit during our experiments, leading to suboptimal performance as
illustrated in Fig. 6a. This overfitting issue is not unique to our models but
is also found in VMamba [50], where the optimal performance of VMamba-B
was achieved at three-quarters of the total training epochs. To counteract the
overfitting in larger Mamba models, we introduce an effective Self-Distillation
strategy, which uses a smaller and well-trained model as the “teacher” to guide
the training of the larger “student” model. The results, depicted in Fig. 6a, show
that this strategy leads to expected better convergence.

3.4 Masked Modeling

Recently, VideoMAE and ST-MAE [19,75] have showcased the significant bene-
fits of masked modeling in enhancing a model’s capability for FINE-GRAINED
temporal understanding. UMT [43] takes this further by introducing an efficient
masked alignment technique that yields robust results across single and multi-
modal video tasks. To augment VideoMamba’s temporal sensitivity and verify
its adaptability with text modalities, we adopt a masked alignment approach
inspired by UMT. Firstly, VideoMamba is trained from scratch on video data
alone, aligning unmasked tokens with those from CLIP-ViT. Subsequently, it is
integrated with a text encoder and a cross-modal decoder (i.e., BERT [15]), for
pretraining on both image-text and video-text datasets.
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Fig. 6: Ablation studies of Self-Distillation and Early Stopping.

Note that different from UMT, which employs multi-layer alignment between
student and teacher models, we align only the final outputs due to VideoMamba’s
unique architecture (SSM vs. Transformer), Regarding our masking strategy,
we propose different row masking techniques, depicted in Fig. 5, tailored to
the B-Mamba block’s preference for continuous tokens. Additionally, we explore
attention masking to preserve meaningful adjacency among tokens, leveraging
the 1D convolution within the B-Mamba block for improved performance.

4 Experiments

4.1 Scaling Up

Dataset and Settings. We first conduct experiments on ImageNet-1K [14],
which includes 1.28M training images and 50K validation images across 1,000
categories. For fair comparisons, we follow most of the training strategies of
DeiT [76], but adopt weaker data augmentation for the tiny variant. We adjust
the stochastic depth ratio to 0/0.15/0.5 for VideoMamba-Ti/S/M. Our mod-
els are trained using the AdamW optimizer with a cosine learning rate schedule
over 300 epochs, with the initial 5 epochs for linear warm-up. Default settings for
the learning rate, weight decay, and batch size are 1e-3, 0.05, and 1024, respec-
tively. We use BFloat16 precision during training to enhance stability without
EMA. For the VideoMamba-M model, we employ a pretrained VideoMamba-S
model as a “teacher” to guide the training process by aligning the final feature
maps through L2 loss. For large resolution (>224) fine-tuning, we use a reduced
learning rate (5e-6) and minimal weight decay (1e-8) for 30 epochs.
Effect of Self-Distillation. Fig. 6a reveals that when trained from scratch,
VideoMamba-B tends to overfit more easily and underperforms compared to
VideoMamba-S, whereas VideoMamba-M achieves similar performances. Fortu-
nately, our self-distillation has shown to be effective in achieving the desired op-
timization with marginal additional computational cost. To mitigate teacher’s
potential overdirection, we experimented with early stopping [12] in Fig. 6b,
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Table 2: Comparison with the state-of-the-art on ImageNet. “iso.” means
isotropic architecture without downsampling layers.

Arch. Model iso. Input #Param FLOPs IN-1K

Size (M) (G) Top-1

CNN

ConvNeXt-T [53] 7 2242 29 4.5 82.1
ConvNeXt-S [53] 7 2242 50 8.7 83.1
ConvNeXt-B [53] 7 2242 89 15.4 83.8

Trans.
SwinT-T [51] 7 2242 28 4.5 81.3
Swin-S [51] 7 2242 50 8.7 83.0
Swin-B [51] 7 2242 88 15.4 83.5

CNN+
SSM

VMamba-T [50] 7 2242 22 5.6 82.2
VMamba-S [50] 7 2242 44 11.2 83.5
VMamba-B [50] 7 2242 75 18.0 83.7

CNN ConvNeXt-S [53] 3 2242 22 4.3 79.7
ConvNeXt-B [53] 3 2242 87 16.9 82.0

Trans.

DeiT-Ti [76] 3 2242 6 1.3 72.2
DeiT-S [76] 3 2242 22 4.6 79.8
DeiT-B [76] 3 2242 87 17.6 81.8
DeiT-B [76] 3 3842 87 55.5 83.1

SSM

S4ND-ViT-B [59] 3 2242 89 - 80.4
Vim-Ti [91] 3 2242 7 1.1 76.1
Vim-S [91] 3 2242 26 4.3 80.5
VideoMamba-Ti 3 2242 7 1.1 76.9
VideoMamba-Ti 3 4482 7 4.3 79.3
VideoMamba-S 3 2242 26 4.3 81.2
VideoMamba-S 3 4482 26 16.9 83.2
VideoMamba-M 3 2242 74 12.7 82.8
VideoMamba-M 3 4482 75 50.4 83.8
VideoMamba-M 3 5762 75 83.1 84.0

although it did not yield beneficial outcomes. These findings indicate that self-
distillation offers a viable strategy for enhancing the scalability of the Mamba
architecture without significant computational overhead.
Results. Table 2 showcases the results on the ImageNet-1K dataset. Notably,
VideoMamba-M outperforms other isotropic architectures by significant mar-
gins, achieving a +0.8% improvement over ConvNeXt-B [53] and a +2.0% in-
crease compared to DeiT-B [76], while utilizing fewer parameters. Additionally,
VideoMamba-M holds its ground against non-isotropic backbones that lever-
age hierarchical features for enhanced performance. Given Mamba’s efficiency
in processing long sequences, we further enhance performance by increasing the
resolution, achieving a top-1 accuracy of 84.0% with only 74M parameters.
This remarkable improvement extends to video tasks, as detailed in Section 4.2,
underscoring VideoMamba’s effectiveness and scalability.

4.2 Short-term Video Understanding

Datasets and Settings. We evaluate VideoMamba on the scene-related Kinetics-
400 [37] and temporal-related Something-Something V2 [24], with average video
lengths of 10s and 4s, respectively. For supervised pretraining, we fine-tune mod-
els pretrained on ImageNet-1K using the same strategy as VideoMAE [75].
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Table 3: Comparison with the state-of-the-art on scene-related Kinetics-400.

“iso.” means isotropic architecture without downsampling layers. Masked modeling [43]
also works for Mamba, but the inconsistent architecture leads to inferior alignment.

Arch. Model iso. Extra Input #Param FLOPs K400

Data Size (M) (G) Top-1 Top-5

Supervised: Those models with extra data are under supervised training.

CNN SlowFastR101+NL [20] 7 80⇥2242 60 234⇥3⇥10 79.8 93.9
X3D-XL [18] 7 16⇥3122 20 194⇥3⇥10 80.4 94.6

Trans.
Swin-T [52] 7 IN-1K 32⇥2242 28 88⇥3⇥4 78.8 93.6
Swin-B [52] 7 IN-1K 32⇥2242 88 88⇥3⇥4 80.6 94.5
Swin-B [52] 7 IN-21K 32⇥2242 88 282⇥3⇥4 82.7 95.5

CNN+
Trans.

MViTv1-B [17] 7 32⇥2242 37 70⇥1⇥5 80.2 94.4
MViTv2-S [45] 7 16⇥2242 35 64⇥1⇥5 81.0 94.6
UniFormer-S [44] 7 IN-1K 16⇥2242 21 42⇥1⇥4 80.8 94.7
UniFormer-B [44] 7 IN-1K 32⇥2242 50 259⇥3⇥4 83.0 95.4

Trans.
STAM [64] 3 IN-21K 64⇥2242 121 1040⇥1⇥1 79.2 -
TimeSformer-L [4] 3 IN-21K 96⇥2242 121 2380⇥3⇥1 80.7 94.7
ViViT-L [2] 3 IN-21K 16⇥2242 311 3992⇥3⇥4 81.3 94.7

SSM

VideoMamba-Ti 3 IN-1K 16⇥2242 7 17⇥3⇥4 78.1 93.5
VideoMamba-Ti 3 IN-1K 32⇥2242 7 34⇥3⇥4 78.8 93.9
VideoMamba-S 3 IN-1K 16⇥2242 26 68⇥3⇥4 80.8 94.8
VideoMamba-S 3 IN-1K 32⇥2242 26 135⇥3⇥4 81.5 95.2
VideoMamba-M 3 IN-1K 16⇥2242 74 202⇥3⇥4 81.9 95.4
VideoMamba-M 3 IN-1K 32⇥2242 74 403⇥3⇥4 82.4 95.7
VideoMamba-M 3 IN-1K 64⇥3842 74 2368⇥3⇥4 83.3 96.1

Self-supervised: For UMT, the CLIP-400M is used in pretrained teacher.

Trans.

BEVT-B800e [83] 7 IN-1K 32⇥2242 88 282⇥3⇥4 81.1 -
VideoMAE-S2400e [75] 3 16⇥2242 22 57⇥3⇥5 79.0 93.8
VideoMAE-B1600e [75] 3 16⇥2242 87 180⇥3⇥5 81.5 95.1
UMT-B800e [43] 3 CLIP-400M 8⇥2242 87 180⇥3⇥5 85.7 97.0

SSM

VideoMamba-M800e 3 CLIP-400M 8⇥2242 74 101⇥3⇥4 82.0 95.4
VideoMamba-M800e 3 CLIP-400M 16⇥2242 74 202⇥3⇥4 83.4 95.9
VideoMamba-M800e 3 CLIP-400M 32⇥2242 74 403⇥3⇥4 83.9 96.2
VideoMamba-M800e 3 CLIP-400M 64⇥3842 74 2368⇥3⇥4 85.0 96.9

Specifically, for VideoMamba-M, the warmup epoch, total epoch, stochastic
depth rate, and weight decay are set to 5, 50, 0.8, and 0.05 for K400, and 5,
30, 0.8, and 0.05 for SthSth. For smaller models, all hyperparameters are the
same except for a decreased stochastic depth rate and increased training epochs.
We linearly scale the base learning rates according to batch size: 2e�4 · batchsize

256

for K400 and 4e�4 · batchsize256 for SthSth. For self-supervised pretraining, we adopt
the UMT [43] recipe, using CLIP-ViT-B [61] to distill VideoMamba-M over 800
epochs. During fine-tuning, we use similar hyperparameters but opt for a smaller
stochastic depth rate and learning rate for both datasets.
Results. Table 3 and 4 list the results on short-term video datasets. (a) Super-

vised : Compared with the purely attention-based methods [2,4], our SSM-based
VideoMamba-M secures a notable advantage, outperforming ViViT-L [2] by
+2.0% and +3.0% on the scene-related K400 and the temporally-related Sth-
SthV2 datasets, respectively. This improvement comes with significantly reduced
computational demands and less pretraining data. Furthermore, VideoMamba-M
delivers results that are on par with the SOTA UniFormer [44], which skillfully
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Table 4: Comparison with the state-of-the-art on temporal-related SthSth

V2. “iso.” means isotropic architecture without downsampling layers. Masked model-
ing [43] also works for Mamba, and it performs better than VideoMAE.

Arch. Model iso. Extra Input #Param FLOPs SSV2

Data Size (M) (G) Top-1 Top-5

Supervised: Those models with extra data are under supervised training.

CNN
SlowFastR101 [20] 7 K400 32⇥2242 53 106⇥3⇥1 63.1 87.6
CT-NetR50 [41] 7 IN-1K 16⇥2242 21 75⇥1⇥1 64.5 89.3
TDNR50 [81] 7 IN-1K 16⇥2242 26 75⇥1⇥1 65.3 91.6

Trans. Swin-B [52] 7 K400 32⇥2242 89 88⇥3⇥1 69.6 92.7

CNN+
Trans.

MViTv1-B [17] 7 K400 32⇥2242 37 170⇥3⇥1 67.1 90.8
MViTv2-B [45] 7 K400 32⇥2242 51 225⇥3⇥1 70.5 92.7
UniFormer-S [44] 7 IN-1K+K400 16⇥2242 21 42⇥3⇥1 67.7 91.4
UniFormer-B [44] 7 IN-1K+K400 16⇥2242 50 97⇥3⇥1 70.4 92.8

Trans. TimeSformer-HR [4] 3 IN-21K 16⇥2242 121 1703⇥3⇥1 62.5 -
ViViT-L [2] 3 IN-21K+K400 16⇥2242 311 3992⇥3⇥4 65.4 89.8

SSM

VideoMamba-Ti 3 IN-1K 8⇥2242 7 9⇥3⇥2 65.1 89.1
VideoMamba-Ti 3 IN-1K 16⇥2242 7 17⇥3⇥2 66.0 89.6
VideoMamba-Ti 3 IN-1K 16⇥2882 7 28⇥3⇥2 66.2 90.0
VideoMamba-S 3 IN-1K 8⇥2242 26 34⇥3⇥2 66.6 90.4
VideoMamba-S 3 IN-1K 16⇥2242 26 68⇥3⇥2 67.6 90.9
VideoMamba-S 3 IN-1K 16⇥2882 26 112⇥3⇥2 68.1 91.2
VideoMamba-M 3 IN-1K 8⇥2242 74 101⇥3⇥4 67.3 91.0
VideoMamba-M 3 IN-1K 16⇥2242 74 202⇥3⇥4 68.3 91.4
VideoMamba-M 3 IN-1K 16⇥2882 74 333⇥3⇥4 68.4 91.6

Self-supervised: For UMT, the CLIP-400M is used in pretrained teacher.

Trans.

BEVT-B800e [83] 7 IN-1K+K400 32⇥2242 88 321⇥3⇥1 70.6 -
VideoMAE-S2400e [75] 3 16⇥2242 22 57⇥3⇥2 66.8 90.3
VideoMAE-B2400e [75] 3 16⇥2242 87 180⇥3⇥2 70.8 92.4
UMT-B800e [43] 3 CLIP-400M 8⇥2242 87 180⇥3⇥2 70.8 92.6

SSM
VideoMamba-M800e 3 CLIP-400M 8⇥2242 74 101⇥3⇥2 70.2 92.6
VideoMamba-M800e 3 CLIP-400M 16⇥2242 74 202⇥3⇥2 71.0 92.7
VideoMamba-M800e 3 CLIP-400M 16⇥2882 74 333⇥3⇥2 71.4 92.9

integrates convolution with attention in a non-isotropic structure. (b) Self-

supervised : The performance of VideoMamba under masked pretraining sur-
passes that of the VideoMAE [75], known for its proficiency in fine-grained ac-
tion. This achievement underscores the potential of our purely SSM-based model
in efficiently and effectively understanding short-term videos, highlighting its
suitability for both supervised and self-supervised learning paradigms.
Ablation Studies. Through comprehensive ablation studies detailed in Fig. 7
and Table 5, we explore various aspects of our model. (a) Scan Type: Among
all methods, the spatial-first approach is the most effective, while the temporal-
first strategy is the worst. The superiority of the spatial-first method is due to
its ability to leverage 2D pretrained knowledge by scanning frame by frame.
(b) Frame and Resolution: Contrary to findings from ImageNet (see Table
2), higher resolution does not uniformly lead to better performance. Increasing
the number of frames consistently enhances results on the K400 dataset. How-
ever, this is not the case with SthSthV2, possibly due to the brief duration of its
videos, which may not accommodate longer inputs effectively. (c) Masked Pre-

training : Our findings reveal that row masking, being particularly compatible
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Type SSV2

SF-Bidirectional 65.1

TF-Bidirectional 62.4
ST-Bidirectional v1 63.9
ST-Bidirectional v2 64.2
Half-SF + Half-TF 64.0
Half-TF + Half-SF 64.1
Alternative SF&TF 65.1

(a) Scan Type. Spatial-First
scan is simple yet effective. (b) Frame & Resolution for K400 and SSV2.

Fig. 7: Ablation studies of scan type, frame and resolution. All the models are
fine-tuned from VideoMamba-Ti pretrained on ImageNet.

Table 5: Ablation studies of masked pretraining. We adopt CLIP-ViT-B [61] as
a teacher to distill VideoMamba-M for 200 epochs.

Type SSV2

Random 67.4
Tube 66.3
Clip-Row 68.2
Frame-Row 67.8
Attention 68.5

(a) Mask Type.

Layer SSV2

Last 1 68.5

Last 2 68.4
Last 6 68.2
Last 6⇥2 67.7

(b) Alignment Layer.

Ratio SSV2

50% 68.1
65% 68.4
80% 68.5

90% 68.2
(c) Mask Ratio.

DP SSV2

0.1 68.0
0.2 68.2
0.3 68.4
0.4 68.5

(d) Droppath.

with 1D convolution, outperforms random and tube masking. Clip-row masking
excels due to its higher degree of randomness. Attention masking stands out
as the most efficient by preserving adjacent meaningful content. Aligning only
the model’s final output is most effective, likely due to architectural differences.
Lastly, an optimal masking ratio (80%) combined with stronger regularization
significantly benefits VideoMamba during masked pretraining.

4.3 Long-term Video Understanding

Datasets and Settings. We rigorously assess VideoMamba’s proficiency in
processing long-term videos using three comprehensive datasets: Breakfast [38],
COIN [72], and Long-form Video Understanding (LVU [86]). Breakfast comprises
1,712 videos of 10 intricate cooking activities over 77 hours. COIN features 11,827
videos across 180 procedural tasks, averaging 2.36 minutes. The LVU benchmark
includes approximately 30K movie clips lasting 1 to 3 minutes, encompassing
nine tasks across three categories: content understanding, metadata prediction,
and user engagement. For regression tasks, we evaluate using mean-squared error;
for classification tasks, accuracy is the metric of choice. Unlike prior studies [36,
47] that rely on features from pretrained video models like Swin-B [51] trained
on Kinetics-600, our method uses end-to-end training as detailed in Section 4.2.
For fair comparisons, we fine-tune our models pretrained on K400.
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Table 6: Comparison with the state-of-the-art on Breakfast and COIN.

“e2e” means end-to-end methods without exhausting feature extraction. “†” marks
the backbone with masked pretraining.

Method e2e Backbone Neck Type
Pretraining BF COIN

Dataset Top-1 Top-1

Timeception [33] 7 3D-ResNet Conv. IN-1K+K400 71.3 -
VideoGraph [34] 7 I3D Conv.+Atten. IN-1K+K400 69.5 -
Distant Supervision [47] 7 TimeSformer Atten. w/ KB IN-21K+HTM 89.9 90.0

ViS4mer [36] 7 Swin-B SSM IN-21K+K600 88.2 88.4
Turbof32 [29] 3 VideoMAE-B K400 86.8 82.3
Turbof32 [29] 3 VideoMAE-B K400+HTM-AA 91.3 87.5
VideoMambaf32 3 VideoMamba-Ti K400 94.3 86.2
VideoMambaf64 3 VideoMamba-Ti K400 94.3 87.0
VideoMambaf32 3 VideoMamba-S K400 95.3 88.4
VideoMambaf64 3 VideoMamba-S K400 97.4 88.7
VideoMambaf32 3 VideoMamba-M K400 94.8 88.3
VideoMambaf64 3 VideoMamba-M K400 95.8 89.5
VideoMambaf32 3 VideoMamba-M† K400 97.9 89.6
VideoMambaf64 3 VideoMamba-M† K400 96.9 90.4

Table 7: Comparison with the state-of-the-art on LVU. “e2e” means end-to-
end methods without exhausting feature extraction. “Rel.”, “Dir.” and “Wtr.” refers to
“Relation”, “Director” and “Writer”, respectively.

Method e2e Backbone Content(") Metadata(") User(#)
Rel. Speak Scene Dir. Genre Wtr. Year Like View

VideoBERT [70] 7 S3D 52.80 37.90 54.90 47.30 51.90 38.50 36.10 0.32 4.46
Object Trans. [86] 7 ResNet 53.10 39.40 56.90 51.20 54.60 34.50 39.10 0.23 3.55
Orthoformer [36] 7 ViT-L 50.00 39.30 66.27 55.14 55.79 47.02 43.35 0.29 3.86
ViS4mer [36] 7 ViT-L 57.14 40.79 67.44 62.61 54.71 48.80 44.75 0.26 3.63
VideoMambaf32 3 VM-Ti 62.50 40.43 70.37 67.29 65.24 52.98 48.23 0.26 2.90

Results. As illustrated in Figure 1, the linear complexity of VideoMamba makes
it well-suited for end-to-end training with long-duration videos. The comparisons
in Tables 6 and 7 highlight VideoMamba’s simplicity and effectiveness against
traditional feature-based methods [36,47] on these tasks. It yields significant per-
formance improvements, achieving SOTA results even with smaller model sizes.
For example, VideoMamba-Ti shows a notable increase of +6.1% over ViS4mer
using Swin-B features and a +3.0% uplift against Turbo’s multi-modality align-
ment approach [29]. Notably, the results underscore the positive impact of the
scaling model and frame numbers for long-term tasks. In the diverse and chal-
lenging set of nine tasks presented by LVU, our VideoMamba-Ti, fine-tuned in
an end-to-end manner, delivers outstanding or comparable results to current
SOTA methods. These outcomes not only highlight VideoMamba’s effectiveness
but also its great potential for future long-video comprehension.

4.4 Multi-modality Video Understanding

Datasets and Settings. Following UMT [43], we utilize WebVid-2M [3] video-
text pairs and CC3M [65] image-text pairs for joint pretraining with four ob-
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Table 8: Zero-shot text-to-video retrieval on MSRVTT, DiDeMo, Acitivi-

tyNet, LSMDC, and MSVD. “BB” means the visual backbone. “#P” refers to the
number of pretraining pairs. Models pretrained with large-scale pairs are noted in gray.

Method BB #P
MSRVTT DiDeMo ANet LSMDC MSVD

@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10
Singularity [39] Swin 5M 28.4 50.2 59.5 36.9 61.1 69.3 30.8 55.9 66.3 - - - - - -
BridgeFormer [23] ViT 5M 26.0 46.4 56.4 25.6 50.6 61.1 - - - 12.2 25.9 32.2 43.6 74.9 84.9

UMT [43] ViT 5M 29.6 52.8 61.9 33.4 58.3 67.0 28.3 53.0 64.2 16.8 30.5 37.6 36.2 65.7 76.1
VideoMamba VM 5M 32.0 53.0 63.8 36.6 61.7 70.3 35.9 61.1 72.3 18.0 36.1 43.4 38.0 68.6 79.0
Singularity [39] Swin 17M 34.0 56.7 66.7 37.1 61.7 69.9 30.6 55.6 66.9 - - - - - -
OmniVL [39] ViT 17M 34.6 58.4 66.6 33.3 58.7 68.5 - - - - - - - - -
UMT [43] ViT 17M 35.5 59.3 68.6 41.9 66.7 75.0 33.8 59.1 70.4 18.1 33.1 42.2 41.4 70.6 80.1
UMT [43] ViT 25M 35.2 57.8 66.0 41.2 65.4 74.9 35.5 60.6 71.8 19.1 33.4 42.2 42.3 71.7 80.8
CLIP4Clip [55] ViT 400M 30.6 54.4 64.3 - - - - - - 13.6 27.9 35.5 36.2 63.8 73.5
InternVideo [85] ViT 640M 40.0 65.3 74.1 31.5 57.6 68.2 30.7 57.4 70.2 17.6 32.4 40.2 43.4 69.9 79.1
VideoMamba VM 17M 34.7 58.9 68.0 42.0 67.3 76.8 40.1 65.7 76.1 18.4 35.3 43.0 40.3 70.0 79.7
VideoMamba VM 25M 35.6 58.1 69.5 43.1 68.1 77.7 41.0 67.5 77.8 20.4 37.1 45.7 42.6 71.6 81.2

jectives: vision-text contrastive learning [3], vision-text matching [40], masked
language modeling [15] and unmasked token alignment [43]. Initially, we mask
50% image tokens and 80% video tokens, conducting pretraining across 8 frames
for 10 epochs. Given Mamba’s sensitivity to positional information, an addi-
tional unmasked tuning phase is carried out for one epoch to refine its com-
prehension further. For evaluation, we undertake zero-shot video-text retrieval
tasks across five prominent benchmarks, including MSRVTT [87], DiDeMo [1],
ActivityNet [31], LSMDC [62], and MSVD [10].
Results. As indicated in Table 8, under the same pretraining corpus and similar
training strategies, our VideoMamba achieves superior zero-shot video retrieval
performances to UMT [43] based on ViT [16]. It underscores Mamba’s compa-
rable efficiency and scalability to the ViT in handling multi-modal video tasks.
Notably, for datasets featuring longer video lengths (e.g., ANet and DiDeMo)
and more complex scenarios (e.g., LSMDC), VideoMamba demonstrates a sig-
nificant improvement. This demonstrates Mamba’s aptitude for the demands of
cross-modality alignment even in challenging multimodal contexts.

5 Conclusion

In this paper, we propose VideoMamba, a purely SSM-based model for efficient
video understanding. Our extensive experiments demonstrate its scalability in
the visual domain, sensitivity for short-term action recognition, superiority in
long-term video understanding and compatibility with other modalities. We hope
it can pave the way for future model design for long-video comprehension.
Limitations. Due to resource constraints, we have not yet fully validated the
scalability of VideoMamba, such as extending VideoMamba to larger sizes (e.g.,
VideoMamba-g), incorporating additional modalities (e.g., audio), and integrat-
ing with large language models for hour-level video understanding. Despite these
limitations, our findings confirm VideoMamba’s promising potential and we plan
to conduct thorough explorations of its capabilities in the future.
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