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Abstract. Multi-exposure High Dynamic Range (HDR) imaging is a
challenging task when facing truncated texture and complex motion.
Existing deep learning-based methods have achieved great success by ei-
ther following the alignment and fusion pipeline or utilizing attention
mechanism. However, the large computation cost and inference delay
hinder them from deploying on resource limited devices. In this paper,
to achieve better efficiency, a novel Selective Alignment Fusion Network
(SAFNet) for HDR imaging is proposed. After extracting pyramid fea-
tures, it jointly refines valuable area masks and cross-exposure motion
in selected regions with shared decoders, and then fuses high quality
HDR image in an explicit way. This approach can focus the model
on finding valuable regions while estimating their easily detectable and
meaningful motion. For further detail enhancement, a lightweight re-
fine module is introduced which enjoys privileges from previous opti-
cal flow, selection masks and initial prediction. Moreover, to facilitate
learning on samples with large motion, a new window partition cropping
method is presented during training. Experiments on public and newly
developed challenging datasets show that proposed SAFNet not only ex-
ceeds previous SOTA competitors quantitatively and qualitatively, but
also runs order of magnitude faster. Code and dataset is available at
https://github.com/ltkong218/SAFNet.
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1 Introduction

Human eyes are capable to perceive a broad range of illumination in natural
scenes, but camera sensors suffer from limited dynamic range due to inherent
hardware properties, i.e., the sensor’s thermal noise and full well electron capac-
ity [6]. The most common way to capture High Dynamic Range (HDR) image is
to take a series of low dynamic range (LDR) photos at different exposures, and
then merge them into an HDR image with increase realism [5].

If there is no motion or the LDR images are well aligned, existing image
fusion methods can already produce faithful results [5, 25, 26, 34, 47]. Neverthe-
less, dynamic objects and camera motion usually appear in shooting scenes,
which results in undesirable misalignment between LDR inputs. Directly ap-
plying previous methods will yield ghosting artifacts. To deal with dynamic

https://github.com/ltkong218/SAFNet


2 L. Kong et al.

10 2 10 1 100

1500×1000 Resolution Inference Time on a NVIDIA A30 GPU

41.5

42.0

42.5

43.0

43.5

44.0

44.5

PS
NR

-
 o

n 
Ka

la
nt

ar
i 1

7 
Te

st
 D

at
as

et

DeepHDR

AHDRNet

NHDRRNet

ADNet

HDR-TransformerHDR-GAN

FlexHDR
SCTNet

SAFNet wo R (Ours)

SAFNet (Ours)

SAFNet-S (Ours)

1M 4M 16M 32M

# Parameters

CVPR
#6710

CVPR
#6710

CVPR 2024 Submission #6710. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Quantitative comparison with state-of-the-art methods on Kalantari 17 test dataset [14]. For each item, the best result is
boldfaced, and the second best is underlined. Time and FLOPs are measured on one NVIDIA A30 GPU under 1500×1000 resolution.

Method PSNR-µ PSNR-l SSIM-µ SSIM-l HDR-VDP2 Time (s) Params (M) FLOPs (T)

Sen [33] 40.80 38.11 0.9808 0.9721 59.38 - - -
Kalantari [14] 42.67 41.23 0.9888 0.9846 65.05 - - -
DeepHDR [38] 41.65 40.88 0.9860 0.9858 64.90 0.118 16.61 1.304
AHDRNet [40] 43.63 41.14 0.9900 0.9702 64.61 0.345 1.52 2.170
NHDRRNet [41] 42.41 41.43 0.9877 0.9857 61.21 0.045 31.56 0.421
HDR-GAN [26] 43.92 41.57 0.9905 0.9865 65.45 0.211 2.56 1.455
ADNet [20] 43.87 41.69 0.9925 0.9885 65.56 1.078 2.96 4.648
FlexHDR [2] 44.35 42.60 0.9931 0.9902 66.56 1.550 2.12 -
HDR-Transformer [21] 44.32 42.18 0.9916 0.9884 66.03 2.673 1.22 1.886
HyHDRNet [42] 44.64 42.47 0.9915 0.9894 66.05 - - -
SCTNet [37] 44.49 42.29 0.9924 0.9887 66.65 3.466 0.99 1.547
SAFNet-S (Ours) 44.12 42.50 0.9928 0.9907 66.75 0.049 0.57 0.146
SAFNet (Ours) 44.66 43.18 0.9932 0.9917 66.93 0.151 1.12 0.976

LDRs Our tonemapped HDR image LDR Patches

Kalantari DeepHDR AHDRNet NHDRRNet HDR-GAN HDR-
Transformer SAFNet Ground Truth

Figure 6. Visual comparison on Kalantari 17 test dataset [14].

our dataset, whose construction details can be found in the413
supplementary material. To highlight the differences of our414
dataset over existing ones, we use a pre-trained flow net-415
work [18] to estimate optical flow from L2 to L1 and calcu-416
late saturated area ratio of L2 for every test sample in each417
dataset. Figure 5 depicts one visual example of this statistic418
approach. By averaging motion magnitude and saturation419
ratio over all test samples in each HDR dataset, we summa-420
rize the statistics comparison of different datasets in Table 1.421
As can be seen, motion magnitude and saturation ratio of422
proposed Challenge123 dataset are about 7× and 3× larger423
than existing HDR datasets [14, 37], respectively.424

5. Experiments425

Datasets. We first evaluate proposed SAFNet on the con-426
ventional Kalantari 17 dataset [14] including 74 training427
samples and 15 test samples. Then, we compared our al-428
gorithm with recent SOTA methods on the proposed Chal-429
lenge123 dataset consist of 96 training scenes and 27 test430
scenes. Finally, we analyze the generalization ability of di-431
verse approaches on the unsupervised Sen’s dataset [33].432

Evaluation Metrics. For quantitative comparison, we cal- 433
culate five commonly used metrics, i.e., PSNR-µ, PSNR-l, 434
SSIM-µ, SSIM-l and HDR-VDP2 [24], where -µ denotes 435
tonemapped domain and -l means linear domain. 436

Implementation Details. We implement proposed method 437
in PyTorch, and use Kalantari 17 [14] or our Challenge123 438
training set to train SAFNet from scratch for separate com- 439
parison. Proposed network is optimized by Adam algorithm 440
with β1=0.9, β2=0.999 and ϵ=1e−8 for total 180,000 itera- 441
tions. The optimization is conducted with total batch size 4 442
on 2 NVIDIA A30 GPUs, whose learning rate is initially set 443
to 2e−4 and gradually decays to 1e−5 following a cosine 444
attenuation schedule. During training, we augment the sam- 445
ples by random flipping and rotating. Our proposed window 446
partition cropping method is also employed with input reso- 447
lution of 512×512 and 128×128 for the two-stage SAFNet, 448
respectively. For better efficiency, optical flow and selection 449
masks are predicted at 1/2 input resolution and then upsam- 450
pled back. The overall training takes about 20 hours. 451

Comparison on Kalantari 17 dataset. We compare pro- 452
posed algorithm with 11 well-known multi-exposure HDR 453
methods on the conventional Kalantari 17 test dataset [14], 454
whose quantitative results are summarized in Table 2. As 455
can be seen, proposed SAFNet achieves state-of-the-art per- 456
formance on all five metrics consistently. It is worth not- 457
ing that our method surpasses the second-best result [2] by 458
0.58 dB and 0.0015 in terms of PSNR-l and SSIM-l, be- 459
cause of our explicit HDR fusion process in linear domain 460
as Eq. 5. Figure 6 qualitatively compares SAFNet with 6 461
famous algorithms. It is obvious that our method can gen- 462
erate more realistic background with much fewer ghosting 463
artifacts than others, whose reason is that our flow-based 464
SAFNet can better deal with large motion and occlusion. 465

To compare execution efficiency of different solutions, 466
we download their official code and evaluate the running 467
time, model parameters and computation complexity on 468
a machine equipped with one NVIDIA A30 GPU under 469
1500×1000 resolution. Inference time is averaged over 100 470
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Fig. 1: Comparison on Kalantari 17 test dataset [14]. Proposed SAFNet achieves state-
of-the-art HDR imaging accuracy while with fast inference speed and small model size.

scenarios, traditional methods try to align the LDR input images [1, 11, 15] or
rejecting misaligned pixels [8, 12, 17, 31] before the fusion process. However, ac-
curate alignment between LDR inputs with large motion and severe saturation
is extremely challenging, while rejecting pixels in misaligned areas will cause
insufficient content in moving regions.

As for deep learning based multi-exposure HDR imaging methods, main so-
lutions can be summarized into two paradigms. The first class follows the align-
ment and fusion pipeline [14, 32, 33, 41], where cross-exposure motion is firstly
estimated, then HDR fusion coefficients or final HDR results are generated based
on aligned LDR inputs and context features. However, estimating optical flow
between LDR frames under severe saturation and occlusion is error-prone. Some
solutions [2, 4, 43] design special cross-exposure motion estimation networks for
better alignment, but their computational complexity also increases. Differently,
the second category bypasses explicit alignment, and proposes end-to-end deep
networks with diverse attention mechanisms for fully spatial-/channel-wise fea-
ture interaction [3, 24, 37,40, 44, 45]. There are also some methods that combine
above paradigms for mutual promotion [23,43]. However, as shown in Figure 1,
recent research improves HDR reconstruction accuracy by proposing increasingly
complex attention mechanisms, whose large inference delay and computation
cost have hindered them from deploying on power constrained devices.

To achieve better efficiency, we propose a novel Selective Alignment Fusion
Network (SAFNet) for multi-frame HDR reconstruction. Different from above
design concepts, we observe that not all regions in the non-reference LDR images
are worthy of precise alignment. For example, if some regions in the non-reference
LDR inputs are over-/under-exposed or corresponding to well-exposed texture
of the reference LDR frame, these areas can be directly discarded. On the other
hand, if some regions in the non-reference LDR frames contain valuable texture
that is missed in the reference LDR image, accurate alignment and fusion in these
regions can promote final reconstruction quality. Fortunately, motion estimation
in regions with distinct texture is much easier than that are saturated [16, 38].
By holding above proposition, our SAFNet performs valuable area selection and
flow estimation in selected regions simultaneously, which can skip the tough yet
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error prone motion estimation in worthless areas, while focus the model’s learning
capabilities on more meaningful things. In practice, proposed SAFNet follows the
successful pyramidal pipeline in optical flow networks [19,35,39]. Specifically, we
use gradually refined one-channel selection probability masks to denote valuable
regions during coarse-to-fine flow estimation. These masks are finally adopted
to reweight fusion coefficients for flow aligned LDR inputs and generate high
quality HDR result by explicit fusion operation [14]. At last, for high frequency
detail enhancement, a lightweight refine module is introduced at input resolution.
Thanks to the valuable information in previous optical flow, selection masks and
initial HDR prediction, we find that simply employing several dilated residual
blocks can already achieve SOTA accuracy while with much higher efficiency.
Tied to our two-stage deep network, a new window partition cropping method
is presented when optimizing SAFNet, which can benefit long-distance texture
aggregation and short-distance detail refinement simultaneously.

In addition to progressively advanced HDR algorithms, datasets also play
an important role for evaluation. Though the dataset developed by Kalantari
et al. [14] has largely facilitated the research for multi-exposure HDR imaging,
only three test samples are challenging enough for visual comparison. A recent
work [40] proposes a new HDR dataset with enriched scene motion and content.
However, motion magnitude and saturation ratio in their datasets are relatively
small, restricting its evaluative ability. In order to study the performance gap be-
tween different algorithms in challenging cases, we propose a new multi-exposure
HDR dataset with enhanced motion range and saturated regions, that clearly
distinguishes the quantitative and qualitative HDR reconstruction results among
different approaches. Finally, we do experiments on the Kalantari 17 dataset [14]
as well as our developed Challenge123 dataset. As shown in Figure 1, the pro-
posed SAFNet not only sets new state-of-the-art accuracy but also runs order
of magnitude faster than recent Transformer-based competitors [24, 40]. Main
contributions of this paper can be summarized as follows:

– We propose a novel SAFNet for multi-frame HDR imaging, that jointly re-
fines valuable region masks and cross-exposure motion in selected regions,
and then explicitly fuses a high quality result with much better efficiency.

– We provide a new challenging multi-frame HDR deghosting dataset with
enhanced motion and saturation for ease of analysis.

– Experiments on public and newly developed datasets show that our SAFNet
outperforms previous SOTA methods and runs order of magnitude faster.

2 Related Work

Traditional Methods. Traditional multi-exposure HDR methods mainly uti-
lize pixel rejection or motion registration techniques. The first class focuses on
aligning LDR inputs globally and then discarding misaligned pixels before image
fusion for deghosting. To generate error map for pixel rejection, Grosch et al. [9]
leverage color difference between the aligned images, Pece et al. [31] employ the
median threshold bitmap of the LDR inputs, Jacobs et al. [12] propose weighted
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intensity variance analysis. Besides, Zhang et al. [47] and Khan et al. [17] cal-
culate gradient-domain weight maps or probability maps of the LDR inputs,
respectively. Lee et al. [22] and Oh et al. [30] detect moving areas by utilizing
rank minimization. However, pixel rejection approach abandons useful texture
in moving regions, producing unpleasing reconstruction quality.

The other motion registration-based methods rely on densely aligning the
no-reference LDR inputs to the reference frame prior to merging them. Bogoni
et al. [1] calculate optical flow as motion vectors for full image alignment. Kang
et al. [15] transfer the LDR inputs into luminance domain according to expo-
sure time for improving flow accuracy. Sen et al. [36] introduce a patch based
energy minimization method that optimizes alignment and HDR fusion at the
same time. Additionally, Hu et al. [11] promote image alignment by propagating
brightness and gradient information iteratively in a coarse-to-fine manner. How-
ever, optimizing energy function for motion estimation usually drops into local
minimum. Also, their slow speed is unsuitable for real-time applications.
Deep Learning Approaches. Early deep learning multi-exposure HDR al-
gorithms follow traditional alignment and fusion pipeline. Kalantari et al. [14]
pioneer learning-based multi-frame HDR reconstruction by proposing a paired
LDR-HDR dataset and developing a convolutional neural network (CNN) to
fuse LDR inputs after flow alignment. Wu et al. [41] instead adopt image-wide
homography to perform background alignment, while leaving the complex fore-
ground motions to be handled by the CNN. Despite noteworthy performance
improvement over traditional methods, both [14] and [41] suffer from misalign-
ment in the presence of both large motion and severe saturation. Subsequent
methods improve alignment by building more powerful cross-exposure motion
estimation modules [2, 4] or perform feature alignment with attention mecha-
nism [23, 43]. However, the large computation cost and running time hinders
their development on mobile devices.

Yan et al. address some limitations of the predecessors by introducing a spa-
tial attention module [44], and further constructing a non-local block to improve
global consistency [45]. Niu et al. [29] leverage Generative Adversarial Network
(GAN) to synthesize realistic content which is missing in the LDR inputs. Fur-
thermore, Xiong et al. [42] decompose HDR imaging into ghost-free image fusion
and ghost-based image restoration. Ye et al. [46] propose a progressive feature
fusion network that compares and selects appropriate LDR regions to generate
high quality result. Above attention-based and region selective HDR algorithms
can facilitate deghosting in fusion stage. However, their results fall behind cur-
rent state-of-the-arts due to the limited long-range texture aggregation ability.

Recently, transformers have shown better ability to capture long-range de-
pendency than CNN due to their multi-head self-attention mechanism. Song
et al. [37] separate LDR inputs into ghost and non-ghost regions, and then
selectively apply either transformer or CNN to perform HDR reconstruction.
Liu et al. [24] integrate vision transformer with convolution to explore both
local and global relationship and obtain remarkable results. Furthermore, Yan
et al. [43] propose a HyHDRNet consisting of a content alignment subnetwork
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Fig. 2: Overall architecture of our SAFNet. It contains a pyramid encoder, a coarse-
to-fine decoder, and a refinement subnetwork. The linked switch selects path including
window partition and window reverse during training, while skip them in evaluation.

and a transformer-based fusion subnetwork for performance improvement. Tel et
al. [40] introduce a SCTNet which integrates both spatial and channel attention
modules into the transformer-based network to enhance semantic consistency.
Nevertheless, transformer-based methods suffer from large inference delay. More-
over, their patch-based prediction manner is unable to aggregate cross-patch
texture produced by large motion, which is common in high resolution imagery.

3 Proposed Method

Overview. Given three LDR images L1, L2, L3 from a dynamic scene with dif-
ferent exposures as input, our goal is to generate a ghost-free HDR image Hr

with consistent scene structure as the reference image L2. Figure 2 depicts over-
all architecture of the proposed SAFNet, containing three subnetworks, i.e., the
pyramid encoder E , the coarse-to-fine decoder D, and the detail refine module
R. SAFNet first performs an extraction phase to retrieve a pyramid of features
from each input frame Li by the encoder E . Then, it jointly refines selection
probability masks M1,M3 together with cross-exposure optical flow F2→1, F2→3

in selected regions by the decoder D. Furthermore, a high quality HDR im-
age Hm is explicitly merged by flow aligned LDR inputs and selection masks
reweighted fusion coefficients. Finally, our SAFNet generates a refined HDR im-
age Hr by the refine network R based on LDR inputs Li, cross-exposure motion
F2→i, selection probability masks Mi and merged HDR image Hm. In addition
to network architecture, training loss function and developed window partition
cropping method are also elaborated in this section.
Pyramid Encoder. Like previous methods [14,40,43,44], we first map the LDR
frames Li to the HDR linear domain by using gamma correction as follows:

Hi = Lγ
i /ti, i = 1, 2, 3, (1)

where ti denotes the exposure time of LDR image Li, γ is the gamma parameter,
which is set to 2.2. By concatenating Li and Hi along the channel dimension,
we obtain three 6-channel tensors Xi = [Li, Hi] as network input.
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Inspired by the success of pyramidal flow estimation architectures [19, 20,
35, 39], our encoder network E extracts multi-scale pyramid features to better
estimate cross-exposure optical flow in the challenging large motion and heavy
saturation cases. Purposely, the encoder is built by a block of two 3×3 convo-
lutions in each pyramid level, with strides 2 and 1, respectively. The parameter
shared encoder extracts 4 levels of pyramid features, counting 8 convolution lay-
ers, each followed by a PReLU activation [10]. With gradually decimated spatial
size, it keeps the feature channels to 40 among all 4 scales, generating pyramid
features ϕk

1 , ϕ
k
2 , ϕ

k
3 in level k (k = 1, 2, 3, 4) for LDR inputs L1, L2, L3, separately.

Coarse-to-Fine Decoder. To deal with the large displacement challenge for
motion estimation, we follow the successful pyramid optical flow networks [19,
35, 39], that adopt coarse-to-fine warping strategy and predicts easier residual
flow at each scale. After extracting meaningful pyramid features, the decoder Dk

iteratively refines cross-exposure optical flow by backward warping pyramid fea-
tures ϕk

1 , ϕ
k
3 to generate ϕ̃k

1 , ϕ̃
k
3 according to F k

2→1 and F k
2→3, respectively, where

Dk means this parameter shared decoder D is called in level k. However, unlike
traditional optical flow task, cross-exposure motion estimation is much more
challenging due to co-existence of large motion and severe saturation. Instead
of designing complex flow estimation network for overall improvement as previ-
ous [2,4,43], we observe that not all regions of F2→1, F2→3 are worthy of accurate
prediction. Therefore, besides cross-exposure optical flow F k−1

2→1, F
k−1
2→3, the de-

coder network Dk further predicts two selection probability masks Mk−1
1 ,Mk−1

3

to denote valuable regions of F k−1
2→1, F

k−1
2→3 during coarse-to-fine flow estimation,

respectively. Specifically, Mk−1
1 and Mk−1

3 are one-channel tensors exported by
sigmoid function whose elements range from 0 to 1. Different from previous cas-
cading HDR reconstruction pipeline [14], i.e., first optical flow then fusion, our
jointly refined M1,M3 and F2→1, F2→3 can benefit each other. First, M1,M3 can
inform the decoder to focus on estimating F2→1, F2→3 in the identified areas. In
turn, better estimated F2→1, F2→3 can aggregate valuable pyramid features from
non-reference frames to promote further region identification and residual flow
estimation. Therefore, accuracy and efficiency are both improved. In summary,
input and output of the coarse-to-fine decoder can be formulated as:

[F k−1
2→1, F

k−1
2→3,M

k−1
1 ,Mk−1

3 ] = Dk([F k
2→1, F

k
2→3,M

k
1 ,M

k
3 , ϕ̃

k
1 , ϕ

k
2 , ϕ̃

k
3 ]), (2)

where Dk (k = 1, 2, 3, 4) denotes the iterative refinement in level k, [·] means
feature concatenation. The initial value of F 4

2→1, F
4
2→3,M

4
1 ,M

4
3 are all set to 0,

while the final prediction by D1 are written as F2→1, F2→3,M1,M3.

Concretely, the decoder D is consist of a block of five 3×3 convolutions and
one 4×4 deconvolution, with strides 1 and 1/2, respectively. A PReLU [10] fol-
lows each convolution layer. Feature channels of intermediate layers of D are all
set to 120. Following the success of efficient flow estimation in [19], the mid-
dle three convolutions of D are group convolution with group number equal to
3, which are separated by channel shuffle operation. Figure 3 shows structure
details of the decoder that is shared among all pyramid levels.
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Fig. 3: Details of the decoder D and the refine network R for SAFNet and SAFNet-S.
Arguments of ‘Conv’ from left to right are input channels, output channels and dilation.
All convolutions have 3×3 kernel size. Stride is equal to dilation for each ‘Conv’.

Explicit HDR Fusion. The final goal of predicted optical flow F2→1, F2→3 and
selection probability masks M1,M3 is to merge a high quality HDR image Hm

as close as possible to the ground truth Hgt. As shown in Figure 2, there are two
preliminary steps before the HDR fusion procedure. At first, we use estimated
optical flow F2→1, F2→3 to align the non-reference linear domain images H1, H3,
and generate warped images of H̃1, H̃3 as follows:

H̃1 = w(H1, F2→1), H̃3 = w(H3, F2→3), (3)

where w means backward warping [35, 39]. Secondly, predicted selection prob-
ability masks M1,M3 are employed to reweight initial fusion coefficients for
ghost-suppressed HDR synthesis. Considering that the predicted optical flow
F2→1, F2→3 by SAFNet are relatively accurate only in regions where M1,M3

contain a relatively large selection probability. Therefore, to eliminate ghosting
artifacts when fusing unrelated textures, we multiply the initial fusion coefficients
of H̃1, H̃3 with their selection probability masks M1,M3, respectively. Mean-
while, the unselected parts of initial fusion coefficients of H̃1, H̃3 are transferred
to the reference image H2 for normalization. Formulaically, proposed reweighted
fusion coefficients can be computed by:

W1 = Λ1 ⊙M1, W3 = Λ3 ⊙M3,

W2 = Λ2 + Λ1 ⊙ (1−M1) + Λ3 ⊙ (1−M3),
(4)

where Λ1, Λ2, Λ3 are initial HDR fusion coefficients for inputs H1, H2, H3, that
are defined in Figure 4. W1,W2,W3 are the reweighted fusion coefficients of
SAFNet. ⊙ means element-wise multiplication. Given optical flow aligned input
images and selection masks reweighted fusion coefficients, we can merge a high
quality HDR image explicitly by:

Hm = W1 ⊙ H̃1 +W2 ⊙H2 +W3 ⊙ H̃3. (5)
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Fig. 4: Functions to define initial HDR fusion coefficients.

Refine Network. Explicit fusion approach in Eq. 5 can already fuse a high
quality HDR image. However, it can not synthesize textures that are truncated
or occluded in all input frames. To compensate for missing content and remove
potential ghost, a refine network R is introduced in Figure 2, whose details are
shown in Figure 3. Specifically, R is a fully convolutional network that works at
original input resolution to enhance high frequency details. First, three indepen-
dent feature extractors, each including two 3×3 convolutions, are adopted to ex-
tract local features Y1, Y2 and Y3 from inputs X1, [X2, F2→1, F2→3,M1,M3, Hm]
and X3, respectively. Then, aligned shallow features of Ỹ1, Ỹ3 are obtained by
backward warping Y1, Y3 according to flow F2→1, F2→3, separately. Finally, the
concatenated feature of [Ỹ1, Y2, Ỹ3] is forwarded to an aggregation module, con-
taining five dilated residual blocks and one convolution, to estimate residual
details and yield a refined HDR image Hr as our final prediction.
Loss Function. Since HDR images are typically viewed after tonemapping, we
use µ-law function to map the image from linear domain to the tonemapped
domain as follows:

T (H) = log(1 + µH)/log(1 + µ), µ = 5000, (6)

where H denotes the HDR image in linear domain, µ is the compression pa-
rameter. Following methods [24, 40, 43], we employ the weighted L1 loss and
perceptual loss Lp [13] between our refined output Hr and the ground truth Hgt

to supervise HDR reconstruction of SAFNet by:

Lr = L1(T (Hr), T (Hgt)) + αLp(T (Hr), T (Hgt)), (7)

where Lp measures the distance on multi-scale features extracted by a pre-
trained VGG-16 network, α is the weighting parameter set to 0.01. Additionally,
we add an auxiliary brightness reconstruction loss Lm to guide the learning of
alignment and fusion for the merged HDR image Hm as:

Lm = L1(T (Hm), T (Hgt)) + Lc(T (Hm), T (Hgt)), (8)

where Lc is the census loss [18, 21, 28] calculating the soft Hamming distance
between census-transformed image patches of size 7×7. In summary, our total
training loss is the combination of Lr and Lm, that can be expressed as:

L = Lr + βLm, (9)

where β is the trade-off coefficient, which is set to 0.1.
Window Partition Cropping. Recent multi-frame HDR methods [24, 40, 43]
crop 128×128 image patches during training, that can generate enough data
with diverse saturation and occlusion for sufficient learning. However, their rel-
atively small crop size will block long-range texture aggregation in large motion
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Fig. 5: Visual example of LDR input L2,
optical flow from L2 to L1 and saturated
regions of L2 in proposed dataset.

Table 1: Statistics comparison among
different multi-exposure HDR datasets.

Statistics (Avg) Kalantari [14] Tel [40] Ours

Motion Magnitude 20.1 16.2 128.7
Saturation Ratio 0.061 0.073 0.201

cases. To deal with this problem, we propose a new window partition cropping
method during optimization, that is bound to our two-stage SAFNet. As shown
in Figure 2, the merged Hm is generated on large patches of 512×512 to better
aggregate long-range inter-frame textures. On the other hand, the refined Hr

is predicted on small patches of 128×128 to better synthesize local details. We
unify above two different cropping sizes by window partition and reverse opera-
tions, where the additional size is first shifted to the batch dimension and then
shifted back. In test stage, window partition and reverse are discarded.

4 Proposed Dataset

The existing labeled multi-exposure HDR datasets [7,14,40] have facilitated re-
search in related fields. However, results of recent methods [2,24,40,43] tend to
be saturated due to their limited evaluative ability [14, 40]. We attribute this
phenomenon to most of their samples having relatively small motion magnitude
between LDR inputs and relatively small saturation ratio of the reference image.
To probe the performance gap between different algorithms, we propose a new
challenging multi-exposure HDR dataset with enhanced motion range and sat-
urated regions. Our proposed Challenge123 dataset follows the same collection
pipeline as [14], but use a vivo X90 Pro+ phone equipped with Sony IMX 989
sensor. There are 96 training samples and 27 test samples in our dataset, whose
construction details can be found in our supplementary material.

To highlight the differences of our dataset over existing ones, we use a pre-
trained flow network [19] to estimate optical flow from L2 to L1 and calculate
saturated area ratio of L2 for every test sample in each dataset. Figure 5 depicts
one visual example of this statistic approach. By averaging motion magnitude
and saturation ratio over all test samples in each HDR dataset, we summarize
the statistics comparison of different datasets in Table 1. As can be seen, motion
magnitude and saturation ratio of proposed Challenge123 dataset are about 7×
and 3× larger than existing HDR datasets [14,40], respectively. It is worth noting
that our dataset is complementary to existing ones [14,40], which aims to widen
the performance gap between different algorithms for ease of analysis, even if
it is less natural than them. For example, the challenging regions of [14] where
the man is waving his arms contain more than 150 pixels displacement, which is
similar as the average motion magnitude of our dataset.
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Table 2: Quantitative comparison with methods on Kalantari 17 test dataset [14]. For
each item, the best result is boldfaced, and the second best is underlined. Time and
FLOPs are measured on one NVIDIA A30 GPU under 1500×1000 resolution.

Method PSNR-µPSNR-lSSIM-µSSIM-lHDR-VDP2Time (s)Params (M)FLOPs (T)

Sen [36] 40.80 38.11 0.9808 0.9721 59.38 - - -
Kalantari [14] 42.67 41.23 0.9888 0.9846 65.05 - - -
DeepHDR [41] 41.65 40.88 0.9860 0.9858 64.90 0.118 16.61 1.304
AHDRNet [44] 43.63 41.14 0.9900 0.9702 64.61 0.345 1.52 2.170
NHDRRNet [45] 42.41 41.43 0.9877 0.9857 61.21 0.045 31.56 0.421
HDR-GAN [29] 43.92 41.57 0.9905 0.9865 65.45 0.211 2.56 1.455
ADNet [23] 43.87 41.69 0.9925 0.9885 65.56 1.078 2.96 4.648
FlexHDR [2] 44.35 42.60 0.9931 0.9902 66.56 1.550 2.12 -
HDR-Transformer [24] 44.32 42.18 0.9916 0.9884 66.03 2.673 1.22 1.886
HyHDRNet [43] 44.64 42.47 0.9915 0.9894 66.05 - - -
SCTNet [40] 44.49 42.29 0.9924 0.9887 66.65 3.466 0.99 1.547
SAFNet-S (Ours) 44.12 42.50 0.9928 0.9907 66.75 0.049 0.57 0.146
SAFNet (Ours) 44.66 43.18 0.99320.9917 66.93 0.151 1.12 0.976
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Leonardis, Gregory Slabaugh, and Eduardo Pérez-Pellitero.105
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Table 3. Quantitative comparison with SOTA methods on pro-
posed Challenge123 test dataset. The best result is in bold.

Method PSNR-µ PSNR-l SSIM-µ SSIM-l HDR-VDP2
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HDR-Tran. [21] 33.93 26.45 0.9742 0.9490 53.29
SCTNet [37] 34.67 25.97 0.9816 0.9631 51.82
SAFNet (Ours) 41.48 29.65 0.9894 0.9771 54.99
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and AHDRNet [40], separately. For comparison with the480
efficient NHDRRNet [41] which also leverages the pyrami-481
dal encoder-decoder architecture, we build a small SAFNet-482
S by reducing feature channels of the refine module from483
80 to 32 and replacing residual blocks with convolutions.484
As listed in Table 2, SAFNet-S has similar running time485
as NHDRRNet [41], but obtains significant performance486
improvement. In conclusion, proposed SAFNet sets new487
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imaging task, which is depicted in Figure 1 intuitively.489
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cial implementation. Since our dataset contains much larger493
motion than Kalantari 17 [14], training crop size of AHDR-494
Net [40] and NHDRRNet [41] are extended to 512×512495
as SAFNet to better learn long-range texture aggregation.496
Due to the 24GB memory limitation for NVIDIA A30 GPU,497
transformer-based methods [21, 37] can only be optimized498
on patches up to 256×256 resolution. After training, we499
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SCTNet [37] are more ill-posed on our large motion test set, 506
resulting in significant accuracy loss. Under the same train- 507
ing crop size, proposed SAFNet exceeds AHDRNet [40] 508
and NHDRRNet [41] by 1.04 and 3.68 dB on PSNR-µ, sep- 509
arately. Figure 7 visually compares them on a challeng- 510
ing sunset scene, including both camera and clouds mo- 511
tion. We can observe that early flow and patch based meth- 512
ods [14, 33] generate distorted edges since misalignment in 513
saturated regions. Attention-based networks [40, 41] syn- 514
thesize blurry outputs due to lack of motion compensation. 515
Transformer-based solutions [21, 37] suffer from block ar- 516
tifacts because of limited aggregation scope. In contrast, 517
given the same computation resources, our SAFNet can fuse 518
pleasing HDR image with more comfortable visual experi- 519
ence. More results can be found in our supplementary. 520

Generalization Ability. To compare generalization capa- 521
bility of recent HDR imaging methods, we test 5 algorithms 522
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shown in Figure 8, NHDRRNet [41] and SCTNet [37] suf- 525
fer from unnatural color problem, while AHDRNet [40] and 526
HDR-Transformer [21] synthesize more hazy textures com- 527
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explicitly merges an initial HDR image Hm as in Eq. 5. 530
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tion masks Mi predicted by the decoder, we do ablations on 532
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Fig. 6: Visual comparison on Kalantari [14] (left) and Challenge123 (right) test sets.

5 Experiments

Datasets. We first evaluate proposed SAFNet on the conventional Kalantari 17
dataset [14] including 74 training samples and 15 test samples. Then, we com-
pared our algorithm with recent SOTA methods on the proposed Challenge123
dataset consist of 96 training scenes and 27 test scenes. Finally, we analyze the
generalization ability of diverse approaches on the Sen’s dataset [36].
Evaluation Metrics. For quantitative comparison, we calculate five commonly
used metrics, i.e., PSNR-µ, PSNR-l, SSIM-µ, SSIM-l and HDR-VDP2 [27],
where -µ denotes tonemapped domain and -l means linear domain.
Implementation Details. We implement proposed method in PyTorch, and
use Kalantari 17 [14] or our Challenge123 training set to train SAFNet from
scratch for separate comparison. Proposed network is optimized by Adam al-
gorithm with β1=0.9, β2=0.999 and ϵ=1e−8 for total 10,000 epochs. The opti-
mization is conducted with total batch size 4 on 2 NVIDIA A30 GPUs, whose
learning rate is initially set to 2e−4 and gradually decays to 1e−5 following a co-
sine attenuation schedule. During training, we augment the samples by random
cropping, flipping, rotating and reversing channel order to prevent overfitting.
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Proposed window partition cropping method is also employed with input reso-
lution of 512×512 and 128×128 for the two-stage SAFNet. For better efficiency,
optical flow and selection masks are predicted at 1/2 input resolution and then
upsampled back. The overall training takes less than 24 hours.
Comparison on Kalantari 17 dataset. We compare proposed algorithm with
11 well-known multi-exposure HDR methods on Kalantari 17 test dataset [14],
whose quantitative results are summarized in Table 2. As can be seen, proposed
SAFNet achieves state-of-the-art performance on all five metrics consistently.
It is worth noting that our method surpasses the second-best result [2] by 0.58
dB and 0.0015 in terms of PSNR-l and SSIM-l, because of our explicit HDR
fusion process in linear domain as Eq. 5. Figure 1 and Figure 6 qualitatively
compare SAFNet with 6 famous HDR algorithms. It is obvious that our method
can generate more realistic background with much fewer ghosting artifacts.

To compare execution efficiency of different solutions, we download their
official code and evaluate the running time, model parameters and computa-
tion complexity on a machine equipped with one NVIDIA A30 GPU under
1500×1000 resolution. Inference time is averaged over 100 iterations. In Table 2,
FlexHDR [2], HDR-Transformer [24] and SCTNet [40] achieve similar PSNR-µ
accuracy as ours. However, running speed of SAFNet is about 10×, 18× and 23×
faster than them, respectively. We attribute the excellent efficiency of SAFNet
to its coarse-to-fine fully convolutional deep architecture without any complex
attention mechanism. In regard to computation complexity, proposed SAFNet
saves about 37%, 48% and 55% multiply-add operations than advanced SCT-
Net [40], HDR-Transformer [24] and AHDRNet [44], separately. For comparison
with the efficient NHDRRNet [45] which also leverages the pyramidal encoder-
decoder architecture, we build a small SAFNet-S by reducing feature channels
of the refine module from 80 to 32 and replacing residual blocks with convolu-
tions as shown in Figure 3. As listed in Table 2, SAFNet-S has similar running
time as NHDRRNet [45], but obtains significant performance improvement. In
conclusion, proposed SAFNet sets new records of speed-accuracy trade-off on
multi-exposure HDR imaging task, which is depicted in Figure 1 intuitively.
Evaluation on Challenge123 dataset. For evaluation on the developed Chal-
lenge123 dataset, we retrain 4 advanced methods [24, 40, 44, 45] on our training
set with their official implementations, and also compare two alignment-based
algorithms [14,36]. Due to the 24GB memory limitation for NVIDIA A30 GPU,
transformer-based methods [24, 40] can only be optimized up to 256×256 res-
olution. Therefore, we first train all approaches on 256×256 patches under the
same data augmentation method and learning schedule for fair comparison. Af-
ter training, we summarize the accuracy of different algorithms on our test set
in the middle part of Table 3. It can be concluded that our SAFNet consistently
performs well on all five metrics, exceeding HDR-Transformer [24], SCTNet [40],
AHDRNet [44] and NHDRRNet [45] by 0.24, 0.29, 0.50 and 3.12 dB on PSNR-µ,
separately, verifying our superior multi-exposure HDR architecture.

Since our dataset contains larger motion magnitude than Kalantari 17 [14],
training crop size of AHDRNet [44], NHDRRNet [45] and our SAFNet are ex-
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Table 3: Quantitative comparison on Challenge123
test set. The middle and bottom parts are trained
on patches of 256×256 and 512×512, respectively.

Method PSNR-µPSNR-lSSIM-µSSIM-lHDR-VDP2

Sen [36] 37.11 27.80 0.9729 0.9687 51.93
Kalantari [14] 37.83 29.62 0.9707 0.9705 51.32

AHDRNet [44] 40.44 28.13 0.9877 0.9703 54.58
NHDRRNet [45] 37.82 26.75 0.9769 0.9632 53.38
HDR-Tran. [24] 40.70 28.72 0.9881 0.9731 54.63
SCTNet [40] 40.65 28.73 0.9882 0.9721 54.35
SAFNet (Ours) 40.94 28.93 0.9885 0.9740 54.84

AHDRNet [44] 40.61 28.33 0.9880 0.9708 54.97
NHDRRNet [45] 37.44 26.31 0.9762 0.9596 53.51
SAFNet (Ours) 41.88 29.73 0.98970.9784 55.07
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Fig. 7: Generalization compari-
son on the Sen’s dataset [36].

tended to 512×512 for further comparison on long-range texture aggregation. In
the bottom of Table 3, our SAFNet still outperforms all the others on all met-
rics, and our performance advantages are further amplified in challenging cases.
Increasing patch size from 256 to 512, proposed SAFNet improves most, AHDR-
Net [44] improves smaller than ours, while NHDRRNet [45] even drops in some
metrics. It indicates that our SAFNet is more robust and capable to learn from
challenging large motion training samples. Transformer-based solutions [24, 40]
still fall behind our SAFNet, since their patch-based prediction manner can not
aggregate cross-patch moving texture in high-resolution photography. Further-
more, in the top of Table 3, alignment-based HDR fusion approach [14] behaves
well in PSNR-l, confirming the significance of alignment for large motion. Dif-
ferently, our SAFNet exceeds [14] on all metrics, due to our stronger registration
and fusion ability. More analysis can be found in our supplementary.

Figure 6 visually compares them on a challenging sunset scene, including
both camera and clouds motion. We can observe that early flow and patch based
methods [14,36] generate distorted edges since misalignment in saturated regions.
Attention-based networks [44,45] synthesize blurry outputs due to lack of motion
compensation. Transformer-based solutions [24, 40] suffer from block artifacts
because of limited aggregation scope. In contrast, our SAFNet can fuse more
pleasing HDR images. More results can be found in our supplementary.
Generalization Ability. To compare generalization capability of recent HDR
imaging methods, we test 5 algorithms on the unsupervised Sen’s dataset [36],

Table 4: Ablation on first fusion stage. F2→i and Mi are output components of the
decoder. Accuracy is measured on Hm.

F2→i Mi PSNR-µ PSNR-l SSIM-µ SSIM-l

✓ ✗ 33.69 36.30 0.9568 0.9701
✗ ✓ 40.69 37.08 0.9834 0.9772
✓ ✓ 41.68 39.61 0.9851 0.9808
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Table 5: Ablation on second refinement stage. F2→i, Mi and Hm are input of the
refine network. Accuracy is measured on Hr.

F2→i Mi Hm PSNR-µ PSNR-l SSIM-µ SSIM-l
✗ ✗ ✗ 43.63 41.67 0.9922 0.9902
✓ ✗ ✗ 43.73 41.88 0.9924 0.9902
✓ ✓ ✗ 43.87 42.04 0.9925 0.9904
✓ ✓ ✓ 44.59 43.15 0.9929 0.9911

Table 6: Ablation on window partition cropping. S1 and S2 are input resolution for
two stages. Accuracy is measured on Hr.

S1 S2 PSNR-µ PSNR-l SSIM-µ SSIM-l
128×128 128×128 44.59 43.15 0.9929 0.9911
512×512 512×512 44.54 43.09 0.9930 0.9914
512×512 128×128 44.66 43.18 0.9932 0.9917

where all methods are trained on our proposed Challenge123 dataset fairly. As
shown in Figure 7, NHDRRNet [45] and SCTNet [40] suffer from unnatural color
problem, while AHDRNet [44] and HDR-Transformer [24] synthesize more hazy
textures compared to proposed SAFNet, especially in the shaded areas.
Ablation on First Fusion Stage. In the first stage, SAFNet explicitly merges
an initial HDR image Hm as in Eq. 5. To verify the effectiveness of optical
flow F2→i and selection masks Mi predicted by the decoder, we do ablations on
Kalantari 17 dataset [14] by selectively removing them in the progressive refine-
ment procedure. In Table 4, removing selection masks Mi will result in significant
performance degradation, since precise alignment for entire image is extremely
challenging under heavy saturation and complex motion. On the other hand,
removing optical flow F2→i will cause a smaller but also noticeable accuracy
loss, because of lost ability for long-range texture aggregation. Figure 8 visually
compares these ablation experiments. As can be seen, Hm w/o Mi looks more
twisted, while Hm w/o F2→i lacks texture in moving regions. By jointly refining
selection masks and optical flow in selected regions, proposed approach can con-
centrate on finding and fusing more valuable textures for HDR reconstruction
more efficiently. Figure 9 depicts two visual examples of selection masks and
optical flow predicted by SAFNet. We can observe that our network can find
over-exposed wall in the reference LDR image and estimate relatively precise
optical flow in selected regions to aggregate valuable cross-exposure textures. As
for unselected black regions, flow estimation of SAFNet is relatively free without
worry about negative impacts, such as potential ghosting artifacts.
Ablation on Second Refinement Stage. In the second stage, SAFNet com-
pensates high frequency details by the refine network based on LDR inputs and
first stage outputs, i.e., optical flow F2→i, selection masks Mi and merged HDR
image Hm. To explore the value of different inputs for the refinement module, we
gradually remove Hm, Mi and F2→i from the inputs, and carry out ablations on
Kalantari 17 dataset [14]. As listed in Table 5, optical flow, selection masks and
merged HDR image all contain valuable while complementary information for
guiding the refinement procedure, where the best result is achieved when using
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Table 4. Ablation on first fusion stage. F2→i and Mi are output
components of the decoder. Accuracy is measured on Hm.

F2→i Mi PSNR-µ PSNR-l SSIM-µ SSIM-l
✓ ✗ 33.69 36.30 0.9568 0.9701
✗ ✓ 40.69 37.08 0.9834 0.9772
✓ ✓ 41.68 39.61 0.9851 0.9808

Table 5. Ablation on second refinement stage. F2→i, Mi and
Hm are input of the refine network. Accuracy is measured on Hr .

F2→i Mi Hm PSNR-µ PSNR-l SSIM-µ SSIM-l
✗ ✗ ✗ 43.63 41.67 0.9922 0.9902
✓ ✗ ✗ 43.73 41.88 0.9924 0.9902
✓ ✓ ✗ 43.87 42.04 0.9925 0.9904
✓ ✓ ✓ 44.29 42.73 0.9929 0.9911

Table 6. Ablation on window partition cropping. S1 and S2 are
input resolution for two stages. Accuracy is measured on Hr .

S1 S2 PSNR-µ PSNR-l SSIM-µ SSIM-l
128×128 128×128 44.29 42.73 0.9929 0.9911
512×512 512×512 44.43 42.92 0.9930 0.9915
512×512 128×128 44.66 43.18 0.9932 0.9917

the progressive refinement procedure. In Table 4, removing534
selection masks Mi will result in significant performance535
degradation, since precise alignment for entire image is ex-536
tremely challenging under heavy saturation and occlusion.537
On the other hand, removing optical flow F2→i will cause538
a smaller but also noticeable accuracy loss, because of lost539
ability for long-range texture aggregation. Figure 9 visually540
compares these ablation experiments. As can be seen, Hm541
w/o Mi looks more twisted, while Hm w/o F2→i lacks tex-542
ture in moving regions. By jointly refining selection masks543
and optical flow in selected regions, proposed approach can544
concentrate on finding and fusing more valuable textures for545
HDR reconstruction more efficiently. Figure 10 depicts two546
visual examples of selection masks and optical flow pre-547
dicted by SAFNet. We can observe that our network can548
find over-exposed wall in the reference LDR image and es-549
timate relatively precise optical flow in selected regions to550
aggregate valuable cross-exposure textures. As for unse-551
lected black regions, flow estimation of SAFNet is relatively552
free without worry about negative impacts.553

Ablation on Second Refinement Stage. In the second554
stage, SAFNet compensates high frequency details by the555
refine network based on LDR inputs and first stage outputs,556
i.e., optical flow F2→i, selection masks Mi and merged557
HDR image Hm. To explore the value of different inputs for558
the refinement module, we gradually remove Hm, Mi and559
F2→i from the inputs, and carry out ablations on Kalantari560
17 dataset [14]. As listed in Table 5, optical flow, selection561
masks and merged HDR image all contain valuable while562
complementary information for guiding the refinement pro-563
cedure, where the best result is achieved when using all564
these input components. Figure 9 depicts two visual ex-565
amples to demonstrate the effectiveness of our refine sub-566

L2 Hm w/o Mi Hm w/o F2→i Hm Hr Ground Truth

Figure 9. Qualitative results of ablation study on selection
masks, optical flow and refine module. Zoom in for best view.

L1 L2 M1 F2→1

Figure 10. Visualization of selection masks and optical flow.

network, which can not only compensate for missing con- 567
textual details but also correct distorted scene structure. 568
Ablation on Window Partition Cropping. To confirm 569
the effectiveness of our window partition cropping method 570
bound to our two-stage framework, we do ablations on dif- 571
ferent input resolutions when optimizing SAFNet, whose 572
results are summarized in Table 6. It can be seen that 573
with enlarged input resolution from 128×128 to 512×512 574
for both stages, accuracy of SAFNet improves moderately, 575
since more inter-frame textures can be aggregated for HDR 576
reconstruction. Then, we employ proposed window parti- 577
tion cropping method to train SAFNet on different input 578
resolutions, yielding the best performance. We attribute 579
the reason to that larger input patches can aggregate wider 580
range inter-frame textures for merging Hm, while smaller 581
input patches can generate more challenging samples with 582
diverse occlusion and saturation cases for refining Hr. 583

6. Conclusion 584

In this paper, we present a novel SAFNet for efficient and 585
accurate multi-exposure HDR imaging. By jointly refining 586
valuable area selection masks and optical flow in selected 587
regions, it can focus on finding and aggregating more use- 588
ful LDR textures and finally merge a high quality HDR im- 589
age explicitly. Based on diverse features exported from the 590
first fusion stage, a lightweight refinement module is intro- 591
duced to compensate for missing details. Moreover, to bet- 592
ter optimize our two-stage SAFNet, a new window partition 593
cropping method is proposed. Experiments on conventional 594
and newly developed challenging datasets demonstrate that 595
our algorithm not only outperforms recent SOTA methods 596
quantitatively and qualitatively, but also runs order of mag- 597
nitude faster than advanced transformer-based solutions. 598

8

Fig. 8: Qualitative results of ablation on selection mask, optical flow and refinement.

L1 L2 M1 F2→1

Fig. 9: Visualization of selection mask M1 and optical flow F2→1.

all these input components. It is worth noting that Hm contributes most to the
performance, confirming the significance of region selective HDR fusion in the
first stage. Figure 8 depicts two visual examples to demonstrate the effectiveness
of our refine subnetwork, which can not only compensate for missing contextual
details but also correct distorted scene structure.
Ablation on Window Partition Cropping. To confirm the effectiveness of
our window partition cropping method, we do ablations on different input resolu-
tions when optimizing SAFNet, whose results are summarized in Table 6. It can
be seen that when employing proposed window partition cropping approach to
train SAFNet on different input resolutions, we can yield the best performance.
We attribute the reason to that there is trade-off between training patch size
and HDR accuracy. Larger patch size can create more long-range aggregation
training samples for merging Hm, while smaller input patches can generate more
challenging samples with diverse occlusion and saturation cases for refining Hr.

6 Conclusion

In this paper, we present a novel SAFNet for efficient and accurate multi-
exposure HDR imaging. By jointly refining valuable area selection masks and
optical flow in selected regions, it can focus on finding and aggregating more use-
ful LDR textures and finally merge a high quality HDR image explicitly. Based
on diverse features exported from the first fusion stage, a lightweight refinement
module is introduced to compensate for missing details. Moreover, to better op-
timize our two-stage SAFNet, a new window partition cropping method is pro-
posed. Experiments on conventional and newly developed challenging datasets
demonstrate that our algorithm not only outperforms recent SOTA methods
quantitatively and qualitatively, but also runs order of magnitude faster than
advanced transformer-based solutions.
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