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A Network Architecture

Cost volume creation. For the RGB image feature extractor, we adopt the
image feature extractor used in NeuralRecon [12]. The feature extractor is a
lightweight variant of MnasNet [13] initialized with pretrained weights obtained
from ImageNet [5] and utilizes the architecture of Feature Pyramid Network [6] to
extract multi-scale features. For 3D convolutional U-Net, we employ the network
architecture used in CostDCNet [4].
Ray-based cost volume fusion module. Figure 8 illustrates the architecture
of our ray-based cost volume fusion module, where additional details (not shown
in Figure 4), including normalization, activation functions, and linear embedding
of voxel features within cost volumes, are presented. We utilize pseudo-3D con-
volutions [10] to reduce computational costs when considering spatially adjacent
voxel features.

B Training Details

Our network training procedure consists of two phases. In the first phase, we
make batches where each one has randomly picked RGB-D images (four images
in our setting) from the dataset. We use these batches to train all learnable parts
except for the cross-attention module.

In the second phase, we make batches where each one has four consecutive
RGB-D images to learn temporal fusion. Here, the first sample in the batch is
used to train learnable parts except for cross-attention. Such batch configuration
is necessary because the first frame does not have the cost volume of the previous
frame to fuse. The second to last samples in the batch are used to train all parts,
including cross-attention, that learn to fuse volumes incrementally.

Once the training finishes, we can utilize the network to fuse cost volumes
incrementally. In addition, to handle the single-view settings, where only a single
RGB-D image was given, we disabled only the cross-attention module in the
trained network. With this scheme, we report all experimental results in the
single-view setting.
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Fig. 8: Detailed architecture of our distribution-aware cost volume fusion module. ‘3D
Conv’ and ‘Linear’ denote pseudo-3D convolutions [10] and multilayer perceptrons.

Table 6: Comparison of the inference time and the GPU memory usage (left). The
run-time of the proposed components (right).

Method GPU Mem. (MiB)↓ Infer. Time (ms)↓
SimpleRecon [11] 5719 66
CostDCNet [4] 2273 30

NLSPN [9] 3348 70
ComplFormer [16] 3900 93

Ours 4438 77

Component Time (ms)↓
Cost volume creation 28.0
Cost volume fusion 36.7
Depth regression 6.1
Depth refinement 6.2

Ours total 77.0

C GPU Memory Usage and Timings

We report the total GPU memory usage and inference time of our framework
and its components, as well as those of some representative methods for com-
parison.(Table 6).

D RGB-D Feature Volume Creation

We elaborate on constructing occupancy Vo, residual Vr, and RGB feature Vi

volumes, where Vo,Vr,Vi ∈ RD×C×W×H , used for RGB-D feature creation
(Section 4.1, Figure 3).
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Occupancy and residual volumes. We form Vo and Vr using a sparse depth
image St. Specifically, to make the binary-valued occupancy volume Vo, we ini-
tially set all voxels in Vo to zero. Then, for only valid depth pixel positions (h,w)
having depth value v = S(h,w), we find an index d of the depth plane closest
to v and then set Vo(d, h, w) = 1. The residual volume Vr contains normalized
distances between depth planes and sparse depth samples. Specifically, for the
voxels having Vo(d, h, w) = 1, we calculate the normalized distance (v− vd)/m,
where v = S(h,w), vd is the depth value of the d-th depth hypothesis plane, and
m is the interval between depth planes.
Image feature volume. Image features extracted from an input RGB image
make a volume Vi. We build a spatial pyramid and concatenate multi-scale
features [3] to leverage the image contexts at various scales. We denote a feature
map as f ∈ RC×W×H . If S(h,w) does not have a valid depth, we copy f(:, h, w)
to all d ∈ D voxels, denoted as Vi(d, :, h, w). Otherwise, we find the index d of
the depth plane closest to the valid depth sample and set Vi(d, :, h, w) = f(:
, h, w) [4].

E Cost Volume Alignment

We align two cost volumes V′
t−1 and Vt for the temporal volume fusion (Section

4.2). Since the coordinate system of the two volume is not the same under the
moving cameras, we warp V′

t−1 to align with Vt of the current frame.
We employ inverse mapping for a reliable implementation. Specifically, we

transform the center position v = [u, v, d]⊤ of each voxel of Vt using camera
intrinsics K and camera poses (Tt−1 and Tt) as follows:

[d̃ũ, d̃ṽ, d̃, 1]⊤ = KT−1
t−1TtK

−1[du, dv, d, 1]⊤.

Then, we resample V′
t−1 at the transformed voxel coordinates [ũ, ṽ, d̃]⊤ using tri-

linear interpolation. If the transformed voxel coordinates fall outside the bound-
ary of V′

t−1, we assign zero-valued vectors. By repeating this procedure for all
voxels, we obtain a waped cost volume V′

(t−1)→t.

F Depth Refinement Module

Our approach uses non-local spatial propagation networks (NLSPN) [9] to refine
regressed depths. NLSPN uses the input affinities between the current pixel and
neighbors, a depth to be refined, and a confidence map of the depth to generate
enhanced depths.

In prior work, the spatial propagation process is repeatedly applied (18 times
in NLSPN) to refine the depth. In addition, state-of-the-art depth completion
methods [7, 9, 16] employing spatial propagation networks commonly rely on
heavy neural networks, such as Vision Transformer, to output high-quality re-
gressed depth, affinity, and confidence maps simultaneously.
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Fig. 9: Performance trend over time with various cost volume fusion schemes.

On the other hand, we use a shallower 2D convolutional network to estimate
an affinity map since our regressed depth is accurate enough (Figure 3). Fol-
lowing the same rationale, we iterate the propagation process only six times.
Note that without additional networks, a value of a confidence map C at a pixel
position (h,w) is directly computed as C(h,w) = P(d, h, w), where P is a pre-
dicted probability volume for regressing depth D(h,w), and d is the index of a
hypothesis depth plane closest to a regressed depth D(h,w).

G Evaluation Metric

We employ the standard depth image error metrics [9], including mean absolute
error (MAE), root mean square error (RMSE), mean absolute error of the inverse
depth (iMAE), and root mean squared error of the inverse depth (iRMSE). For
3D reconstruction evaluation on the ScanNetV2 dataset, we measure 3D error
metrics, including geometric accuracy (Acc.), geometric completeness (Compl.),
Chamfer distance (Chamfer), precision (Prec.), recall, and F-score. We utilize the
point sampling and thresholding method by Bozic et al. [1] for the evaluation.
To obtain 3D meshes reconstructed from the inferred depth frames, we use a
truncated signed distance function (TSDF) with a voxel size of 4cm, which is
implemented in the Open3D library [17].

H Performance Trend over Time

We assess the performance trend of our fusion scheme over time on a selected
RGB-D stream from the ScanNetV2 dataset (Figure 9). Note that our fusion
module consists of self-attention (for the refinement of a single cost volume) and
cross-attention (for the fusion of two cost volumes). We computed per-frame
MAE values for three options: not using both the self- and cross-attention-based
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fusion module, using only the self-attention part of the module, and using the
whole fusion module.

As expected, a framework not using the fusion module consistently exhibits
the poorest performance over time. Using only the self-attention part of our
fusion module (single-view setting) shows the second-best performance. The
framework exhibits the most superior performance when leveraging self- and
cross-attention-based fusion. Especially our temporal fusion mitigates perfor-
mance degradation, as indicated by the red boxes in Figure 9.

I Qualitative Results

We present additional visual results comparing our approach with other state-
of-the-art depth completion methods on ScanNetV2 dataset [2], VOID Depth
Completion benchmark [15], and the KITTI Depth Completion benchmark [14].

I.1 ScanNetV2 test set

We compare our model with CompletionFormer [16], NLSPN [9], and CostDC-
Net [4], where all models are trained on the ScanNetV2 training set. Our model
shows more accurate depths compared to the other methods, as shown in Figure
10 and our supplementary video. Furthermore, we observe that depth sequences
completed by our method exhibit temporally coherent results.

I.2 VOID test set

We train our and other models (CompletionFormer [16], NLSPN [9], and Mondi [8])
on the VOID training set with 0.5% depth density. Subsequently, we assess their
performance on VOID test sets with 0.5%, 0.15%, and 0.05% densities to analyze
the sparsity-agnostic ability.

As shown in Figure 11, our method exhibits superior accuracy compared
to other models on the VOID test set with 0.5% density. This superiority per-
sists in test sets consisting of even sparser depth samples (0.15%, 0.05%), as
demonstrated in Figures 12 and 13. The robustness of sparser depth samples
is attributed to our ray-based fusion scheme that effectively boosts confident
probability distributions (Figure 14).

I.3 KITTI validation set

We qualitatively compare depth maps inferred by our model, NLSPN, and Com-
pletionFormer, which are all trained on the KITTI training set. The completed
depth maps of NLSPN and CompletionFormer are visually pleasing, aligning
well with structural features such as edges within an RGB image. Our completed
depth maps show better accuracy in large areas, such as roads, that occupy a
significant portion of the image, as shown in error maps of Figure 15.
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I.4 Cross-dataset generalization

We conduct an additional experiment to evaluate the cross-dataset generaliza-
tion ability of our model. We train our model, NLSPN, CompletionFormer, and
CostDCNet on the ScanNetV2 training set, then test them on the VOID test
set with 0.5% depth density.

In summary, our method predicts more accurate depth maps than other
models (Figure 16). As shown in Figures 11 and 16, models trained on the
ScanNetV2 training set generate more visually appealing completion results,
exhibiting sharper edges, compared to those trained on the VOID training set,
which comprises relatively low-quality ground truth depth maps.
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Fig. 10: Visual comparison of our framework with CompletionFormer [16], NLSPN [9],
and CostDCNet [4] on the ScanNetV2 test set with 0.1% depth density. Completed
depth images (upper rows) are presented alongside their error maps (lower rows) for
each scene.
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Fig. 11: Visual comparison of our framework with CompletionFormer [16], Mondi [8],
and NLSPN [9] on the VOID test set with 0.5% depth density. Completed depth
images (upper rows) are presented alongside their error maps (lower rows) for each
scene.
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Fig. 12: Visual comparison of our framework with CompletionFormer [16], Mondi [8],
and NLSPN [9] on the VOID test set with 0.15% depth density. Completed depth
images (upper rows) are presented alongside their error maps (lower rows) for each
scene.
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Fig. 13: Visual comparison of our framework with CompletionFormer [16], Mondi [8],
and NLSPN [9] on the VOID test set with 0.05% depth density. Completed depth
images (upper rows) are presented alongside their error maps (lower rows) for each
scene.
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Fig. 14: Completion results for consecutive frames on the VOID test set with 0.5%
depth density. Thanks to our ray-based fusion module that leverages previous predic-
tions, we can recover accurate depths in large missing regions, as the red box indicates.



RayFusion 13
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Fig. 15: Visual comparison of our framework with NLSPN [9] and Completion-
Former [16] on the KITTI validation set. Completed depth images (upper rows) are
presented alongside their error maps (lower rows) for each scene.
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Fig. 16: Visual comparison of our framework with CompletionFormer [16] and NL-
SPN [9] on the VOID test set with 0.5% depth density in the cross-dataset setting
(trained with the ScanNetV2 training set). Completed depth images (upper rows) are
presented alongside their error maps (lower rows) for each scene.
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