Omniview-Tuning: Boosting Viewpoint Invariance
of Vision-Language Pre-training Models
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Abstract. Vision-Language Pre-training (VLP) models like CLIP have
achieved remarkable success in computer vision and particularly demon-
strated superior robustness to distribution shifts of 2D images. However,
their robustness under 3D viewpoint variations is still limited, which can
hinder the development for real-world applications. This paper success-
fully addresses this concern while keeping VLPs’ original performance by
breaking through two primary obstacles: 1) the scarcity of training data
and 2) the suboptimal fine-tuning paradigms. To combat data scarcity,
we build the Multi-View Caption (MVCap) dataset — a comprehensive
collection of over four million multi-view image-text pairs across more
than 100K objects, providing more potential for VLP models to develop
generalizable viewpoint-invariant representations. To address the limita-
tions of existing paradigms in performance trade-offs and training effi-
ciency, we design a novel fine-tuning framework named Omniview-Tuning
(OVT). Specifically, OVT introduces a Cross-Viewpoint Alignment ob-
jective through a minimax-like optimization strategy, which effectively
aligns representations of identical objects from diverse viewpoints with-
out causing overfitting. Additionally, OVT fine-tunes VLP models in
a parameter-efficient manner, leading to minimal computational cost.
Extensive experiments on various VLP models with different architec-
tures validate that OVT significantly improves the models’ resilience to
viewpoint shifts and keeps the original performance, establishing a pio-
neering standard for boosting the viewpoint invariance of VLP models.
The code and dataset are available via https://github.com/Heathcliff-
saku/Omniview Tuning
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Fig.1: The Challenge of Viewpoint Invariance in VLP. We selected bench-

marks representing clean distributions (ImageNet-1K [14], CIFAR-100 [27]), common
2D-O0OD (ImageNet-V2 [12], ImageNet-R(endition) [21], ImageNet-Sketch [55]), and
viewpoint-OOD (ImageNet-V (iewpoint)+ [46], OOD-CV(Pose) [61], MIRO [7]). We

display samples from these data distributions (left) and report the Top-1 accuracy of
the original CLIP (ViT-L/14) and our improved OVT-CLIP (ViT-L/14) (right).

1 Introduction

Vision-Language Pre-training (VLP) models, such as CLIP [10] and BLIP [29],
have shown great promise in learning transferable representations across various
tasks. By aligning images and texts in a joint embedding space with a large
corpus of paired image-text data, VLP models exhibit exceptional representa-
tion and generalization capabilities that surpass traditional task-specific models.
Owing to this, the VLP models serve as foundation models for numerous tasks,
including visual recognition [40], visual question answering [1,33], and image gen-
eration [41,47]. Moreover, these models can effectively integrate real-world visual
inputs with humankind instructions, leading to their increasing use in physical-
world applications, like autonomous driving [62] and embodied robotics [28,57].
Besides their expressive power, VLP models have also shown excellent ro-
bustness under out-of-distribution (OOD) data [17, 10,54, 60], including com-
mon corruptions [0, 15, 22], stylistic changes [21,55], and natural distribution
shifts [21, 23, 42]. However, a recent study [45] identifies that although VLP
models excel at handling 2D-OO0D samples, they suffer significant performance
degradation under 3D viewpoint changes, revealing a notable shortcoming of the
existing VLP models. As demonstrated in Fig. 1, when dealing with the bench-
marks concerned with 3D viewpoint shifts [16,46,61], CLIP’s performance is
obviously lower than that on 2D-OOD benchmarks. This large gap likely stems
from limited coverage of diverse viewpoints in the training datasets [18,49,53],
which is crucial for learning viewpoint-invariant representations. As VLP mod-
els are increasingly deployed in real-world environments where viewpoint shifts
often occur, enhancing their resilience to such changes is urgent and essential.
To address this problem, this paper sets out to enhance the viewpoint in-
variance of VLP models while preserving the original performance as much as
possible. However, achieving this goal meets the following challenges: (1) Data
scarcity: acquiring VLP training data that covers a wide range of viewpoint vari-
ations is particularly challenging compared to conventional image-text pair data.
Although some datasets introduced for task-specific models do include viewpoint
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Fig. 2: Method Overview. (A) We create the first multi-view image caption dataset
by collecting multi-view samples from existing 3D object and video datasets, and gener-
ating category-guided descriptions using VLLMs. (B) The proposed Omniview-Tuning
takes multi-view image caption data as input, employs the cross-view alignment objec-
tive to encourage the model to learn viewpoint-invariant representations, and achieves
efficient fine-tuning by updating VIformer and LoRA parameters.

variations [4, 23,35, 61], they often lack the textual descriptions vital for VLP.
Even the largest available multi-view datasets [10,46,59] fall short in terms of
scale, category coverage, and viewpoint diversity, thereby limiting the potential
for VLP models to develop generalizable viewpoint-invariant representations. (2)
Inappropriate paradigms: traditional approaches, which often regard viewpoint
changes as adversarial attacks and employ adversarial training paradigms for
enhancing invariance [2,45,46], are not entirely suitable for VLP models. Such
frameworks typically entail a trade-off between robustness and accuracy—a bal-
ance that requires more careful consideration for foundation VLP models, where
our aim is not solely to improve viewpoint invariance but, more importantly,
to bridge the gap between it and the original performance. Furthermore, these
approaches necessitate extra 3D reconstruction and neural rendering to capture
adversarial viewpoints, leading to prohibitive computational costs for large-scale
VLP models. For instance, tuning ResNet-50 with VIAT [16] under a dataset of
just 1K objects demands around 400 GPU hours. Therefore, it is important to
make training more efficient and less resource-intensive.
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Based on the above discussions, this paper conducts a pioneering exploration
of the viewpoint invariance of VLP models. Specifically, we address the afore-
mentioned challenges by making the following contributions:

Million-scale multi-view image-text training set. We introduce a large-
scale Multi-View Caption (MVCap) dataset tailored for viewpoint invariance
of VLP models, comprising over 4.6 million multi-view image-text pairs across
more than 100K objects. To assemble a diverse collection of multi-view image-
text pairs, we amalgamate various 3D assets with real-world multi-view data.
This process involves an extensive selection and rendering of multi-view images
from existing datasets. We then utilize a Vision Large Language Model (VLLM)
for automated caption generation to obtain semantically rich textual descrip-
tions without extensive manual efforts. To ensure category consistency across
varying viewpoints in the generated captions, we implement a category-guided
prompting strategy, which maintains accuracy in textual descriptions for differ-
ent viewpoints of the same object or scene (details in Sec. 3).

Effective framework for enhancing VLP’s viewpoint invariance. We
propose Omniview-Tuning (OVT), a novel framework designed to enhance
the viewpoint invariance of prevalent VLP models. As illustrated in Fig. 2, OVT
employs multi-view image-text pairs for training additional learnable compo-
nents. To amplify the model’s proficiency in learning viewpoint-invariant rep-
resentations, we introduce a Cross-viewpoint Alignment objective, ensuring
that representations of the same object from different viewpoints are close and
unified in the high-dimensional feature space. To prevent performance trade-offs
due to the concept drift from aggressive viewpoint alignment, we innovatively
construct the optimization paradigm of OVT in a minimax-like form. The
optimization process includes identifying extreme outlier viewpoints during the
maximization step, while optimizing the model’s invariant representation for
these outlier samples in the minimization step. This strategy enables the model
to focus more on the worst-case viewpoint samples, thereby maximally preserv-
ing the original embedding distribution and avoiding performance degradation
while saving computational costs. Moreover, OVT is designed in a Parameter-
Efficient Fine-Tuning manner to improve efficiency, and creatively incorporates
two trainable parameter modules: an embedding transformation module named
VIFormer and the Low-Rank Adaptation (LoRA [25]) weights, to acquire addi-
tional viewpoint invariance capabilities efficiently.

Extensive experiments across various VLP architectures and tasks.
We conduct extensive experiments to show the efficacy of the OVT framework
in improving the viewpoint invariance for VLP models while maintaining perfor-
mance on clean data and 2D-O0OD samples. For example, by fine-tuning CLIP
with OVT on different architectures (ViT-B/32, ViT-B/16, and ViT-L/14), the
Top-1 accuracy on viewpoint-OOD benchmarks increased by an average of 9.6%,
10.2%, and 8.9%, respectively, with only a minimal sacrifice on 2D-OOD bench-
marks by an average of 2.6%, 1.4%, and 0.2%. Furthermore, serving as the visual
encoder in VLLMs (e.g., LLaVa [33]), OVT-CLIP also effectively improves view-
point invariance in image captioning and visual question answering tasks.
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2 Related Work

2.1 Viewpoint Invariance and Robustness

Viewpoint invariance is a key property of human vision [5] but is usually lacking
in computer vision models [2, 16]. Addressing viewpoint invariance and robust-
ness involves strategies like data augmentation and adversarial learning. Early
efforts aim to enhance viewpoint robustness by incorporating datasets enriched
with viewpoint variations [4, 23,35, 61]. For example, Madan et al. encourage
models to learn viewpoint-robust representations by incorporating object-pose
combinations [35]. However, these methods often falter under malicious view-
point perturbations due to their inability to capture the worst-case viewpoint
samples. Recently, achieving viewpoint invariance within the adversarial training
paradigm has shown promise [2,16,20,46]. By treating viewpoint variations as an
adversarial attack, Alcorn et al. employ a differentiable renderer to train models
against adversarial viewpoints optimized from a limited 3D objects set [2]. Recent
studies, such as Viewfool [16] and VIAT [15, 6], have introduced neural radi-
ance field (NeRF) [38,39], enabling the characterization of adversarial viewpoint
distributions from 2D multi-view inputs. Besides, studies in the self-supervised
domain employ a label-free paradigm to improve viewpoint invariance, but these
methods often require the introduction of complex structures, such as large-scale
graph structures [56] and viewpoint generators [12]. Distinct from previous stud-
ies, our work pioneers the improvement of viewpoint invariance representation
within large-scale VLP models, which is facilitated through suitable training
data and refined fine-tuning methodologies.

2.2 Vision-Language Pre-training

In the realm of VLP, significant strides have been made in understanding and
bridging the semantic gap between visual and textual information. Despite the
variety of existing VLP paradigms, such as single-stream encoder (e.g., Visual-
BERT [31] and UNITER |[8], etc.) or dual-stream encoder equipped with diverse
training objectives, the dual-stream contrastive learning architecture exemplified
by ALIGN [30] and OpenAT’s CLIP [10] dominates the field. CLIP, in particular,
has gained widespread attention for its ability to perform zero-shot classification
tasks by adopting a vast corpus of internet-collected image-text pairs, demon-
strating the power of large-scale contrastive pre-training. Thus, Our investigation
primarily focuses on these VLP architectures. Building upon these foundational
works, subsequent iterations like open-CLIP [26], EVA-CLIP [51,52], and Meta-
CLIP [58] have introduced nuanced enhancements. These refinements, ranging
from the incorporation of more expansive high-quality image-text datasets and
improved training methodologies, have collectively contributed to performance
uplifts. BLIP [29], meanwhile, introduces a bootstrapping mechanism by the
proposed captioner and filter module that achieve significant performance im-
provements on various downstream tasks.
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Table 1: Comparison of current large-scale multi-view datasets. "Spherical”
indicates whether the viewpoints cover spherical space, "Diversity” assesses the diver-
sity of viewpoints, and "Caption” indicates whether textual descriptions are provided.

Dataset [ Year [ #0bj. [ #Cat. [ #Avg. View. | #Sample | Image Domain | Spherical | Diversity | Caption
OOWL [24] 2019 ] 500 25 240 120K Real X * % X
CO3D [43] 2021 | 18.6k 50 ~80 1.5M Real X * X
ABO [10] 2022 | 7.9k 63 30 238K Synthetic X * X
IM3D [46] 2023 | 1.0k 100 100 100K Synthetic %4 >k Kk X
MVImgNet [59] | 2023 | 219.0k | 238 ~30 6.5M Real X * % X
MVCap (Ours) | 2024 | 94.6k | 1600 100/~30 4.6M | Synthetic|Real v * kK v

3 Multi-view Caption Dataset

We recognize that one of the key challenges in achieving viewpoint invariance
for VLP is the scarcity of training data that offer comprehensive viewpoints. As
shown in Tab. 1, existing large-scale multi-view datasets [10,24,43,46,59] typ-
ically lack in either sample diversity, category breadth, or textual descriptions,
limiting their effectiveness for supporting VLP models to achieve viewpoint in-
variance. To address these limitations, we next introduce the MVCap dataset.

3.1 Multi-View Image Collection

We commence by gathering a multi-view image collection D = {I;; | i =
1,2,...N;j =1,2,...,M;}, where N and M, represent the counts of objects
and their viewpoints, respectively. To cover various categories from virtual to
real-world scenes, we integrate samples from Objaverse [13], IM3D [46], and
MVImgNet [59]. Since the original 3D dataset includes a fair share of noisy and
semantically indistinct objects, we leverage semantic embeddings provided by
OpenShape [34] to conduct cosine similarity sorting based on the embeddings
of customized labels. Finally, we filter 24,495 virtual 3D objects endowed with
distinct semantic clarity and cover over 1,600 categories. For each chosen 3D ob-
ject, we employ Blender to render 100 random viewpoint images from the upper
hemisphere, ensuring a comprehensive and varied viewpoint representation in
our collected samples. We also incorporate objects from MVImgNet with over
30 valid viewpoints (video frames), thereby acquiring a substantial number of
real-world multi-view samples to enrich the dataset’s content and quality further.

3.2 Category-Guided Caption Generation

The granularity and precision of textual descriptions are pivotal in VLP train-
ing, as they influence the model’s generalization capabilities and the variety
of visual concepts learned. Relying solely on simple prompt engineering, such
as "a photo of [category]," may introduce biases and limit the model’s gener-
alizability, whereas manual annotation is costly. To circumvent this, we utilize
InstructBLIP-flant5x1 [11], a leading VLLM, to create multi-view captions auto-
matically. However, such VLLMs also grapple with viewpoint invariance, where
the model’s responses to different viewpoints can often be category-inconsistent,
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Fig. 3: Generated multi-view captions with common and category-guided prompts.

as depicted in Fig. 3. This situation presents a "chicken or egg" dilemma: we hope
to use a viewpoint-invariant model to supply data for viewpoint invariance train-
ing. We address this by the design of category-guided prompting. Specifically,
we use prompts containing ground-truth category information to eliminate the
hallucination of large VLLMs in response to viewpoint-shifted inputs, thereby
generating category-consistent multi-view captions. Formally, the forward pro-
cess for generating captions can be represented as follows:

Tij = Q[Iij,Prompt(cZ-)];
Prompt(c;) = " Write a short description for the image, (1)
noting that the main instance of the image is a < ¢; > .",

where ¢; € C' denotes the category label for the i-th object, and G denotes the
forward process of InstructBLIP. This yields the multi-view image-text pairs
D= {{L;;,Ti;) | i =1,2,....,N;j = 1,2,..., M;}, which can be utilized for the
viewpoint invariance fine-tuning of VLP models.

4 Omniview-Tuning

4.1 Preliminaries: Contrastive Vision-Language Pre-training

Despite the variety of existing VLP paradigms, such as single-stream or dual-
stream architectures equipped with diverse training objectives, the dual-stream
contrastive learning architecture exemplified by CLIP et al. [30,40] dominates
the field. Thus, Our investigation primarily focuses on this VLP architecture.

Without the loss of generality, these VLP models are composed of a visual
encoder Ew, : [ — z € R? and a text encoder Fyw, : T — 2T € R%, which
maps visual and textual inputs to a unified high-dimensional feature space RY,
respectively, where W, and W¢ are weight matrices of two encoders. Given a
large corpus of image-text pairs {(I;,T;)}¥.;, VLP models typically employ an
image-text contrastive (ITC) loss as the training objective:

Lire = 5(Lisr + L), (2)

which is composed of an image-to-text and a text-to-image terms formulated as:

— 1 N ex (d(zilvziT)/T)
Lror = —x Dimilog sx oty )
L - _1 ZN log exp(d(z] ,z])/T)
T—1 N i=1 Zﬁzl exp(d(ziT,Z,é)/T) )
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where T represents a learnable temperature parameter, z and z” denote the
image and text embeddings, respectively. The £;7rc maximizes the similarity be-
tween matched image-text pairs while minimizing the similarity for mismatched
pairs, thus enabling the alignment of visual and textual information to the
same feature space, bringing the embeddings of matched pairs closer. Follow-
ing [29, 30, 40], the proposed Omniview-Tuning implements L;r¢ for aligning
multi-view images with text modalities, which is explained in the next section.

4.2 Problem Formulation

Viewpoint Invariance of Vision-Language Pre-training. In computer vi-
sion scenario, viewpoint invariance implies that model f(-) can provide consistent
predictions or representations given any different views of the identical object
or scene [46]. Formally, given a collection of multi-view images D = {I;; | i=
1,2,..,N;j=1,2, ..., M;}, viewpoint invariance is required:

f(Tig) = f(Lijr), Vi, j,j" with j # ', (4)

where ¢ is the index of the object/scene, j and j’ are indexes of two viewpoint
samples. However, in the context of dual-stream VLP models, this concept re-
quires a more refined interpretation. For VLP models, viewpoint invariance ne-
cessitates that the visual representations (i.e., the embeddings inferred from
the visual encoder) from different viewpoints be sufficiently close in the feature
space. Assuming [;; and I;;» are images from different viewpoints of the same
object, this requirement can be formulated as follows:

d EWV(IU),EWV(IZ»,)} <e (5)

where d(-) denotes a distance metric in the representation space, such as cosine
distance, € represents the maximum variance allowed.

Optimization Objectives of Omniview-Tuning. Although images from
different viewpoints often correspond to slightly varying textual descriptions, in-
fluenced by context, grammatical structure, and linguistic ambiguity, this vari-
ation could be significantly amplified in the high-dimensional representation
space [9,44]. Therefore, relying solely on image-text alignment may not suf-
fice to adequately align embeddings from different viewpoints. Starting from
the definition of viewpoint invariance, we introduce a cross-viewpoint alignment
objective within the L;pc to directly encourage the model to learn invariant
representations between different viewpoints, rather than relying on the indirect
alignment through textual descriptions. This can be seen as a regularization that
forces the model to obtain viewpoint invariance, even when such invariance is not
explicitly articulated in the textual descriptions. With this consideration, given
a multi-view training set D, the optimization problem is defined as follows:

mi‘r)lvt [EITc—i-)\-IZi >t d(Zin7Zin’)l]7 (6)

v

Lyvc
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where the first term represents the image-text alignment used in the pre-training
process, while the second term signifies the cross-viewpoint alignment goal men-
tioned above, referred to as Viewpoint Consistency loss (Ly¢), which aims to
minimize the cosine distance between embeddings from different viewpoints. A
is a hyperparameter that balances the importance of two loss terms.

4.3 Optimization Strategy

In summary, the naive way to achieve viewpoint invariance is to calculate the
loss terms in Eq. (6) based on the forward process of encoders, then update the
encoders’ weight using gradient descent. However, it has a relatively high time
complexity to solve Eq. (6) because current Ly ¢ requires iterating over every
possible combination of viewpoints. Therefore, we endeavor to provide a more
effective implementation for the original optimization problem. Drawing from
the advantages of adversarial training [36,46], we frame the optimization of the
Ly in a minimax format, rewriting the original problem Eq. (6) as:

. o,
W We | Lrred A 0={0: glaf\ollzf(zz 1Ejeollzgze) | (7)
l:v I
where ( U,zé ) = max [d(zw ) +m, 0],

where O = {0, }¥, is the outlier viewpoints set, Z(IL are anchor viewpoint em-
beddings of each object, and [(+) is the cosine distance with a margin m. During
the optimization, The maximization step first identifies the collection of top-K
outlier viewpoints O, which are the viewpoint samples with the highest degree of
representational deviation. Then, the minimization step encourages the outlier
viewpoint embeddings to converge towards corresponding anchor viewpoint em-
beddings zél We obtain Zé by calculating the nearest-neighbor weighted
embedding centroid of each object:

M; ~
Zé = Zj:l Wij - Zilj’ (8)
where w;; = ww/z Wij, Wij = 1/Zz1h€Q77 d(z zI]inIh)

where Q” = {2}, }3_, is the top-5 nearest neighbours of each viewpoint embed-
ding z .. As for the outlier viewpoints set, we define them as the viewpoints with
the top—K farthest cosine distances from Zc

The adoption of this strategy offers dual advantages: Firstly, it allows the
model to focus solely on extreme outlier viewpoints, preventing concept drift
and potential overfitting to the fine-tuning dataset that results from excessive
alignment. Secondly, this approach reduces computational overhead and signifi-
cantly enhances optimization efficiency.

4.4 Parameter-Efficient Modules

To mitigate the impact of full parameters update on the original performance
and enhance training efficiency, we achieve viewpoint invariance by efficiently
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Fig. 4: Visualization results for zero-shot classification results.

fine-tuning the parameters of the visual encoder while keeping the text encoder
frozen. Inspired by LoRA [25], we perform low-rank decomposition on the weights
of the visual encoder W, € R™*™ to substitute full-parameter update:

W, =W, + AW = W, + BA, where B R™" A € R™", r < min(n, m),

9)
where A and B are two learnable low-rank parameter matrices, which we ap-
ply to the self-attention layers of the visual encoder and update them during
fine-tuning while freezing the original pre-trained weights. Compared to di-
rectly adjusting the original network weights (i.e., full-parameter fine-tuning
manner in TeCoA [37] and FARE [18]), this approach enables us to improve
the model’s viewpoint invariance representation capability while better preserv-
ing the original performance. Drawing inspiration from the success of CLIP-
Adapter [19], which improves CLIP’s performance in few-shot scenarios by in-
troducing linear layers after the encoder, we propose a similar module called
VIformer:fg : 2/ € R? — s € R?, where 0 is the weight. Unlike CLIP-Adapter,
VIformer transforms the original embeddings z! by introducing self-attention
layers in a learnable manner to extract and retain specific viewpoint-invariant
key components s/. Combining LoRA and VIformer modules, the forward pro-
cess of image encoding can be represented as follows:

F=a foz')+(1-a) -2 10

=a fo(Wy-I+BA-I)+(1—a) - (Wy-I+BA 1), (10)
where the constant value o denotes the residual ratio to balance achieving orig-
inal performance and viewpoint invariance performance. Therefore, for Eq. (6),
we now only need to update A, B, and 6, rather than the entire weights of
VLP. To facilitate the understanding of the OVT training process, we provide
the pseudocode for OVT as shown in Appendix D

5 Experiments

Our evaluation of Omniview-Tuning spans several downstream tasks, includ-
ing zero-shot classification, image captioning, and vision question answering.
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Table 2: Configurations of OVT and zero-shot Top-1 accuracy (%) on
ImageNet-1K with ImageNet-V-+. The number in parentheses shows the perfor-
mance change relative to the pre-trained weights. Through OVT training, each model
maintains the performance on ImageNet-1K (IN-1K) while significantly improving the
performance on ImageNet-V+ (IN-V+.), narrowing the performance gap.

Model Pretrain Weight Pretrain Data Total ~ Trainablel lmage Batch 1 10 1K IN-View
#Param. #Param.| Size Size
OVT-OpenCLIP ViT-B/32[OpenCLIP-ViT-B/32 LAION (2B) 15IM  6.6M | 224 512 35k |67.8 (11.3) 595 (122.4)
OVT-OpenCLIP ViT-B/16|OpenCLIP-ViT-B/16 LAION (2B) 149M  6.6M | 224 512 35k |69.7 (12.1) 617 (117.5)
OVT-OpenCLIP ViT-L/14|OpenCLIP-ViT-L/14 LAION (2B) 128M  118M | 224 256 20k |77.3 (1 2.1) 69.8 (116.6)
OVT-MetaCLIP ViT-B/32|MetaCLIP-ViT-B/32  Common Crawl (2.5B)| 15IM  6.6M | 224 512 40k |69.7 (12.1) 54.8 (113.5)
OVT-MetaCLIP ViT-B/16|MetaCLIP-ViT-B/16  Common Crawl (2.5B)| 149M  6.6M | 224 512 40k |73.8 (11.7) 64.8 (115.2)
OVT-MetaCLIP ViT-L/14 | MetaCLIP-ViT-L/14 Common Crawl (25B)| 428M  11.8M | 224 256 20k |77.7 (J1. 1) 75.4 (19.0)
OVT-BLIP ViT-B/16 Salesforce-BLIP-ViT-B/16 COCO et al. (120M) | 234M  4.3M | 224 256 20k |67 (18.8) 54.8 (115.0)

For zero-shot classification (Sec. 5.1), we conduct evaluations for CLIP [40] and
BLIP [29] architectures. For image captioning and vision question answering
(Sec. 5.2), we replace the visual encoders in Vision Large Language Models
(VLLMs) with our fine-tuned versions. We adopt LLaVA-1.5 [32,33], and Open-
Flamingo [3], the most advanced open-source VLLMs available. Additionally, we
present the ablation study and convergence analysis of our approach in Sec. 5.3.

5.1 Evaluation of Zero-Shot Classification

Baselines. We adopt the official CLIP (OpenAI CLIP [10]) and the commu-
nity open-source version (OpenCLIP [20]) as baselines. Additionally, we include
the current state-of-the-art Eva02-CLIP [51] and MetaCLIP [58] as another set
of baselines to compare CLIP trained with improved techniques and extensive
training data. For BLIP, we use the official implementation [29] as the baseline.
Settings. We train two series of CLIP models using our OVT framework and
MVCap dataset, each series comprising three different visual encoder architec-
tures (ViT-B/32, ViT-B/16, and ViT-L/14). OVT-OpenCLIP are fine-tuned on
the original weights of OpenCLIP, while OVT-MetaCLIP are based on Meta-
CLIP. The fine-tuning settings are detailed in Tab. 2. We standardized the A=1.0,
a=0.1, and the outlier viewpoints number K =5 and set the LoRA rank at 8.
Datasets and Metrics. We employ a various set of benchmarks for evaluation,
including clean data distributions [14,27], common 2D-O0D [21,23,42 55 (1],
and most importantly, viewpoint-OOD [7, 16,46, 61]. For each benchmark, we
report Top-1 and Top-5 accuracy and average accuracy across all benchmarks.
The evaluations follow the standard prompting engineering of CLIP [40].
Results and Discussions. Tab. 3 summarizes the performance of our OVT-
trained VLP models against various VLP versions, including their accuracy
across different benchmarks and average accuracy across clean, common-OOD,
and Viewpoint-OOD domains. We can draw the following conclusions:

(1) OVT significantly enhances the models’ invariance to Viewpoint-OOD
samples. Across different VLP architectures and visual encoders, OVT-trained
models perform best on almost all viewpoint-OOD benchmarks. On the average
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Table 3: Top-1/Top-5 zero-shot accuracy (%) under different benchmarks

Model

ImageNet-100 [ 1]

Clean

Avg. Acc.

Cifar-100 [27]

2

Common-00D

TmageNet-Ren. [21]

Avg. Acc.

00D-CV [1]

H

Viewpoint-OOD

00D-CV-Pose [11]

ImageNet-View. [16]
Avg. Top-1

MIRO [7]

Total Avg. Acc.

> | ImageNet-Ske. [57]

Comparisons with ViT-B/32 baselines

OpenAl CLIP|
Open CLIP|

OVT-OpenCLIP

77.5/93.9
81.1/95.3
80.9/95.6

63.3/88.8 64.3/88.1 68.4/90.2
66.5/80.9 75.8/94.0 74.5/93.0
67.8/90.8 65.0/89.3 71.2/91.9

55.8/83.4 42.2/70.3 33.4/62.2 50.7/75.4 50.2/82.6 46.5/74.8
58.1/83.9 53.6/79.3 34.8/64.4 61.0/81.9 53.5/81.9 52.2/78.3)

58.0/842 45.8/734 42.8/75.0 503/714 51.7/79.5 49.7/76.7

44.5/65.4 27.5/52.4 4T.2/84.5 26.5/59.4 36.4/65.4
54.4/72.1 37.1/63.2 46.9/81.6 33.0/69.2

81.2 59.5/85.6 52.8/82.5 35.4/80.1 52.4/82.4|

12.8/715

61.9/

48.6/75.5
54.6/79.7
56.0/82.4

MetaCLIP|

OVT-MetaCLIP|

80.7/95.6

80.7/95.6 69.7/92.0

67.6/90.5 77.7/95.2 75.3/93.8

71.8/93.0 74.0/93.5

59.5/85.4 55.9/81.4 32.4/62.5 63.2/83.8 52.0/84.2 52.6/79.5|

60.6/85.8 47.8/75.8 43.5/73.8 49.0/70.8 50.1/80.1 50.2/77.2

61.4/76.7 41.0/67.8 48.9/87.9 34.8/73.2 46.5/76.4

64.0/79.2 54.8/80.4 55.1/84.8 35.6/77.0 52.4/80.3]

56.3/82.0
56.9/82.3

B. Comparisons with ViT-B/16 baselines

OpenAl CLIP|
Open CLIP|

OVT-OpenCLIP

82.1/95.7

83.2/96.2

83.9/97.0 71.9/98.1 69.0/90.7

68.3/91.9 67.2/80.4 72.5/92.3
70.1/91.8 77.0/94.8 76.8/94.3
74.9/93.6

61.8/87.4 48.2/76.3 27.7/55.7 59.1/83.0
62.2/87.0 56.0/82.0 30.7/59.8 64.9/85.6 54.3/82.7 53.6/79.4
64.0/88.6 50.5/77.9 36.8/68.9 57.0/77.2 56.3/845 52.9/79.4

52.2/84.6 49.8/77.4

51.6/68.9 36.9/63.8 53.4/86.8 30.1/66.1 43.0/71.4
744 44.2

80.7 61.7/85.8 56.9/87.4 42.4/84.9 56.6/84.7|

58.1 70.9 48.5/84.0 34.6/74.6 46.4/76.0

65.4/

53.2/79.1
57.0/82.0
59.6/84.7

EVA-CLIP|

MetaCLIP|

OVT-MetaCLIP|

85.3/96.5 74.6/94.2 87.5/98.0 82.5/96.3

84.3/97.2
83.4/97.4

72.1/93.4 78.9/95.4
73.8/94.1 73.9/93.6

78.4/95.3

77.0/95.0

67.0/89.8 57.6/82.3 21.3/47.3 69.6/87.5 53.1/83.1 53.7/78.0
65.0/89.3 60.1/84.8 26.2/56.4 70.2/89.3 52.3/85.4 54.8/81.0
65.9/89.4 53.6/81.0 36.2/66.8 59.0/79.6 51.6/83.8 53.2/80.1

61.8/76.6 44.3/69.4 53.9/87.4 32.9/73.2 48.2/76.6

64.2,
69.7/84.0 64.8,

79.4 49.6/76.1 45.9/90.9 38.5/78.7 50.3/81.2

87.3 55.2/87.8 39.2/82.9 57.2/85.5|

59.1/82.1
59.2/84.7
60.5/85.6

C. Comparisons with ViT-L/14 baselines

OpenAl CLIP|
Open CLIP|

OVT-Op:

“LIP|

86.5/97.4
86.8/97.8

89.0/97.8 77.3/95.3 79.2/95.3

75.4/94.6 76.5/93.3 79.5/95.1
75.2/94.3 83.7/96.7 81.9/96.2

81.8/96.1

69.8/90.9 59.5/84.3 18.6/43.8 72.8/91.4 52.9/88.8 54.7/79.8
67.7/90.2 63.2/86.4 24.0/50.5 74.5/91.2 54

69.6/91.5 61.9/86.0 27.5/55.4 71.3/88.7 56.4/87.0 57.3/81.7|

85.0 56.8/80.6

60.3/75.6 45.8/71.5 47.9/88.2 38.0/74.1 48.0/77.3
65.7/78.1

72.2/86.6 69.8/89.7 57.3/94.1 50.0/89.3 62.3/89.9|

53.2/76.7 52.4/90.5 42.3/83.0 53.4/82.1

58.6/82.8
61.9/85.0
65.1/88.1

EVA-CLIP

MetaCLIP|

OVT-MetaCLIP|

88.5/97.9 79.6/96.0 90.6/98.6 86.3/97.5

88.3/98.3
88.8/97.5

79.1/95.9 84.1/96.9 83.8/97.0

77.7/95.9 84.0/96.9 83.5/96.8

72.8/92.7 68.0/89.1 16.3/40.0 82.8/95.7 54.7/8T.4 58.9/81.0

72.5/92.6 68.9/89.8 17.0/40.6 81.8/95.1 56.6/87.5 59.3/81.1

70.8/92.2 64.4/87.9 20.8/47.0 77.0/92.7 56.3/89.3 57.8/81.8

715/82.3 G6L1/81.7 54.4/94.5 39.6/86.1 56.6/86.1
77.3/80.3 66.4/87.0 58.9/93.3 48.1/80.6
79.3/90.6 75.4/93.0 57.0/94.4 46.4/93.8 64.5/92.9]

62.7/80.8

65.0/86.8
66.6/88.0
66.5/89.3

D. Comparisons with BLIP ViT-B/16 baselines
47.3/74.7 51.0/76.6 25.6/53.4 64.3/83.8 53.9/87.6 48.4/75.2 | 55.2/68.2 36.8/63.3
53.7/82.9 46.5/74.2 33.8/62.7 57.4/77.9 56.4/87.3 49.6/77.0/62.6/79.0 54.8/79.9 55.2/89.5 31.5/73.2 51.0/80.4]

BLIP| 76.6/93.3 52.9/80.2 67.0/88.3

82.2/97.0 61.7/88.8 (6.6/88.9 70.2/91.5|

65.5/87.3 50.8/89.9 27.0/66.1 42.4/71.9 | 50.7/77.1

OVT-BLIP) 55.2/81.8

accuracy of viewpoint-OOD datasets, OVT-OpenCLIP with ViT-B/32, ViT-
B/16, and ViT-L/14 shows improvements of 9.6%, 10.2%, and 8.9% over Open-
CLIP, respectively. OVT-BLIP demonstrated an average improvement of 8.6%.
(2) While enhancing viewpoint invariance, OVT maintains performance on clean
samples and 2D-O0D without significant performance trade-offs. For 2D-O0OD
benchmarks, OVT-OpenCLIP with ViT-B/32, ViT-B/16, and ViT-L/14 sacri-
fice only 2.6%, 1.4%, and 0.2% accuracy. (3) Compared to earlier CLIP baselines,
the recently developed MetaCLIP exhibits better zero-shot performance. Based
on this, OVT further enhances its performance under viewpoint-OOD samples.
Visualization. We showcase OVT-OpenCLIP and the original OpenCLIP pre-
diction on several viewpoint-OOD samples. As illustrated in Fig. 4, OVT-CLIP
successfully predicts the categories of images from various unusual viewpoints in
all cases, whereas the original CLIP is prone to make incorrect predictions.

5.2 Performance on Other Tasks

Settings. As LLaVA and Openflamingo use the OpenAI CLIP (ViT-L/14) to
encode vision inputs, we applied OVT to this model in this section and comparing
with other OpenAI CLIP (ViT-L/14) versions in image captioning tasks. The
training setup remains consistent with the OVT-OpenCLIP described in Tab. 2.
Baselines. In addition to comparing with the original OpenAI CLIP version, we
also select TeCoA* [37] and FARE* [15], robust CLIP models based on adver-
sarial training, as baselines, which have been proven to possess good resistance
to adversarial samples in image captioning task.
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Table 4: Image captioning performance under clean distribution samples and
viewpoint-OOD samples from Real-world and Synthetic domains. We utilize the MP-
Net [50] to calculate the similarity between generated descriptions and ground-truth
labels, considering predictions successful if they exceed the similarity threshold £.

Real-world Domain Synthetic Domain

OOD-CV (iid) [61] | OOD-CV (Pose) [61] IM3D [16] ImageNet-V+ [16]
Model Visual Encoder |5@1.0 3@0.5 S@Adp.|5@1.0 fQ0.5 fQAdp.|5@1.0 fQ0.5 SQAdp.| Q1.0 fQ0.5 BQAdp.
OpenAl CLIP(ViT-L/14) | 44.1 61.1 67.5 46.4 53.6 58.7 46.7  53.3 58.8 204 255 32.1
TeCoA* [37|(ViT-L/14)| 41.9  58.9 65.5 36.1 41.6 49.2 26.3  30.1 42.6 8.7 11.6 22.6

FARE* [15](ViT-L/14)| 42.1  58.9 65.2 40.2 459 50.8 352 39.2 49.2 12.7 158 23.1

OVT-CLIP(ViT-L/14) | 43.5 59.5 65.9 46.5 53.6 59.1 49.4  54.0 61.8 26.4 31.9 41.0
OpenAl CLIP(ViT-L/14) | 45.4  68.0 70.6 48.6 58.6 60.8 48.7  56.7 60.8 21.2 284 32.5
TeCoA* [37)(ViT-L/14)| 42.4  67.0 72.2 374 489 51.3 25.0 28.6 41.5 8.4 10.9 21.8

LLaVa-7h

LLaVa-13b
FARE* [15](ViT-L/14) | 43.9  66.7 71.1 419  52.1 54.8 36.1 414 48.6 12.1 159 20.8
OVT-CLIP(ViT-L/14) | 45.7  67.3 70.8 48.2 58.6 61.9 50.4  58.9 63.2 26.4 36.2 40.9
80
Original CLIP: Original CLIP:
“A black background with a white wheel.” “A black and white photo of a plane.” — . 185
. @7 .
' || ovrcure: OVT-CLIP: ™ - 66.13 . * o
“A metal dumbbell is on a black background.” “A bicycle with a white seat and black frame.” 6227 > 6301 L
R Original CLIP: Original CLIP: 60
“A small model of a machine gun.” “Anapkin is folded into a flower shape on a table.” 5
OVT-CLIP: OVT-CLIP: s0
A small model of a canrnon.” “A chair with a napkin on it.” @ ImageNer-IK
e ImageNet-V2
Original CLIP: Original CLIP: 01 w9
“Awooden cabinet with a black background.” “A car is upside down in a hole.” e ImageNet-V'
OVT-CLIP: OVT-CLIP: 0
“Awooden bench with a metal leg.” “Amoiorcycle is laying on its side in a hole.” o 10K 20K 30K 40K

Fig. 5: The image descriptions generated by LLaVa-13B Fig.6: The Top-1 accu-
using our OVT-CLIP and the original OpenAI CLIP as racy of OVT-OpenCLIP
vision encoder, where red texts indicates incorrect cat- (ViT-B/16) with the iter-
egory descriptions, and green texts represents correct. ations increases.

Datasets and Metrics. Given the absence of caption benchmarks that in-
clude viewpoint-changing OOD samples, we conduct evaluations using existing
viewpoint-OOD datasets, including real-world datasets (using OOD-CV (iid) to
represent clean distribution and OOD-CV (Pose) for viewpoint-OOD) and syn-
thetic datasets (using IM3D [46] for clean distribution and ImageNet-V+ for
viewpoint-OOD). We adopt word embedding distance to calculate the accuracy
of the captioning task. By adopting MPNet [50], a state-of-the-art textual em-
bedding model, we measure the similarity between keywords in the generated
description and the ground-truth categories. Then assess the accuracy by count-
ing the number of samples that exceed a specific similarity threshold 3.

Results and Discussions. Tab. 4 shows the image captioning accuracy of
CLIP models under different training strategies, considering 8 at 1.0 (indicating
predictions involve ground-truth categories), 0.5, and Adp. (meaning S is equal
to the average similarity in the clean distribution). We found that OVT-CLIP
improves the accuracy of descriptions generated by LLaVa for viewpoint-OOD
samples while maintaining its performance on corresponding clean distributions.
When used as the visual encoder for the LLaVa-7B model, OVT-CLIP achieved
an 8.9% increase in accuracy compared to the original CLIP model weights under
B = Adp. Besides, we find that although robust CLIP versions maintain perfor-
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Table 5: Average Top-1/Top-5 zero-shot accuracy (%) under different data distribu-
tions within various ablation settings.

Lirc VIFormer Lyc Total Avg. Clean Avg. Common-OOD Avg. | Viewpoint-OOD Avg.
X X X 61.9 85.0 81.9 96.2 56.8 80.6 53.4 82.1
v X X 61.9 85.7 (10.7) | 79.4 (12.5)  95.6 (10.6) | 56.2 (0.6) 81.4 (10.8) | 56.0 (12.6) 83.8 (11.7)
v v X 1622 (10.3) 86.2 (11.2) | 79.9 (J2.0) 95.4 (0.8) | 55.4 (11.4) 81.6 (11.0) | 57.5 (14.1) 85.2 (13.1)
v v v [65.1 (13.2) 88.1 (13.1)|81.8 (10.1) 96.1 (/0.1)|57.3 (10.5) 81.7 (11.1)]62.3 (18.9) 89.9 (17.8)

mance on clean distribution samples, they experience a significant performance
decline when facing viewpoint-OOD samples. We select some examples with the
generated description in Fig. 5. For the visual question-answering task, we used
OpenFlamingo as the VLLMs. The results are reported in the Appendix A.

5.3 Ablation Studies and Additional Results

Our ablation studies focus on the VIFormer and the £y ¢ within the Omniview-
Tuning framework. Tab. 5 shows the Top-1/Top-5 acc of OVT-OpenCLIP (ViT-
L/14) across various data distributions and different ablation settings. Beyond
the original OpenCLIP, we set a baseline that only uses L;p¢ for fine-tuning.
Keeping other training settings fixed, reliance solely on L;pr¢ led to a more signif-
icant performance decline in clean and 2D-OOD samples while achieving limited
viewpoint OOD performance improvement (2.6%,/1.7%). The integration of VI-
Former led to further improvements in viewpoint OOD accuracy (4.1%/3.1%).
With the further addition of Ly ¢, the improvement in viewpoint OOD perfor-
mance is most significant (8.9%/7.8%), and it also reduces performance sacrifices
in other data distributions. More ablation analyses are available in Appendix B.
Furthermore, we report OVT’s training convergence, depicted in Fig. 6. We
display the Top-1 accuracy evolution for OVT-OpenCLIP (ViT-B/16) across
various training iterations. We observe that around 40K iterations, with a batch
size of 512, are sufficient for effective convergence, thus achieving a balance in
performance across different data distributions.

6 Conclusions

To tackle the challenge of 3D viewpoint invariance in VLP models, this paper first
introduced the MVCap dataset, a million-scale collection of image-text pairs with
diverse viewpoint variations. Building upon this groundwork, we then proposed
the Omniview-Tuning framework, which incorporates a novel Cross-Viewpoint
Alignment objective in a parameter-efficient manner, effectively enhancing the
VLP models’ ability to generate viewpoint-invariant representations. Moreover,
through extensive experiments, we successfully verified that Omniview-Tuning
could bring significant improvements in viewpoint invariance while preserving
the original performance. These advancements provide valuable insights and a
standard for future research on viewpoint invariance in foundation models.
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